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Introduction

• Last time, we proved the central limit theorem for the iid case
• Obviously, this is very useful, but at the same time, has clear
limitations – the majority of practical applications of statistics
involve modeling the relationship between some outcome Y
and a collection of potential predictors {Xj}dj=1
• Those predictors are not the same for each observation;
hence, Y is not iid and the ordinary CLT does not apply
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Introduction (cont’d)

• Nevertheless, we’d certainly hope it to be the case that√
n(β̂ − β) converges to a normal distribution even if the

errors are not normally distributed
• Does it? If so, under what circumstances?
• Before getting to this question, let’s first introduce the
concept of a “triangular array” of variables
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Triangular array

• A triangular array of random variables is of the form

X11

X21 X22

X31 X32 X33

. . . ,

where the random variables in each row (i) are independent of
each other, (ii) have zero mean and (iii) have finite variance.
• The requirement that the variables have zero mean is only for
convenience; we can always construct zero-mean variables by
considering Xni = Yni − µni
• I’ve stated the definition here in terms of scalar variables, but
the entries in this triangle can also be random vectors xni
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Triangular array (cont’d)

• We are going to be concerned with Zn =
∑n
i=1Xni, the

row-wise sum of the array
• Since the elements of each row are independent, we have

s2
n = VZn =

n∑
i=1

VXni =
n∑
i=1

σ2
ni

or, if the elements in the array are random vectors,

Vn = Vzn =
n∑
i=1

Vxni =
n∑
i=1

Σni
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Univariate version
Multivariate version

Lindeberg condition

• There are a few different ways of extending the central limit
theorem to non-iid random variables; the most general of
these is the Lindeberg-Feller theorem
• This version of the CLT involves a new condition known as
the Lindeberg condition: for every ε > 0,

1
s2
n

n∑
i=1

E{X2
ni1(|Xni| ≥ εsn)} → 0

as n→∞
• We’ll discuss the multivariate version of this condition a bit
later
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Example

• The Lindeberg condition is a bit abstract at first, so let’s see
how it works, starting with the simplest case: iid random
variables
• Theorem: Suppose X1, X2, . . . are iid with mean zero and
finite variance. Then the Lindeberg condition is satisfied.
• There are three key steps in this proof:

(1) Replacing the infinite sum with a single quantity ∝ ETn

(2) Tn
P−→ 0 (which happens if sn →∞)

(3) ETn → 0 by the Dominated Convergence Theorem (requires
finite variance)
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Non-iid case

• The last two steps work out essentially the same way in
non-iid settings
• The first step, however, requires some resourcefulness
• Typically, the proof proceeds along the lines of bounding the
elements of the sum by their “worst-case scenario”; this
eliminates the sum, but requires a condition requiring that the
worse-case scenario can’t be too extreme
• We’ll see a specific example of this later as it pertains to
regression
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Lindeberg’s theorem

• We are now ready to present the Lindeberg-Feller theorem,
although we won’t be proving it in this course
• Theorem (Lindeberg): Suppose {Xni} is a triangular array
with Zn =

∑n
i=1Xni and s2

n = VZn. If the Lindeberg
condition holds: for every ε > 0,

1
s2
n

n∑
i=1

E{X2
ni1(|Xni| ≥ εsn)} → 0,

then Zn/sn
d−→ N(0, 1).
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Lindeberg’s theorem, alternate statement

• The preceding theorem is expressed in terms of sums; it is
often more natural to think about Lindeberg’s theorem in
terms of means
• Theorem (Lindeberg): Suppose {Xni} is a triangular array
such that Zn = 1

n

∑n
i=1Xni, s2

n = 1
n

∑n
i=1 VXni, and

s2
n → s2 6= 0. If the Lindeberg condition holds: for every
ε > 0,

1
n

n∑
i=1

E{X2
ni1(|Xni| ≥ ε

√
n)} → 0,

then
√
nZn

d−→ N(0, s2).
• Note: we’ve added an assumption that s2

n → s2, but made the
Lindeberg condition easier to handle (sn no longer appears)
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Feller’s Theorem

• The preceding theorem(s) show that the Lindeberg condition
is sufficient for asymptotic normality
• Feller showed that it was also a necessary condition, if we
introduce another requirement:

max
i

σ2
ni∑n

j=1 σ
2
nj

→ 0

as n→∞; i.e., no one term dominates the sum
• Theorem (Feller): Suppose {Xni} is a triangular array with
Zn =

∑n
i=1Xni and s2

n = VZn. If Zn/sn
d−→ N(0, 1) and

maxi σ2
ni/s

2
n → 0, then the Lindeberg condition holds.
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Lindeberg-Feller theorem

• Putting these two theorems together, the Lindeberg-Feller
Central Limit Theorem says that if no one term dominates the
variance, then we have asymptotic normality if and only if the
Lindeberg condition holds
• The forward (Lindeberg) part of the theorem is the most
important part in practice, as our goal is typically to prove
asymptotic normality
• However, it is worth noting that the Lindeberg condition is the
minimal condition that must be met to ensure this
• For example, there is another CLT for non-iid variables called
the Lyapunov CLT, which requires a “Lyapunov condition”;
not surprisingly, this implies the Lindeberg condition, as it is a
stronger condition than necessary for asymptotic normality
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Multivariate CLT

• Now let’s look at the multivariate form of the Lindeberg-Feller
CLT, which I’ll give in the “mean” form
• Theorem (Lindeberg-Feller CLT): Suppose {xni} is a

triangular array of d× 1 random vectors such that
zn = 1

n

∑n
i=1 xni and Vn = 1

n

∑n
i=1 Vxni → V, where V is

positive definite. If for every ε > 0,

1
n

n∑
i=1

E{‖xni‖21(‖xni‖ ≥ ε
√
n)} → 0,

then
√
nzn

d−→ N(0,V).
• Or equivalently,

√
nV−1/2

n zn
d−→ N(0, I)
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Multivariate Feller condition

• Similar to the univariate case, the Lindeberg condition is both
necessary and sufficient if we add the condition that no one
term dominates the variance
• In the multivariate setting, this means that

Vxi∑n
j=1 Vxj

→ 0d×d

for all i; the division here is element-wise
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CLT for linear regression

• OK, now let’s take what we’ve learned and put it into
practice, answering our question from the beginning of lecture:
do we have a central limit theorem for linear regression?
• Theorem: Suppose y = Xβ∗ + w, where wi

iid∼ (0, σ2).
Suppose 1

nX>X→ Σ, where Σ is positive definite, and let xi
denote the d× 1 vector of covariates for subject i (taken to
be fixed, not random). If ‖xi‖ is uniformly bounded, then

1
σ (X>X)1/2(β̂ − β) d−→ N(0, I).

• In other words, β̂ .∼ N(β, σ2(X>X)−1)
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Remarks

• Note that in proving this result, we needed two key conditions
◦ 1

nX>X converging to a p.d. matrix; this seems obvious since if
X>X was not invertible, β̂ isn’t even well-defined

◦ ‖xi‖ bounded; this is less obvious, but is connected to the idea
of influence in regression

• In iid data, all observations essentially carry the same weight
for the purposes of estimation and inference
• In regression, however, observations far from the mean of the
covariate have much greater influence over the model fit
• This is essentially what ‖xi‖ is measuring: in words, we are

requiring that no one observation can exhibit too great an
influence
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Simulation

• This is one of those situations where theory helps to guide
intuition and practice
• Let’s carry out a simulation to illustrate
• We will challenge the central limit theorem in two ways:

◦ w will follow a t distribution with ν degrees of freedom
◦ The elements of X will be uniformly distributed (from -1 to 1)

except for the first two elements of column 1, which will be set
to ±a

• In what follows, n = 100 unless otherwise noted; 1000
simulations were run for each example
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Illustration of the two conditions (ν = 3, a = 5)

−4 −2 0 2 4

Normal t

0

10

20

XTX

As we will see, the more comfortably the Lindeberg condition
holds, the faster the rate of convergence to normality

Patrick Breheny University of Iowa Likelihood Theory (BIOS 7110) 18 / 22



Triangular arrays
Lindeberg-Feller CLT

Regression

Results: ν = 50, a = 5
Influential observations, but ε close to normal
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Results: ν = 3, a = 1
Heavy tails, but no terribly influential observations
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Results: ν = 3, a = 5
Heavy tails and influential observations
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Results: ν = 3, a = 5
Heavy tails and influential observations, but n = 1000
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