Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 5

Due: Monday, September 26

- 1. Convergence in quadratic mean and probability. This problem involves proving the theorems from the slide titled "Convergence in mean vs convergence in probability" from the "Modes of convergence" lecture. Hint: Markov's inequality.
 - (a) Prove that if $\mathbf{x}_n \xrightarrow{r} \mathbf{x}$ for some r > 0, then $\mathbf{x}_n \xrightarrow{P} \mathbf{x}$.
 - (b) Prove that if $\mathbf{a} \in \mathbb{R}^d$, then $\mathbf{x}_n \xrightarrow{\mathrm{qm}} \mathbf{a}$ if and only if $\mathbb{E}\mathbf{x}_n \to \mathbf{a}$ and $\mathbb{V}\mathbf{x}_n \to \mathbf{0}_{d \times d}$.
- 2. The Cramér-Wold device. Let $\mathbf{x}_n \in \mathbb{R}^d$ be a sequence of random vectors. Prove that if $\mathbf{a}^{\mathsf{T}}\mathbf{x}_n \xrightarrow{d} \mathbf{a}^{\mathsf{T}}\mathbf{x}$ for all vectors $\mathbf{a} \in \mathbb{R}^d$, then $\mathbf{x}_n \xrightarrow{d} \mathbf{x}$. Hint: Continuity theorem.
- 3. Simultaneous convergence in probability. Suppose $X_{n1} \xrightarrow{P} X_1, \ldots, X_{nd} \xrightarrow{P} X_d$. Prove that the vector \mathbf{x}_n converges to the vector \mathbf{x} (i.e., that element-wise convergence in probability implies convergence in probability as defined in class). Note: do not assume that the elements of \mathbf{x}_n are independent from each other, or anything else about their joint distribution. Hint: Union bound.