Theorem: Suppose $f_n \to f$ uniformly, with f_n continuous for all n. Then $f_n(\mathbf{x}) \to f(\mathbf{x}_0)$ as $\mathbf{x} \to \mathbf{x}_0$. *Proof.* Let $\epsilon > 0$.

(1)
$$\exists N: n > N \implies \sup |f_n(\mathbf{x}) - f(\mathbf{x})| < \frac{\epsilon}{2}$$
 Def. Uniform convergence

 $\exists N : n > N \implies \sup_{x} |f_n(\mathbf{x}) - f(\mathbf{x})| < \frac{\epsilon}{2} \qquad \text{Def. Uniform co}$ $\exists \delta : \|\mathbf{x} - \mathbf{x}_0\| < \delta \implies |f(\mathbf{x}) - f(\mathbf{x}_0)| < \frac{\epsilon}{2} \qquad f \text{ is continuous}$ 2

Therefore, for n > N and any $\mathbf{x} \in N_{\delta}(\mathbf{x}_0)$, we have

$$|f_n(\mathbf{x}) - f(\mathbf{x}_0)| = |f_n(\mathbf{x}) - f(\mathbf{x}) + f(\mathbf{x}) - f(\mathbf{x}_0)|$$

$$\leq |f_n(\mathbf{x}) - f(\mathbf{x})| + |f(\mathbf{x}) - f(\mathbf{x}_0)|$$
Triangle inequality
$$< \sup_x |f_n(\mathbf{x}) - f(\mathbf{x})| + \frac{\epsilon}{2}$$

$$< \epsilon$$

$$(1)$$