Theorem: Suppose $f_{n} \rightarrow f$ uniformly, with f_{n} continuous for all n. Then $f_{n}(\mathbf{x}) \rightarrow f\left(\mathbf{x}_{0}\right)$ as $\mathbf{x} \rightarrow \mathbf{x}_{0}$. Proof. Let $\epsilon>0$.

$$
\begin{align*}
\exists N: n>N \Longrightarrow \sup _{x}\left|f_{n}(\mathbf{x})-f(\mathbf{x})\right|<\frac{\epsilon}{2} & \text { Def. Uniform convergence } \tag{①}\\
\exists \delta:\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<\delta \Longrightarrow\left|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right|<\frac{\epsilon}{2} & f \text { is continuous } \tag{2}
\end{align*}
$$

Therefore, for $n>N$ and any $\mathbf{x} \in N_{\delta}\left(\mathbf{x}_{0}\right)$, we have

$$
\begin{align*}
\left|f_{n}(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right| & =\left|f_{n}(\mathbf{x})-f(\mathbf{x})+f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right| \\
& \leq\left|f_{n}(\mathbf{x})-f(\mathbf{x})\right|+\left|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right| \\
& <\sup _{x}\left|f_{n}(\mathbf{x})-f(\mathbf{x})\right|+\frac{\epsilon}{2} \tag{2}\\
& <\epsilon \tag{1}
\end{align*}
$$

