Analysis review: O notation, Taylor series, and linear algebra

Patrick Breheny

September 1

Introduction

One final lecture of analysis review, in which we go over three indispensable tools that we will use constantly in the remainder of the course:

- O, o notation
- Taylor series expansions
- Linear algebra

Definitions Rules of O notation

o-notation: Motivation

- When investigating the asymptotic behavior of functions, it is often convenient to replace unwieldy expressions with compact notation
- For example, if we encountered the mathematical expression

$$x^2 + a - a,$$

we would obviously want to replace it with x^2 since a - a = 0

However, what if we encounter something like

$$x^2 + \frac{5\theta}{\sqrt{n}} - \frac{3\theta}{n+5}?$$

• We can no longer just replace this with x^2

o-notation: Motivation (cont'd)

- However, as $n\ {\rm gets}$ larger, the expression gets closer and closer to x^2
- It would be convenient to have a shorthand notation for this, something like $x^2 + o_n$, where o_n represents some quantity that becomes negligible as n becomes large
- This is the basic idea behind *o*-notation, and its simplifying powers become more apparent as the mathematical expression we are dealing with becomes more complicated:

$$\frac{x^2 + \frac{5\theta}{\sqrt{n}} - \frac{3\theta}{n+5}}{(n^2 + 5n - 2)/(n^2 - 3n + 1)} + \frac{\exp\{-\frac{1}{2}\|\mathbf{x} - \boldsymbol{\mu}\|^2\}}{2\sqrt{n}\theta \int_0^\infty g(s)ds}$$

Definitions Rules of O notation

o-notation

- There is where something called *o*-notation comes in: a formal way of handling terms that effectively "cancel out" as we take limits
- **Definition:** A sequence of numbers X_n is said to be o(1) if it converges to zero. Likewise, X_n is said to be $o(r_n)$ if

$$\frac{X_n}{r_n} \to 0$$

 $\text{ as }n\to\infty.$

• For example,

$$x^{2} + \frac{5\theta}{\sqrt{n}} - \frac{3\theta}{n+5} = x^{2} + o(1)$$

Definitions Rules of O notation

O-notation

- A very useful companion of o-notation is O-notation, which denotes whether or not a term remains bounded as $n\to\infty$
- **Definition:** A sequence of numbers X_n is said to be O(1) if there exist M and n_0 such that

$$|X_n| < M$$

for all $n > n_0$. Likewise, X_n is said to be $O(r_n)$ if there exist M and n_0 such that for all $n > n_0$,

$$\left|\frac{X_n}{r_n}\right| < M.$$

Definitions Rules of O notation

O-notation remarks

For example,

$$\frac{\exp\{-\frac{1}{2}\|\mathbf{x} - \boldsymbol{\mu}\|^2\}}{2\sqrt{n}\theta \int_0^\infty g(s)ds} = O(n^{-1/2})$$

- Note that $X_n = O(1)$ does not necessarily mean that X_n is bounded, just that it is eventually bounded
- Note also that just because a term is O(1), this does not necessarily mean that it has a limit; for example,

$$\sin\left(\frac{n\pi}{2}\right) = O(1),$$

even though the sequence does not converge

Definitions Rules of O notation

Algebra of O, o notation

O, o-notation are useful in combination because simple rules govern how they interact with each other **Theorem:** For $a \le b$:

$$\begin{split} O(1) + O(1) &= O(1) & O\{O(1)\} = O(1) \\ o(1) + o(1) &= o(1) & o\{O(1)\} = o(1) \\ o(1) + O(1) &= O(1) & o(r_n) = r_n o(1) \\ O(1)O(1) &= O(1) & O(n^a) + O(n^b) = O(n^b) \\ \{1 + o(1)\}^{-1} &= O(1) & o(n^a) + o(n^b) = o(n^b) \end{split}$$

Definitions Rules of O notation

Remarks

- O,o "equations" are meant to be read left-to-right; for example, $O(\sqrt{n})=O(n)$ is a valid statement, but $O(n)=O(\sqrt{n})$ is not
- Exercise: Determine the order of

$$n^{-2}\left\{(-1)^n\sqrt[n]{2} + (1+\frac{1}{n})^n\right\}.$$

- As we will see in a week or two, there are stochastic equivalents of these concepts, involving convergence in probability and being bounded in probability
- As such, we won't do a great deal with *O*, *o*-notation right now, but will use the stochastic equivalents extensively

Single variable Multivariate Vector-valued functions

Taylor series: Introduction

- It is difficult to overstate the importance of Taylor series expansions to statistical theory, and for that reason we are now going to cover them fairly extensively
- In particular, Taylor's theorem comes in a number of versions, and it is worth knowing several of them, since they come up in statistics quite often
- Furthermore, students often have not seen the multivariate versions of these expansions

Single variable Multivariate Vector-valued functions

Taylor's theorem

• Theorem (Taylor): Suppose n is a positive integer and $f : \mathbb{R} \to \mathbb{R}$ is n times differentiable at a point x_0 . Then

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_{n+1}(x, x_0),$$

where the remainder R_{n+1} satisfies

$$R_{n+1}(x, x_0) = o(|x - x_0|^n)$$
 as $x \to x_0$

- If $f^{(n+1)}(x_0)$ exists, you could also say that R_{n+1} is $O(|x-x_0|^{n+1})$
- This form of the remainder is sometimes called the Peano form

Single variable Multivariate Vector-valued functions

Taylor's theorem: Lagrange form

Theorem (Taylor): Suppose f : ℝ → ℝ is n times differentiable on an open interval containing x₀. Then for any point x in that interval, there exists x̄ ∈ (x, x₀):

$$R_n(x, x_0) = \frac{f^{(n)}(\bar{x})}{(n)!} (x - x_0)^n.$$

- This is also known as the *mean-value form*, as the mean value theorem is the central idea in proving the result
- Note that we have a stronger result, but at the cost of stronger assumptions: f⁽ⁿ⁾ must exist along the entire interval from x to x₀, not just at the point x₀

Single variable Multivariate Vector-valued functions

Example: Absolute value

- For example, consider approximating the function f(x) = |x| at $x_0 = -0.1$
- Note that f' exists at x_0 , but not at 0
- The basic form of Taylor's theorem says that if we get close enough to x_0 , the approximation f(-0.1) + f'(-0.1)(x+0.1) becomes very accurate indeed, the remainder is exactly zero for any x within 0.1 of x_0
- However, suppose x = 0.2; since f is not differentiable at zero, we are not guaranteed the existence of a point \bar{x} such that

$$f(0.2) = f(-0.1) + 0.3f'(\bar{x});$$

and indeed in this case no such point exists

Single variable Multivariate Vector-valued functions

Lagrange bound

- One reason why the Lagrange form is more powerful is that it allows us to establish error bounds to know exactly how close x must be to x_0 in order to ensure that the approximation error is less than ϵ
- In particular, if there exists an M such that $\left|f^{(n+1)}(x)\right|\leq M$ over the interval $(x,x_0),$ then

$$|R_{n+1}(x)| \le \frac{M}{(n+1)!} |x - x_0|^{n+1}$$

Single variable Multivariate Vector-valued functions

Multivariable forms of Taylor's theorem

- We now turn our attention to the multivariate case
- For the sake of clarity, I'll present the first- and second-order expansions for each of the previous forms, rather than abstract formulae involving $f^{\left(n\right)}$
- Lastly, I'll provide a form that goes out to third order, although higher orders are less convenient as they can't be represented compactly using vectors and matrices

Single variable Multivariate Vector-valued functions

Taylor's theorem

Theorem (Taylor): Suppose f : ℝ^d → ℝ is differentiable at a point x₀. Then

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + o(\|\mathbf{x} - \mathbf{x}_0\|)$$

Theorem (Taylor): Suppose f : ℝ^d → ℝ is twice differentiable at a point x₀. Then

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + o(\|\mathbf{x} - \mathbf{x}_0\|^2)$$

Single variable Multivariate Vector-valued functions

Taylor's theorem: Lagrange form

• Theorem (Taylor): Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable on $N_r(\mathbf{x}_0)$. Then for any $\mathbf{x} \in N_r(\mathbf{x}_0)$, there exists $\bar{\mathbf{x}}$ on the line segment connecting \mathbf{x} and \mathbf{x}_0 such that

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\bar{\mathbf{x}})^{\top} (\mathbf{x} - \mathbf{x}_0)$$

Theorem (Taylor): Suppose f : ℝ^d → ℝ is twice differentiable on N_r(x₀). Then for any x ∈ N_r(x₀), there exists x̄ on the line segment connecting x and x₀ such that

$$\begin{split} f(\mathbf{x}) &= f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + \\ & \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top \nabla^2 f(\bar{\mathbf{x}}) (\mathbf{x} - \mathbf{x}_0) \end{split}$$

• " $\bar{\mathbf{x}}$ on the line segment connecting \mathbf{x} and \mathbf{x}_0 " means that there exists $w \in [0, 1]$ such that $\bar{\mathbf{x}} = w\mathbf{x} + (1 - w)(\mathbf{x}_0)$

Single variable Multivariate Vector-valued functions

Taylor's theorem: Third order

Theorem (Taylor): Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is three times differentiable on $N_r(\mathbf{x}_0)$. Then for any $\mathbf{x} \in N_r(\mathbf{x}_0)$, there exists $\bar{\mathbf{x}}$ on the line segment connecting \mathbf{x} and \mathbf{x}_0 such that

$$\begin{split} f(\mathbf{x}) &= f(\mathbf{x}_0) + \sum_{j=1}^d \frac{\partial f(\mathbf{x}_0)}{\partial x_j} (x_j - x_{0j}) \\ &+ \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \frac{\partial^2 f(\mathbf{x}_0)}{\partial x_j \partial x_k} (x_j - x_{0j}) (x_k - x_{0k}) \\ &+ \frac{1}{6} \sum_{j=1}^d \sum_{k=1}^d \sum_{\ell=1}^d \frac{\partial^3 f(\bar{\mathbf{x}})}{\partial x_j \partial x_k \partial x_\ell} (x_j - x_{0j}) (x_k - x_{0k}) (x_\ell - x_{0\ell}), \end{split}$$

where $\partial f(\mathbf{x}_0)/\partial x_j$ is shorthand for $\partial f(\mathbf{x})/\partial x_j$ evaluated at \mathbf{x}_0

Single variable Multivariate Vector-valued functions

Vector-valued functions

- The preceding slides represent the most common uses of Taylor series approximations in statistics, although in this course we will also occasionally need to take approximations of vector-valued functions
- This can be represented in a variety of ways, but the following is simple and suffices for our purposes
- **Theorem:** Suppose $\mathbf{f} : \mathbb{R}^d \to \mathbb{R}^k$ is twice differentiable on $N_r(\mathbf{x}_0)$, and that $\nabla^2 f$ is bounded on $N_r(\mathbf{x}_0)$. Then for any $\mathbf{x} \in N_r(\mathbf{x}_0)$,

$$\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_0) + [\nabla \mathbf{f}(\mathbf{x}_0) + O(\|\mathbf{x} - \mathbf{x}_0\|) \mathbf{1}_{d \times k}]^{\top} (\mathbf{x} - \mathbf{x}_0),$$

where 1 is a matrix of ones (i.e., every element equals one)

Single variable Multivariate Vector-valued functions

Remark

- The reason we need a separate theorem along these lines is that unfortunately, there is not a Lagrange-type result for vector-valued functions
- In other words, it is **not** true that there exists an $\bar{\mathbf{x}}$ such that

$$\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_0) + \nabla \mathbf{f}(\bar{\mathbf{x}})^\top (\mathbf{x} - \mathbf{x}_0);$$

such a point exists for each element of **f** separately, but usually the same point will not work for both f_1 and f_2 (and so on)

• Thus, instead of $\nabla f(\bar{x})$, we would have a matrix with columns $\nabla f_1(\bar{x}_1), \nabla f_2(\bar{x}_2)$, and so on

Basic linear algebra Random matrices Eigenvalues

Linear algebra: Linear and quadratic forms

- Our last mathematical topic to review/reference is linear algebra, which we will use right away in our next lecture on the multivariate normal distribution
- I'll start by just listing some useful identities/relationships involving matrix products and their scalar representations:

$$\mathbf{a}^{\mathsf{T}}\mathbf{x} = \sum_{i} a_{i}x_{i}; \quad \mathbf{1}^{\mathsf{T}}\mathbf{x} = \sum_{i} x_{i}$$
$$\mathbf{A}^{\mathsf{T}}\mathbf{x} = (\sum_{i} a_{i1}x_{i} \quad \cdots \quad \sum_{i} a_{ik}x_{i})^{\mathsf{T}}$$
$$\mathbf{a}^{\mathsf{T}}\mathbf{W}\mathbf{x} = \sum_{i} \sum_{j} a_{i}w_{ij}x_{j}; \quad \mathbf{a}^{\mathsf{T}}\mathbf{1}\mathbf{x} = \sum_{i} \sum_{j} a_{i}x_{j}$$

Basic linear algebra Random matrices Eigenvalues

Inverses

- **Definition:** The *inverse* of an $n \times n$ matrix \mathbf{A} , denoted \mathbf{A}^{-1} , is the matrix satisfying $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$, where \mathbf{I}_n is the $n \times n$ identity matrix.
- Note: We're sort of getting ahead of ourselves by saying that A^{-1} is "the" matrix satisfying $AA^{-1} = I_n$, but it is indeed the case that if a matrix has an inverse, the inverse is unique

Basic linear algebra Random matrices Eigenvalues

Singular matrices

However, not all matrices have inverses; for example

$$\mathbf{A} = \left[\begin{array}{rr} 1 & 2 \\ 2 & 4 \end{array} \right]$$

- There does not exist a matrix such that $\mathbf{A}\mathbf{A}^{-1}=\mathbf{I}_2$
- Such matrices are said to be singular
- Remark: Only square matrices have inverses; an n × m matrix
 A might, however, have a *left inverse* (satisfying BA = I_m)
 or *right inverse* (satisfying AB = I_n)

Basic linear algebra Random matrices Eigenvalues

Positive definite

- A related notion is that of a "positive definite" matrix, which applies to symmetric matrices
- **Definition:** A symmetric $n \times n$ matrix **A** is said to be *positive definite* if for all $\mathbf{x} \in \mathbb{R}^n$,

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} > 0$$
 if $\mathbf{x} \neq 0$

- The two notions are related in the sense that if A is positive definite, then (a) A is not singular and (b) A^{-1} is also positive definite
- If $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \ge 0$, then \mathbf{A} is said to be *positive semidefinite*
- In statistics, these classifications are particularly important for variance-covariance matrices, which are always positive semidefinite (and positive definite, if they aren't singular)

Basic linear algebra Random matrices Eigenvalues

Square root of a matrix

- These concepts are important with respect to knowing whether a matrix has a "square root"
- **Definition:** An $n \times n$ matrix **A** is said to have a *square root* if there exists a matrix **B** such that $\mathbf{BB} = \mathbf{A}$.
- Theorem: Let A be a positive definite matrix. Then there exists a unique matrix $A^{1/2}$ such that $A^{1/2}A^{1/2} = A$.
- Positive semidefinite matrices have square roots as well, although they aren't necessarily unique

Basic linear algebra Random matrices Eigenvalues

Rank

- We also need to be familiar with the concept of matrix rank (there are many ways of defining rank; all are equivalent)
- **Definition:** The *rank* of a matrix is the dimension of its largest nonsingular submatrix.
- For example, the following 3×3 matrix is singular, but contains a nonsingular 2×2 submatrix, so its rank is 2:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & \cancel{3} \\ \cancel{2} & \cancel{4} & \cancel{6} \\ 1 & 0 & \cancel{1} \end{bmatrix}$$

• Note that a nonsingular $n \times n$ matrix has rank n, and is said to be full rank

Basic linear algebra Random matrices Eigenvalues

Rank and multiplication

- There are many results and theorems involving rank; we're not going to cover them all, but it is important to know that rank cannot be increased through the process of multiplication
- **Theorem:** For any matrices A and B with appropriate dimensions, $rank(AB) \leq rank(A)$ and $rank(AB) \leq rank(B)$.
- In particular, $rank(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^{\mathsf{T}}) = rank(\mathbf{A})$.

Basic linear algebra Random matrices Eigenvalues

Expectation and variance

- In addition, we need some results on expected values of vectors and functions of vectors
- First of all, we need to define expectation and variance as they pertain to random vectors
- **Definition:** Let $\mathbf{x} = (X_1 \ X_2 \ \cdots \ X_d)^\top$ denote a vector of random variables, then $\mathbb{E}(\mathbf{x}) = (\mathbb{E}X_1 \ \mathbb{E}X_2 \ \cdots \ \mathbb{E}X_d)^\top$. Meanwhile, $\mathbb{V}\mathbf{x}$ is a $d \times d$ matrix:

$$\mathbb{V}\mathbf{x} = \mathbb{E}\{(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}\} \text{ with elements}$$
$$(\mathbb{V}\mathbf{x})_{ij} = \mathbb{E}\{(X_i - \mu_i)(X_j - \mu_j)\},\$$

where $\mu_i = \mathbb{E}X_i$. The matrix $\mathbb{V}\mathbf{x}$ is referred to as the *variance-covariance matrix* of \mathbf{x} .

Basic linear algebra Random matrices Eigenvalues

Linear and quadratic forms

• Letting A denote a matrix of constants and x a random vector with mean μ and variance Σ ,

$$\begin{split} \mathbb{E}(\mathbf{A}^{\top}\mathbf{x}) &= \mathbf{A}^{\top}\boldsymbol{\mu} \\ \mathbb{V}(\mathbf{A}^{\top}\mathbf{x}) &= \mathbf{A}^{\top}\boldsymbol{\Sigma}\mathbf{A} \\ \mathbb{E}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x}) &= \boldsymbol{\mu}^{\top}\mathbf{A}\boldsymbol{\mu} + \operatorname{tr}(\mathbf{A}\boldsymbol{\Sigma}), \end{split}$$

where $\operatorname{tr}(\mathbf{A}) = \sum_i A_{ii}$ is the trace of \mathbf{A}

• Some useful facts about traces:

$$tr(\mathbf{AB}) = tr(\mathbf{BA})$$
$$tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$$
$$tr(c\mathbf{A}) = c tr(\mathbf{A})$$
$$tr(\mathbf{A}) = rank(\mathbf{A}) \quad \text{if } \mathbf{AA} = \mathbf{A}$$

Basic linear algebra Random matrices Eigenvalues

Eigendecompositions

- Finally, we'll also take a moment to introduce some facts about eigenvalues
- The most important thing about eigenvalues is that they allow us to "diagonalize" a matrix: if A is a symmetric $d \times d$ matrix, then it can be factored into:

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}},$$

where Λ is a diagonal matrix containing the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_d$ of \mathbf{A} and the columns of \mathbf{Q} are its eigenvectors

- Furthermore, eigenvectors are orthonormal, so we have $\mathbf{Q}^\top \mathbf{Q} = \mathbf{Q} \mathbf{Q}^\top = \mathbf{I}$

Basic linear algebra Random matrices Eigenvalues

Eigenvalues and "size"

- This is very helpful from a conceptual standpoint, as it allows us to separate the "size" of a matrix (Λ) from its "direction(s)" (Q)
- For example, we have already seen that one measure of the size of a matrix is based on λ_{max} (for a symmetric matrix, its spectral norm is its largest eigenvalue)
- In addition, the trace and determinant, two other ways of quantifying the "size" of a matrix, are simple functions of the eigenvalues:

$$\begin{array}{l} \circ \ \operatorname{tr}(\mathbf{A}) = \sum_{i} \lambda_{i} \\ \circ \ |\mathbf{A}| = \prod_{i} \lambda_{i} \end{array}$$

Basic linear algebra Random matrices Eigenvalues

Eigenvalues and inverses

- Once one has obtained the eigendecomposition of **A**, calculating its inverse is straightforward
- If A is not singular, then $A^{-1} = Q \Lambda^{-1} Q^{\top}$; note that since Λ is diagonal, its inverse is trivial to calculate
- Even if A is singular, we can obtain something called a "generalized inverse": $\mathbf{A}^- = \mathbf{Q}\mathbf{\Lambda}^-\mathbf{Q}^\top$, where $(\mathbf{\Lambda}^-)_{ii} = \lambda_i^{-1}$ if $\lambda_i \neq 0$ and $(\mathbf{\Lambda}^-)_{ii} = 0$ otherwise
- Many other important properties of matrices can be deduced entirely from their eigenvalues:
 - A is positive definite if and only if $\lambda_i > 0$ for all i
 - A is positive semidefinite if and only if $\lambda_i \ge 0$ for all i
 - If A has rank r, then A has r nonzero eigenvalues and the remaining d r eigenvalues are zero

Basic linear algebra Random matrices Eigenvalues

Extreme values

- Lastly, there is a connection between a matrix's eigenvalues and the extreme values of its quadratic form
- Let the eigenvalues $\lambda_1, \ldots, \lambda_d$ of **A** be ordered from largest to smallest. Over the set of all vectors **x** such that $||\mathbf{x}||_2 = 1$,

$$\max \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \lambda_1$$

and

$$\min \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \lambda_d$$