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Introduction

• Today we will introduce the multivariate normal distribution
and attempt to discuss its properties in a fairly thorough
manner
• The multivariate normal distribution is by far the most
important multivariate distribution in statistics
• It’s important for all the reasons that the one-dimensional
Gaussian distribution is important, but even more so in higher
dimensions because many distributions that are useful in one
dimension do not easily extend to the multivariate case
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Motivation

• In the univariate case, the family of normal distributions can
be constructed from the standard normal distribution through
the location-scale transformation µ+ σZ, where Z ∼ N(0, 1);
the resulting random variable has a N(µ, σ2) distribution
• A similar approach can be taken with the multivariate normal
distribution, although some care needs to be taken with
regard to whether the resulting variance is singular or not
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Standard normal

• First, the easy case: if Z1, . . . , Zr are mutually independent
and each follows a standard normal distribution, the random
vector z is said to follow an r-variate standard normal
distribution, denoted z ∼ Nr(0, Ir)
• Remark: For multivariate normal distributions and identity
matrices, I will usually leave off the subscript from now on
when it is either unimportant or able to be figured out from
context
• If z ∼ Nr(0, I), its density is

p(z) = (2π)−r/2 exp{−1
2z>z}

Patrick Breheny University of Iowa Likelihood Theory (BIOS 7110) 4 / 23



Multivariate normal distribution
Linear combinations and quadratic forms

Marginal and conditional distributions

Definition
Density and MGF

Multivariate normal distribution

• Definition: Let x be a d× 1 random vector with mean vector
µ and covariance matrix Σ, where rank(Σ) = r > 0. Let Γ
be a r× d matrix such that Σ = Γ>Γ. Then x is said to have
a d-variate normal distribution of rank r if its distribution is
the same as that of the random vector µ + Γ>z, where
z ∼ Nr(0, I).
• This is typically denoted x ∼ Nd(µ,Σ)
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Density

• Suppose x ∼ Nd(µ,Σ) and that Σ is full rank; then x has a
density:

p(x|µ,Σ) = (2π)−d/2 |Σ|−1/2 exp{−1
2(x− µ)>Σ−1(x− µ)},

where |Σ| denotes the determinant of Σ
• We will not really concern ourselves with determinants and
their properties in this course, although it is worth pointing
out that if Σ is singular, then |Σ| = 0 and the above result
does not hold (or even make sense)
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Singular case

• In fact, if Σ is singular, then x does not even have a density
• This is connected to our earlier discussion of the Lebesgue
decomposition theorem: if Σ is singular, then the distribution
of x has a singular component (i.e., x is not absolutely
continuous)
• This is the reason why the definition of the MVN might seem
somewhat roundabout – we can’t just say that the random
variable has a certain density, but must instead say that it has
the same distribution as µ + Γ>z, where z has a well-defined
density
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Moment generating function

• For this reason, when working with multivariate normal
distributions or showing that some random variable y follows
a multivariate normal distribution, it is often easier to work
with moment generating functions or characteristic functions,
which are well-defined even if Σ is singular
• If x ∼ Nd(µ,Σ), then its moment generating function is

m(t) = exp{t>µ + 1
2t>Σt},

where t ∈ Rd

• We’ll come back to its characteristic function in a future
lecture
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Independence

• Before moving on, let us note that there is a connection
between covariance and independence in the multivariate
normal distribution
• Theorem: Suppose x ∼ Nd(µ,Σ). If x = [x1 x2]> and the
corresponding off-diagonal of Σ12 is zero, then x1 and x2 are
independent.
• In particular, if Σ is a diagonal matrix, then x1, . . . , xn are
mutually independent
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Independence (caution)

• It is worth pointing out a common mistake here:
Cov(X1, X2) = 0 =⇒ X1 ⊥⊥ X2 only if X1 and X2 are
multivariate normal
• For example, suppose X ∼ N(0, 1) and Y = ±X, each with

probability 1
2

• X and Y are both normally distributed, and Cov(X,Y ) = 0,
but they are clearly not independent
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Main result

• A very important property of the multivariate normal
distribution is that its linear combinations are also normally
distributed
• Theorem: Let b be a k × 1 vector of constants, B a k × d
matrix of constants, and x ∼ Nd(µ,Σ). Then

b + Bx ∼ Nk(Bµ + b,BΣB>).
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Corollary

• A useful corollary of this result is that we can always
“standardize” a variable with an MVN distribution
• Let’s consider the full-rank case first (i.e., Σ is nonsingular

and positive definite, and so is Σ−1)
• Corollary: Let x ∼ Nd(µ,Σ). Then

Σ−1/2(x− µ) ∼ Nd(0, I),

where Σ−1/2 is the square root of Σ−1.
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Corollary: Low rank case

• If Σ is singular, then Σ−1/2 does not exist, although we can
still standardize the distribution
• Corollary: Let x ∼ Nd(µ,Σ), where Σ is rank r with

Γ>Γ = Σ. Then

(ΓΓ>)−1Γ(x− µ) ∼ Nr(0, I).
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Main result

• In the univariate case, if Z ∼ N(0, 1), then Z2 follows a
distribution known as the χ2 distribution
• Furthermore, if Z1, . . . , Zn are mutually independent and each
Zi ∼ N(0, 1), then

∑
i Z

2
i ∼ χ2

n, where χ2
n denotes the χ2

distribution with n degrees of freedom
• Thus, it is a straightforward consequence of our previous
corollaries that if x ∼ Nd(0,Σ) and Σ is nonsingular,

x>Σ−1x ∼ χ2
d
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Main result (low rank)

• Similarly, it is always the case that if x ∼ Nd(0,Σ) with
Σ = Γ>Γ, then

x>Σ−x ∼ χ2
r ,

where r is the rank of Σ and

Σ− = Γ>(ΓΓ>)−1(ΓΓ>)−1Γ

• As discussed in our review last time, Σ− is a quantity known
as a generalized inverse, which you’ll learn more about in the
linear models course
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Non-central chi square distribution

• If µ 6= 0, then the quadratic form follows something called a
non-central χ2 distribution
• If Z1, . . . , Zn

⊥⊥∼ N(µi, 1), then the distribution of
∑

i Z
2
i is

known as the noncentral χ2
n distribution with noncentrality

parameter
∑

i µ
2
i

• Thus, if x ∼ Nd(µ,Σ), we have

x>Σ−1x ∼ χ2
d(µ>Σ−1µ),

or

x>Σ−x ∼ χ2
r(µ>Σ−µ)

if Σ is singular
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Marginal distributions

• Finally, let us consider some results related to partitions of the
multivariate normal distribution:

x =
[

x1
x2

]
, µ =

[
µ1
µ2

]
, Σ =

[
Σ11 Σ12
Σ21 Σ22

]

• Conveniently, the marginal distributions are exactly what you
would intuitively think they should be:

x1 ∼ N(µ1,Σ11)
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Conditional

• A more complicated question: what is the distribution of x1
given x2?
• This gets messy if Σ is singular, but if Σ is full rank, then

x1|x2 ∼ N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 −Σ12Σ−1
22 Σ21

)
• As mentioned earlier, note that if Σ12 = 0, then x1 and x2

are independent and x1|x2 ∼ N(µ1,Σ11);
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Schur complement

• The quantity Σ11 −Σ12Σ−1
22 Σ21 is known in linear algebra as

the Schur complement; it comes up all the time in statistics
and we will see it repeatedly in this course
• It is the inverse of the (1, 1) block of Σ−1; more explicitly,

letting Θ = Σ−1,

Θ−1
11 = Σ11 −Σ12Σ−1

22 Σ21

• Conceptually, it represents the reduction in the variability of
x1 that we achieve by learning x2 (or equivalently, the
increase in our uncertainty about x1 if we don’t know x2)
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Precision matrix

• The inverse of the covariance matrix, Θ = Σ−1, is known as
the precision matrix and is a rather interesting quantity in its
own right
• In fact, many statistical procedures are more concerned with
estimating Θ than Σ
• One key reason for this is that Θ encodes conditional

independence relationships that are often of interest in
learning the structure of x in terms of which how variables are
related to each other
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Conditional independence result

• Suppose we partition x into x1, containing two variables of
interest, and x2 containing the remaining variables
• Then by the results we’ve obtained already, if x ∼ N(µ,Σ),

then x1|x2 is multivariate normal with covariance matrix Θ−1
11

• Thus, if any off-diagonal element of Θ is zero, then the
corresponding variables are conditionally independent given
the remaining variables
• This is of interest in many statistical problems
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Example

• For example, suppose X → Y → Z; we could simulate this
with, for example,
x <- rnorm(n)
y <- x + rnorm(n)
z <- y + rnorm(n)

• Note that Σ̂xz is not close to zero at all; X and Z are not
independent and are, in fact, rather highly correlated
• However, Θ̂xz ≈ 0; X and Z are conditionally independent
given Y
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Application

• One application of this idea is in learning gene regulatory
networks
• Suppose the expression levels of various genes follow a
multivariate normal distribution (at least approximately)
• Learning which elements of Θ are nonzero corresponds to
learning which pairs of genes have a direct relationship with
one another, as opposed to being merely correlated through
the effects of other genes that affect them both
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