Analysis review: Vector calculus and measure

Patrick Breheny

August 30

Introduction

- Next up, we'll be reviewing the central tools of calculus: derivatives and integrals
- I assume that you're already quite familiar with ordinary scalar derivatives, but not necessarily with vector derivatives
- Likewise, I assume that you know how to take integrals, but perhaps not with its underlying theoretical development, and not with the Riemann-Stieltjes form of integrals
- This form is useful to be aware of, as it has a deep connection with probability theory and allows for a nice unification of continuous and discrete probability theory

Real-valued functions: Derivative and gradient

- Vector calculus is extremely important in statistics, and we will use it frequently in this course
- Definition: For a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, its derivative is the $1 \times d$ row vector

$$
\dot{f}(\mathbf{x})=\left[\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{d}}\right]
$$

- In statistics, it is generally more common (but not always the case) to use the gradient (also called "denominator layout" or the "Hessian formulation")

$$
\nabla f(\mathbf{x})=\dot{f}(\mathbf{x})^{\top}
$$

i.e., $\nabla f(\mathbf{x})$ is a $d \times 1$ column vector

Vector-valued functions

- Definition: For a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$, its derivative is the $k \times d$ matrix with $i j$ th element

$$
\dot{\mathbf{f}}(\mathbf{x})_{i j}=\frac{\partial f_{i}(\mathbf{x})}{\partial x_{j}}
$$

- Correspondingly, the gradient is a $d \times k$ matrix:

$$
\nabla \mathbf{f}(\mathbf{x})=\dot{\mathbf{f}}(\mathbf{x})^{\top}
$$

- In our course, this will usually come up in the context of taking second derivatives; however, by the symmetry of second derivatives, we have

$$
\nabla^{2} f(\mathbf{x})=\ddot{f}(\mathbf{x})
$$

Vector calculus identities

Inner product:
Quadratic form:
Chain rule:
Product rule:
Inverse function theorem:

$$
\begin{aligned}
\nabla_{\mathbf{x}}\left(\mathbf{A}^{\top} \mathbf{x}\right) & =\mathbf{A} \\
\nabla_{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{A} \mathbf{x}\right) & =\left(\mathbf{A}+\mathbf{A}^{\top}\right) \mathbf{x} \\
\nabla_{\mathbf{x}} \mathbf{f}(\mathbf{y}) & =\nabla_{\mathbf{x}} \mathbf{y} \nabla_{\mathbf{y}} \mathbf{f} \\
\nabla_{\left(\mathbf{f}^{\top} \mathbf{g}\right)} & =\left(\nabla_{\mathbf{f}}\right) \mathbf{g}+\left(\nabla_{\mathbf{g}}\right) \mathbf{f} \\
\nabla_{\mathbf{x}} \mathbf{y} & =\left(\nabla_{\mathbf{y}} \mathbf{x}\right)^{-1}
\end{aligned}
$$

Note that for the inverse function theorem to apply, the gradient must be invertible

Vector calculus identities (row-vector layout)

Inner product:
Product rule:

$$
\begin{aligned}
D_{\mathbf{x}}(\mathbf{A} \mathbf{x}) & =\mathbf{A} \\
D_{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{x}\right) & =\mathbf{x}^{\top}\left(\mathbf{A}+\mathbf{A}^{\top}\right) \\
D_{\mathbf{x}} \mathbf{f}(\mathbf{y}) & =D_{\mathbf{y}} \mathbf{f} D_{\mathbf{x}} \mathbf{y} \\
D\left(\mathbf{f}^{\top} \mathbf{g}\right) & =\mathbf{g}^{\top} \dot{\mathbf{f}}+\mathbf{f}^{\top} \dot{\mathbf{g}} \\
D_{\mathbf{x}} \mathbf{y} & =\left(D_{\mathbf{y}} \mathbf{x}\right)^{-1}
\end{aligned}
$$

Inverse function theorem:
I don't expect to use these, but for your future reference, here they are

Practice

Exercise: In linear regression, the ridge regression estimator is obtained by minimizing the function

$$
\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda\|\boldsymbol{\beta}\|_{2}^{2}
$$

where λ is a prespecified tuning parameter. Show that

$$
\widehat{\boldsymbol{\beta}}_{\text {ridge }}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Integration and measure: Introduction

- Our other topic for today is a brief treatment of measure theory
- This is not a measure theory-based course, but it is worth knowing some basic results that will help you read papers that use measure theoretical language
- In particular, we will go over
- The Riemann-Stieltjes integral
- The Lebesgue decomposition theorem

Introduction to Riemann-Stieltjes integration

- Probability and expectation are intimately connected with integration
- The basic forms of integration that you learn as an undergraduate are known as Riemann integrals; a more rigorous form is the Lebesgue integral, but that rests on quite a bit of measure theory
- The Riemann-Stieltjes integral is a useful bridge between the two, and particularly useful in statistics

Partitions and lower/upper sums

- Definition: A partition P of the interval $[a, b]$ is a finite set of points $x_{0}, x_{1}, \ldots, x_{n}$ such that

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b .
$$

- Let μ be a bounded, nondecreasing function on $[a, b]$, and let

$$
\Delta \mu_{i}=\mu\left(x_{i}\right)-\mu\left(x_{i-1}\right)
$$

note that $\mu_{i} \geq 0$

- Finally, for any function g define the lower and upper sums

$$
\begin{aligned}
L(P, g, \mu)=\sum_{i=1}^{n} m_{i} \Delta \mu_{i} & m_{i}=\inf _{\left[x_{i}, x_{i-1}\right]} g \\
U(P, g, \mu)=\sum_{i=1}^{n} M_{i} \Delta \mu_{i} & M_{i}=\sup _{\left[x_{i}, x_{i-1}\right]} g
\end{aligned}
$$

Refinements

- Definition: A partition P^{*} is a refinement of P if $P^{*} \supset P$ (every point of P is a point of P^{*}). Given partitions P_{1} and P_{2}, we say that P^{*} is their common refinement if $P^{*}=P_{1} \cup P_{2}$.
- Theorem: If P^{*} is a refinement of P, then

$$
L(P, g, \mu) \leq L\left(P^{*}, g, \mu\right)
$$

and

$$
U\left(P^{*}, g, \mu\right) \leq U(P, g, \mu)
$$

- Theorem: $L\left(P_{1}, g, \mu\right) \leq U\left(P_{2}, g, \mu\right)$

The Riemann-Stieltjes integral

Definition: If the following two quantities are equal:

$$
\begin{gathered}
\inf _{P} U(P, g, \mu) \\
\sup _{P} L(P, g, \mu)
\end{gathered}
$$

then g is said to be integrable (measurable) with respect to μ over $[a, b]$, and we denote their common value

$$
\int_{a}^{b} g d \mu
$$

or sometimes

$$
\int_{a}^{b} g(x) d \mu(x)
$$

Dominated convergence theorem

- One of the most important results in measure theory is the dominated convergence theorem
- Theorem (Dominated convergence): Let f_{n} be a sequence of measurable functions such that $f_{n} \rightarrow f$. If there exists a measurable function g such that $\left|f_{n}(x)\right| \leq g(x)$ for all n and all x, then

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu
$$

- The theorem can be restated in terms of expected values, which we will go over (and use) in a later lecture

Implications for probability

- The application to probability is clear: any CDF can play the role of μ (CDFs are bounded and nondecreasing), so expected values can be written

$$
\mathbb{E} g(X)=\int g(x) d F(x)
$$

- Why is this more appealing than the usual Riemann integral?
- The main reason is that the above statement is valid regardless of whether X has a continuous or discrete distribution (or some combination of the two) - we require only that F is nondecreasing, not that it is continuous

Continuous and discrete measures

- Suppose F is the CDF of a discrete random variable that places point mass p_{i} on support point s_{i}; then

$$
\int g d F=\sum_{i=1}^{\infty} g\left(s_{i}\right) p_{i}
$$

- Suppose F is the CDF of a continuous random variable with corresponding density $f(x)$; then assuming $g(X)$ is integrable (measurable),

$$
\int g d F=\int g(x) f(x) d x
$$

- In other words, the Riemann-Stieltjes integral reduces to familiar forms in both continuous and discrete cases

Example

- However, the Riemann-Stieltjes integral also works in mixed cases
- Exercise: Suppose X has a distribution such that $P(X=0)=1 / 3$, but if $X \neq 0$, then it follows an exponential distribution with $\lambda=2$. Suppose $g(x)=x^{2}$; what is $\int g d F$?

Decomposing random variables

- Now, you might be wondering: can we always do this?
- Can we always just separate out any random variable into its continuous and discrete components and handle them separately like this?
- The answer, unfortunately, is no

Lebesgue decomposition theorem

- Theorem (Lebesgue decomposition): Any probability distribution F can uniquely be decomposed as

$$
F=F_{\mathrm{D}}+F_{\mathrm{AC}}+F_{\mathrm{SC}},
$$

where

- F_{D} is the discrete component (i.e., probability is given by a sum of point masses)
- F_{AC} is the absolutely continuous component (i.e., probability is given by an integral with respect to a density function)
- F_{SC} is the singular continuous component (i.e, it's weird)
- The theorem is typically stated in terms of measures, but I'm using (sub)distribution functions here for the sake of familiarity

Important takeaways

- Obviously, we're skipping the technical details of measure theory as well as the proof of this theorem, but you don't need a technical understanding to see why it's important
- It's not the case that all distributions can be decomposed into discrete and "continuous" components - there is a third possibility: singular
- However, if we add the restriction that we are dealing with non-singular (or regular) distributions, then yes, all distributions can be decomposed into the familiar continuous and discrete cases
- To be technically accurate, one might wish to clarify "absolutely continuous" instead of continuous when you're referring to a distribution with a density (in non-technical contexts, this is implicit)

