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Introduction

Next up, we'll be reviewing the central tools of calculus:
derivatives and integrals

| assume that you're already quite familiar with ordinary scalar
derivatives, but not necessarily with vector derivatives

Likewise, | assume that you know how to take integrals, but
perhaps not with its underlying theoretical development, and
not with the Riemann-Stieltjes form of integrals

This form is useful to be aware of, as it has a deep connection
with probability theory and allows for a nice unification of
continuous and discrete probability theory
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Real-valued functions: Derivative and gradient

e Vector calculus is extremely important in statistics, and we
will use it frequently in this course

e Definition: For a function f : R® — R, its derivative is the
1 x d row vector

fise) — | OF of
f(x) = [8_@"'871}
e In statistics, it is generally more common (but not always the

case) to use the gradient (also called “denominator layout” or
the “Hessian formulation”)

i.e., Vf(x)is ad x 1 column vector
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Vector-valued functions

e Definition: For a function f : R? — RF, its derivative is the
k x d matrix with ijth element

f(x) dfi(x)

i =
J 8.’1,‘]'

e Correspondingly, the gradient is a d x k matrix:

e In our course, this will usually come up in the context of

taking second derivatives; however, by the symmetry of
second derivatives, we have

V3 f(x) = f(x)
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Vector calculus identities

Inner product: Vx(ATx) = A

Quadratic form: ( Ax)=(A+A")x
Chain rule: <f(y) = VxyVyf
Product rule: ( ) = (Vf)g+ (Vg)f

Inverse function theorem: = (Vy

x)"!

Note that for the inverse function theorem to apply, the gradient
must be invertible
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Vector calculus identities (row-vector layout)

Inner product: Dy(Ax) = A

Quadratic form: Dy(x"ATx) =x"(A+AT)
Chain rule: Dyf(y) = Dyf Dy
Product rule: DfTg)=g'f+f'g
Inverse function theorem: Dyy = (Dyx)™*

| don't expect to use these, but for your future reference, here they
are
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Practice

Exercise: In linear regression, the ridge regression estimator is
obtained by minimizing the function

ly = X813 + AlIBI3.

where A is a prespecified tuning parameter. Show that

Bridge = (XTX + )‘I)_ley~

Patrick Breheny University of lowa Likelihood Theory (BIOS 7110)



Vector calculus Riemann-Stieltjes integration
Integration and measure

Integration and measure: Introduction

e Qur other topic for today is a brief treatment of measure
theory

e This is not a measure theory-based course, but it is worth
knowing some basic results that will help you read papers that
use measure theoretical language

e In particular, we will go over

o The Riemann-Stieltjes integral
o The Lebesgue decomposition theorem
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Introduction to Riemann-Stieltjes integration

e Probability and expectation are intimately connected with
integration

e The basic forms of integration that you learn as an
undergraduate are known as Riemann integrals; a more
rigorous form is the Lebesgue integral, but that rests on quite
a bit of measure theory

e The Riemann-Stieltjes integral is a useful bridge between the
two, and particularly useful in statistics
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Partitions and lower/upper sums

e Definition: A partition P of the interval [a,d] is a finite set of
points xg, x1,...,x, such that

a=xg<x1 < <xTpp =b.
e Let u be a bounded, nondecreasing function on [a, b], and let
Api = p(wi) — pl@i-1);

note that p; > 0

e Finally, for any function g define the lower and upper sums

L(P,g,p) = ZmzAUz m; = inf g

[11717131 1]

U(P,g,ﬂ)=ZMz-Am M;= sup g

i=1 [4,2i—1]
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Refinements

e Definition: A partition P* is a refinement of P if P* D P
(every point of P is a point of P*). Given partitions P; and
P, we say that P* is their common refinement if
P*=PUP;.

e Theorem: If P* is a refinement of P, then
L(P,g,pu) < L(P", g, )

and
U(P*,g,1) SU(P, g, )

e Theorem: L(P,g,u) < U(Py, g, 1)

Patrick Breheny University of lowa  Likelihood Theory (BIOS 7110)



Vector calculus Riemann-Stieltjes integration
Integration and measure

The Riemann-Stieltjes integral

Definition: If the following two quantities are equal:
inf U (P,
inf U(P, g, )

sup L(P, g, ),
P

then g is said to be integrable (measurable) with respect to i over
[a, b], and we denote their common value

b
/ gdp

or sometimes

[ owyintz)
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Dominated convergence theorem

e One of the most important results in measure theory is the
dominated convergence theorem

e Theorem (Dominated convergence): Let f,, be a sequence
of measurable functions such that f,, — f. If there exists a
measurable function g such that |f,,(z)| < g(z) for all n and
all z, then

g&/nw=/fw.

e The theorem can be restated in terms of expected values,
which we will go over (and use) in a later lecture
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Implications for probability

e The application to probability is clear: any CDF can play the
role of yu (CDFs are bounded and nondecreasing), so expected
values can be written

Eg(X) = [ glx)dF(a)

e Why is this more appealing than the usual Riemann integral?

e The main reason is that the above statement is valid
regardless of whether X has a continuous or discrete
distribution (or some combination of the two) — we require
only that F' is nondecreasing, not that it is continuous
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Continuous and discrete measures

e Suppose F'is the CDF of a discrete random variable that
places point mass p; on support point s;; then

/ngZ > g(sipi
=1

e Suppose F'is the CDF of a continuous random variable with
corresponding density f(x); then assuming g(X) is integrable
(measurable),

[9dr = [ g@)(x) do

e In other words, the Riemann-Stieltjes integral reduces to
familiar forms in both continuous and discrete cases

Patrick Breheny University of lowa  Likelihood Theory (BIOS 7110)



Vector calculus Riemann-Stieltjes integration
Integration and measure

Example

e However, the Riemann-Stieltjes integral also works in mixed
cases

e Exercise: Suppose X has a distribution such that
P(X =0) =1/3, but if X # 0, then it follows an exponential
distribution with A\ = 2. Suppose g(x) = z2; what is [ gdF?
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Decomposing random variables

e Now, you might be wondering: can we always do this?

e Can we always just separate out any random variable into its
continuous and discrete components and handle them
separately like this?

e The answer, unfortunately, is no
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Lebesgue decomposition theorem

e Theorem (Lebesgue decomposition): Any probability
distribution F' can uniquely be decomposed as

F = Fp + Fac + Fsc,

where
o Fp is the discrete component (i.e., probability is given by a
sum of point masses)
o Fac is the absolutely continuous component (i.e., probability is
given by an integral with respect to a density function)
o Fsc is the singular continuous component (i.e, it's weird)

e The theorem is typically stated in terms of measures, but I'm
using (sub)distribution functions here for the sake of
familiarity
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Important takeaways

Patrick Breheny

Obviously, we're skipping the technical details of measure
theory as well as the proof of this theorem, but you don’t need
a technical understanding to see why it's important

It's not the case that all distributions can be decomposed into
discrete and “continuous” components — there is a third
possibility: singular

However, if we add the restriction that we are dealing with
non-singular (or regular) distributions, then yes, all
distributions can be decomposed into the familiar continuous
and discrete cases

To be technically accurate, one might wish to clarify
“absolutely continuous” instead of continuous when you're
referring to a distribution with a density (in non-technical
contexts, this is implicit)
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