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Introduction

e Last time, we proved the central limit theorem for the iid case

e Obviously, this is very useful, but at the same time, has clear
limitations — the majority of practical applications of statistics
involve modeling the relationship between some outcome Y
and a collection of potential predictors {Xj};-lzl

e Those predictors are not the same for each observation;
hence, Y is not iid and the ordinary CLT does not apply
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Introduction (cont'd)

o Nevertheless, we'd certainly hope it to be the case that
V/n(B — B) converges to a normal distribution even if the
errors are not normally distributed

e Does it? If so, under what circumstances?

e Before getting to this question, let’s first introduce the
concept of a “triangular array” of variables
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Triangular array

A triangular array of random variables is of the form

X11
Xo1 Xoo
X31 Xz X33

where the random variables in each row (i) are independent of
each other, (ii) have zero mean and (iii) have finite variance.

The requirement that the variables have zero mean is only for
convenience; we can always construct zero-mean variables by
considering X,; = Yo — fini

I've stated the definition here in terms of scalar variables, but
the entries in this triangle can also be random vectors x,,;
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Triangular array (cont'd)

e We are going to be concerned with Z, = >"" | X,,;, the
row-wise sum of the array

e Since the elements of each row are independent, we have
n n
2 2
s5=VZ,=> VXp;=> on
i=1 i=1

or, if the elements in the array are random vectors,

Vo=Vz, =Y Vxp=> By
=1 =1
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Univariate version

Lindeberg condition

e There are a few different ways of extending the central limit
theorem to non-iid random variables; the most general of
these is the Lindeberg-Feller theorem

e This version of the CLT involves a new condition known as
the Lindeberg condition: for every € > 0,

1 n
8—22 1(| X pni| > €s,)} — 0

asn — o0

e We'll discuss the multivariate version of this condition a bit
later
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Univariate version
Multivariate version

Example

e The Lindeberg condition is a bit abstract at first, so let's see
how it works, starting with the simplest case: iid random
variables

e Theorem: Suppose X1, Xo,... are iid with mean zero and
finite variance. Then the Lindeberg condition is satisfied.

e There are three key steps in this proof:

(1) Replacing the infinite sum with a single quantity o« ET,,

(2) T, 50 (which happens if s,, = o)

(3) ET,, — 0 by the Dominated Convergence Theorem (requires
finite variance)
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The last two steps work out essentially the same way in
non-iid settings
The first step, however, requires some resourcefulness

Typically, the proof proceeds along the lines of bounding the
elements of the sum by their “worst-case scenario”; this
eliminates the sum, but requires a condition requiring that the
worse-case scenario can't be too extreme

We'll see a specific example of this later as it pertains to
regression
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Univariate version

Lindeberg's theorem

e We are now ready to present the Lindeberg-Feller theorem,
although we won't be proving it in this course

e Theorem (Lindeberg): Suppose {X,;} is a triangular array
with Z, = 3" | X,,; and s2 = VZ,. If the Lindeberg
condition holds: for every € > 0,

1 n
3_2 E |an‘ > €Sn)} — 0
n ;_—

i=

then Zy/sn — N(0,1).
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Multivariate version

Lindeberg's theorem, alternate statement

e The preceding theorem is expressed in terms of sums; it is
often more natural to think about Lindeberg’'s theorem in
terms of means

e Theorem (Lindeberg)' Suppose {X;} is a triangular array

such that Zy =130 Xy 2 =137 VX, and
52 8240, If the Lindeberg condition holds: for every
e€e>0,

_ZE{ 1(| Xni| > ev/n)} — 0,

then \/nZ, 4, N(0, s2).
e Note: we've added an assumption that s% — s2, but made the
Lindeberg condition easier to handle (s, no longer appears)

Patrick Breheny University of lowa  Likelihood Theory (BIOS 7110)



Univariate version
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Feller's Theorem

e The preceding theorem(s) show that the Lindeberg condition
is sufficient for asymptotic normality

o Feller showed that it was also a necessary condition, if we
introduce another requirement:

o2,
max —;———5 — 0
b 2j=1nj

as n — o0; i.e., no one term dominates the sum
e Theorem (Feller): Suppose {X,;} is a triangular array with

Zn =" Xpi and 82 = VZ,. If Z,,/sp —2 N(0,1) and
max; 02;/s2 — 0, then the Lindeberg condition holds.
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Lindeberg-Feller theorem

Patrick Breheny

Putting these two theorems together, the Lindeberg-Feller
Central Limit Theorem says that if no one term dominates the
variance, then we have asymptotic normality if and only if the
Lindeberg condition holds

The forward (Lindeberg) part of the theorem is the most
important part in practice, as our goal is typically to prove
asymptotic normality

However, it is worth noting that the Lindeberg condition is the
minimal condition that must be met to ensure this

For example, there is another CLT for non-iid variables called
the Lyapunov CLT, which requires a “Lyapunov condition”;
not surprisingly, this implies the Lindeberg condition, as it is a
stronger condition than necessary for asymptotic normality
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Multivariate CLT

e Now let's look at the multivariate form of the Lindeberg-Feller
CLT, which I'll give in the “mean” form

e Theorem (Lindeberg-Feller CLT): Suppose {x,;} is a
triangular array of d x 1 random vectors such that
Z, = 1 Yo Xni and V,, = % 1 Vxp, — V, where Vis

T n

positive definite. If for every € > 0,
1 « 9
— 2 E{llxnil*1(Inill = ev/n)} =0,
i=1

then /nz, 4, N(0,V).
e Or equivalently, ﬁV;l/an 4, N(0,I)
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Multivariate version

Multivariate Feller condition

e Similar to the univariate case, the Lindeberg condition is both
necessary and sufficient if we add the condition that no one
term dominates the variance

e In the multivariate setting, this means that

in

— Odxd
n
j=1 VXJ

for all 7; the division here is element-wise
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CLT for linear regression

e OK, now let's take what we've learned and put it into
practice, answering our question from the beginning of lecture:
do we have a central limit theorem for linear regression?

e Theorem: Suppose y = X3* + w, where w; i (0,02).
Suppose %XTX — X, where X is positive definite, and let x;
denote the d x 1 vector of covariates for subject i (taken to
be fixed, not random). If ||x;|| is uniformly bounded, then

LxX™X)Y2(8 - B) -4 N(0, ).

e In other words, 3 ~ N(8,02(X™X)1)
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Regression

RENEILS

Note that in proving this result, we needed two key conditions
o %XTX converging to a p.d. matrix; this seems obvious since if
XTX was not invertible, B isn't even well-defined
o ||x;|| bounded; this is less obvious, but is connected to the idea
of influence in regression
In iid data, all observations essentially carry the same weight
for the purposes of estimation and inference

In regression, however, observations far from the mean of the
covariate have much greater influence over the model fit

This is essentially what ||x;|| is measuring: in words, we are
requiring that no one observation can exhibit too great an
influence
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Simulation

This is one of those situations where theory helps to guide
intuition and practice

Let's carry out a simulation to illustrate
We will challenge the central limit theorem in two ways:

o w will follow a t distribution with v degrees of freedom

o The elements of X will be uniformly distributed (from -1 to 1)
except for the first two elements of column 1, which will be set
to +a

In what follows, n = 100 unless otherwise noted; 1000
simulations were run for each example
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lllustration of the two conditions (v = 3,a = 5)
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As we will see, the more comfortably the Lindeberg condition
holds, the faster the rate of convergence to normality
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Results: v =50,a =5
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Regression

Results: v =3,a =1
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Results: v =3,a =5

Heavy tails and influential observations
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