Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 9 Due: Monday, October 31

- 1. Slutsky's extension. Suppose $\mathbf{y}_n \stackrel{d}{\longrightarrow} \mathbf{y}$, where \mathbf{y} is a $d \times 1$ random vector, $\mathbf{A}_n \stackrel{P}{\longrightarrow} \mathbf{A}$, where \mathbf{A} is a positive definite matrix, and that $\mathbf{y}_n = \mathbf{A}_n \mathbf{x}_n$. Note: This problem would be fairly trivial if we knew that \mathbf{A}_n were positive definite; the point of this problem is that you do not know this about \mathbf{A}_n , only that its limit \mathbf{A} is positive definite.
 - (a) Prove that \mathbf{x}_n is bounded in probability. Hint: If \mathbf{A} is positive definite, $\mathbf{A}^{\top}\mathbf{A}$ is positive definite (and its eigenvalues have certain helpful properties).
 - (b) Prove that $\mathbf{x}_n \xrightarrow{d} \mathbf{A}^{-1}\mathbf{y}$.
- 2. Bernstein-von Mises theorem. Suppose the prior $p(\theta)$ is continuous with $p(\theta) > 0$ for all $\theta \in \Theta$, and that regularity conditions (A)-(C) as defined in the "Likelihood: Consistency" lecture are satisfied. Prove that

$$p_{\delta}(\mathbf{d}|\mathbf{x})/p_{\delta}(\hat{\boldsymbol{ heta}}|\mathbf{x}) \stackrel{\mathrm{P}}{\longrightarrow} \exp\{-\frac{1}{2}\mathbf{d}^{\top}\boldsymbol{\mathscr{I}}(\boldsymbol{ heta}^{*})\mathbf{d}\},\$$

where $\boldsymbol{\delta} = \sqrt{n}(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}), \, \hat{\boldsymbol{\theta}}$ is the MLE, and **d** is an arbitrary $d \times 1$ vector.

Hint: Write the posteriors in terms of the likelihood, and take a Taylor series expansion of the log-likelihood.

Note: I realize that the version we presented in class involved almost sure convergence; you are only asked to show convergence in probability here.