
Vector calculus
Integration and measure

Analysis review: Vector calculus and measure

Patrick Breheny

August 30

Patrick Breheny University of Iowa Likelihood Theory (BIOS 7110) 1 / 19



Vector calculus
Integration and measure

Introduction

• Next up, we’ll be reviewing the central tools of calculus:
derivatives and integrals
• I assume that you’re already quite familiar with ordinary scalar
derivatives, but not necessarily with vector derivatives
• Likewise, I assume that you know how to take integrals, but
perhaps not with its underlying theoretical development, and
not with the Riemann-Stieltjes form of integrals
• This form is useful to be aware of, as it has a deep connection
with probability theory and allows for a nice unification of
continuous and discrete probability theory
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Real-valued functions: Derivative and gradient

• Vector calculus is extremely important in statistics, and we
will use it frequently in this course
• Definition: For a function f : Rd → R, its derivative is the

1× d row vector

ḟ(x) =
[

∂f
∂x1
· · · ∂f

∂xd

]
• In statistics, it is generally more common (but not always the
case) to use the gradient (also called “denominator layout” or
the “Hessian formulation”)

∇f(x) = ḟ(x)>;

i.e., ∇f(x) is a d× 1 column vector
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Vector-valued functions

• Definition: For a function f : Rd → Rk, its derivative is the
k × d matrix with ijth element

ḟ(x)ij = ∂fi(x)
∂xj

• Correspondingly, the gradient is a d× k matrix:

∇f(x) = ḟ(x)>

• In our course, this will usually come up in the context of
taking second derivatives; however, by the symmetry of
second derivatives, we have

∇2f(x) = f̈(x)
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Vector calculus identities

Inner product: ∇x(A>x) = A
Quadratic form: ∇x(x>Ax) = (A + A>)x
Chain rule: ∇xf(y) = ∇xy∇yf
Product rule: ∇(f>g) = (∇f)g + (∇g)f
Inverse function theorem: ∇xy = (∇yx)−1

Note that for the inverse function theorem to apply, the gradient
must be invertible
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Vector calculus identities (row-vector layout)

Inner product: Dx(Ax) = A
Quadratic form: Dx(x>A>x) = x>(A + A>)
Chain rule: Dxf(y) = DyfDxy
Product rule: D(f>g) = g>ḟ + f>ġ
Inverse function theorem: Dxy = (Dyx)−1

I don’t expect to use these, but for your future reference, here they
are
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Practice

Exercise: In linear regression, the ridge regression estimator is
obtained by minimizing the function

‖y−Xβ‖22 + λ‖β‖22,

where λ is a prespecified tuning parameter. Show that

β̂ridge = (X>X + λI)−1X>y.
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Riemann-Stieltjes integration
Lebesgue decomposition theorem

Integration and measure: Introduction

• Our other topic for today is a brief treatment of measure
theory
• This is not a measure theory-based course, but it is worth
knowing some basic results that will help you read papers that
use measure theoretical language
• In particular, we will go over

◦ The Riemann-Stieltjes integral
◦ The Lebesgue decomposition theorem
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Riemann-Stieltjes integration
Lebesgue decomposition theorem

Introduction to Riemann-Stieltjes integration

• Probability and expectation are intimately connected with
integration
• The basic forms of integration that you learn as an
undergraduate are known as Riemann integrals; a more
rigorous form is the Lebesgue integral, but that rests on quite
a bit of measure theory
• The Riemann-Stieltjes integral is a useful bridge between the
two, and particularly useful in statistics
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Riemann-Stieltjes integration
Lebesgue decomposition theorem

Partitions and lower/upper sums
• Definition: A partition P of the interval [a, b] is a finite set of

points x0, x1, . . . , xn such that

a = x0 < x1 < · · · < xn = b.

• Let µ be a bounded, nondecreasing function on [a, b], and let

∆µi = µ(xi)− µ(xi−1);

note that µi ≥ 0
• Finally, for any function g define the lower and upper sums

L(P, g, µ) =
n∑

i=1
mi∆µi mi = inf

[xi,xi−1]
g

U(P, g, µ) =
n∑

i=1
Mi∆µi Mi = sup

[xi,xi−1]
g
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Riemann-Stieltjes integration
Lebesgue decomposition theorem

Refinements

• Definition: A partition P ∗ is a refinement of P if P ∗ ⊃ P
(every point of P is a point of P ∗). Given partitions P1 and
P2, we say that P ∗ is their common refinement if
P ∗ = P1 ∪ P2.
• Theorem: If P ∗ is a refinement of P , then

L(P, g, µ) ≤ L(P ∗, g, µ)

and

U(P ∗, g, µ) ≤ U(P, g, µ)

• Theorem: L(P1, g, µ) ≤ U(P2, g, µ)
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Riemann-Stieltjes integration
Lebesgue decomposition theorem

The Riemann-Stieltjes integral

Definition: If the following two quantities are equal:

inf
P
U(P, g, µ)

sup
P
L(P, g, µ),

then g is said to be integrable (measurable) with respect to µ over
[a, b], and we denote their common value∫ b

a
gdµ

or sometimes ∫ b

a
g(x)dµ(x)
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Riemann-Stieltjes integration
Lebesgue decomposition theorem

Dominated convergence theorem

• One of the most important results in measure theory is the
dominated convergence theorem
• Theorem (Dominated convergence): Let fn be a sequence

of measurable functions such that fn → f . If there exists a
measurable function g such that |fn(x)| ≤ g(x) for all n and
all x, then

lim
n→∞

∫
fn dµ =

∫
f dµ.

• The theorem can be restated in terms of expected values,
which we will go over (and use) in a later lecture
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Riemann-Stieltjes integration
Lebesgue decomposition theorem

Implications for probability

• The application to probability is clear: any CDF can play the
role of µ (CDFs are bounded and nondecreasing), so expected
values can be written

Eg(X) =
∫
g(x) dF (x)

• Why is this more appealing than the usual Riemann integral?
• The main reason is that the above statement is valid
regardless of whether X has a continuous or discrete
distribution (or some combination of the two) – we require
only that F is nondecreasing, not that it is continuous
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Continuous and discrete measures

• Suppose F is the CDF of a discrete random variable that
places point mass pi on support point si; then∫

g dF =
∞∑

i=1
g(si)pi

• Suppose F is the CDF of a continuous random variable with
corresponding density f(x); then assuming g(X) is integrable
(measurable), ∫

g dF =
∫
g(x)f(x) dx

• In other words, the Riemann-Stieltjes integral reduces to
familiar forms in both continuous and discrete cases
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Example

• However, the Riemann-Stieltjes integral also works in mixed
cases
• Exercise: Suppose X has a distribution such that
P (X = 0) = 1/3, but if X 6= 0, then it follows an exponential
distribution with λ = 2. Suppose g(x) = x2; what is

∫
g dF?
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Decomposing random variables

• Now, you might be wondering: can we always do this?
• Can we always just separate out any random variable into its
continuous and discrete components and handle them
separately like this?
• The answer, unfortunately, is no
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Lebesgue decomposition theorem

• Theorem (Lebesgue decomposition): Any probability
distribution F can uniquely be decomposed as

F = FD + FAC + FSC,

where
◦ FD is the discrete component (i.e., probability is given by a

sum of point masses)
◦ FAC is the absolutely continuous component (i.e., probability is

given by an integral with respect to a density function)
◦ FSC is the singular continuous component (i.e, it’s weird)

• The theorem is typically stated in terms of measures, but I’m
using (sub)distribution functions here for the sake of
familiarity
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Important takeaways

• Obviously, we’re skipping the technical details of measure
theory as well as the proof of this theorem, but you don’t need
a technical understanding to see why it’s important
• It’s not the case that all distributions can be decomposed into
discrete and “continuous” components – there is a third
possibility: singular
• However, if we add the restriction that we are dealing with
non-singular (or regular) distributions, then yes, all
distributions can be decomposed into the familiar continuous
and discrete cases
• To be technically accurate, one might wish to clarify
“absolutely continuous” instead of continuous when you’re
referring to a distribution with a density (in non-technical
contexts, this is implicit)
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