Conditional likelihood

Patrick Breheny

November 8

Introduction

- Today we're going to discuss an alternative approach to likelihood-based inference called conditional likelihood
- The main idea is that while the data may depend on both our parameters of interest $\boldsymbol{\theta}$ and nuisance parameters $\boldsymbol{\eta}$, perhaps we can transform the data in such a way that we can factor the likelihood into a conditional distribution depending only on $\boldsymbol{\theta}$

Conditional likelihood: Definition

- Specifically, suppose we can transform the data x into v and w such that

$$
p(x \mid \boldsymbol{\theta}, \boldsymbol{\eta})=p(v \mid w, \boldsymbol{\theta}) p(w \mid \boldsymbol{\theta}, \boldsymbol{\eta})
$$

- The first term, $L(\boldsymbol{\theta})=p(v \mid w, \boldsymbol{\theta})$, is known as the conditional likelihood; note that this term is free of nuisance parameters
- Note that, unlike the profile likelihood, the conditional likelihood is an actual likelihood, in the sense that it corresponds to an actual distribution of observed data

Factorization

- Note that in our partition of the probability model, we have

$$
p(x \mid \boldsymbol{\theta}, \boldsymbol{\eta})=L_{1}(\boldsymbol{\theta}) L_{2}(\boldsymbol{\theta}, \boldsymbol{\eta})
$$

- With conditional likelihood, we are proposing to use only L_{1} for inference, even though our parameter of interest $\boldsymbol{\theta}$ also shows up in L_{2}
- Is this valid?
- Absolutely; there is no requirement that we use all of the data in order for likelihood-based inference to be valid
- Is it a good idea, though?

When conditional likelihood is appealing

- This depends on how much information we are losing (not always easy to measure)
- In general, conditional likelihood is appealing when either of the following conditions are met:
- The conditional likelihood is simpler than the original or profile likelihood
- The original or profile likelihood leads to biased or unstable estimates
- No matter how much simpler the conditional likelihood is, however, conditional likelihood is not going to be attractive if substantial information is being lost

Poisson model

- To get a sense of how conditional likelihood works, let's consider the case of two independent Poisson random variables:

$$
\begin{aligned}
& X \sim \operatorname{Pois}(\lambda) \\
& Y \sim \operatorname{Pois}(\mu)
\end{aligned}
$$

and suppose that we are interested in the relative risk $\theta=\mu / \lambda$

- One way of approaching this problem would be to derive the full likelihood $L(\lambda, \mu)$, then use likelihood theory and the delta method to derive the distribution of θ :

$$
\frac{\hat{\theta}-\theta}{\mathrm{SE}} \xrightarrow{\mathrm{~d}} \mathrm{~N}(0,1),
$$

where $\mathrm{SE}^{2}=\left(\mu^{2}+\mu \lambda\right) / \lambda^{3}$, as $\mu, \lambda \rightarrow \infty$

Conditional likelihood

- However, suppose we instead let $t=x+y$ and then proceeded along these lines:

$$
\begin{aligned}
p(x, y \mid \lambda, \mu) & =p(y, t \mid \lambda, \mu) \\
& =p(y \mid t, \lambda, \mu) p(t \mid \lambda, \mu)
\end{aligned}
$$

- The second term, we will just ignore; the first term is the conditional likelihood
- Writing the conditional likelihood in terms of θ, we have

$$
L(\theta)=\left(\frac{1}{1+\theta}\right)^{x}\left(\frac{\theta}{1+\theta}\right)^{y}
$$

note that this likelihood is free of nuisance parameters

Orthogonal parameters

- Are we losing information about θ ?
- In this particular case, we are losing nothing: letting $\eta=\lambda+\mu$, we can write

$$
L(\theta, \eta)=L_{1}(\theta) L_{2}(\eta)
$$

- In other words, θ does not show up in the part of the likelihood that we are ignoring
- When such a factorization exists, the parameters θ and η are said to be orthogonal parameters

Estimation and inference

- Now we can just carry out all the usual likelihood operations on the conditional likelihood
- The score is

$$
u(\theta)=y / \theta-t /(1+\theta)
$$

so $\hat{\theta}=y / x$, which seems like the obvious estimator

- The information, in this case, yields the same approximate variance as the delta method

$$
\mathcal{I}(\theta)=\frac{y}{\theta^{2}}-\frac{t}{(1+\theta)^{2}},
$$

Exact inference

- In the Poisson case, however, we don't really need asymptotic approximations, as we can carry out exact inference based on the conditional relationship

$$
Y \left\lvert\, T \sim \operatorname{Binom}\left(T, \frac{\theta}{1+\theta}\right)\right.
$$

- Exact tests and confidence intervals for the binomial proportion could then be constructed and transformed to give confidence intervals for θ
- This is often true, generally speaking, for conditional likelihood approaches: non-asymptotic methods are often available, albeit not always so easily calculated

Profile likelihood

- Yet another way of approaching this problem is to derive the profile likelihood of θ
- In this case, we end up with the same likelihood as the conditional approach:

$$
L(\theta)=\left(\frac{1}{1+\theta}\right)^{x}\left(\frac{\theta}{1+\theta}\right)^{y}
$$

- This is only true in the case of orthogonal parameters, however (i.e., only if the nuisance parameters can be factored out does the profile likelihood automatically produce a conditional likelihood)

Binomial proportions

- Probably the most common application of conditional likelihood is for comparing two binomial proportions: $X \sim \operatorname{Binom}\left(n_{1}, \pi_{1}\right)$ and $Y \sim \operatorname{Binom}\left(n_{2}, \pi_{2}\right)$, and our interest is in the odds ratio θ
- By conditioning on the total $T=X+Y$, we arrive at a conditional distribution for $X \mid T$ containing only the odds ratio that we can use as our conditional likelihood:

$$
p(x \mid t)=\frac{\binom{n_{1}}{x}\binom{n_{2}}{t-x} \theta^{x}}{\sum_{s=0}^{t}\binom{n_{1}}{s}\binom{n_{2}}{t-s} \theta^{s}}
$$

Information loss

- Unlike the earlier Poisson case, however, here the parameters are not orthogonal (the parameter of interest cannot be entirely factored apart from other parameters)
- Thus, there is the possibility of information loss
- Assessing the information loss would depend on how π_{1} and π_{2} are related to one another
- Intuitively, however, it seems unlikely that the total of X and Y can carry much meaningful information about the odds ratio unless we are willing to make very strong assumptions

Connection with hypergeometric distribution

- Returning to the conditional likelihood, at $\theta=1$ the conditional distribution is the hypergeometric distribution
- Thus, we could carry out non-asymptotic inference on the basis of this distribution; this is known as Fisher's exact test
- We could also use any of our asymptotic likelihood approaches

Score test

- The score test is particularly convenient to apply, since the likelihood is simplified considerably at the null hypothesis $\theta=1$
- Letting μ and σ denote the mean and standard deviation of the (n_{1}, n_{2}, t) hypergeometric distribution, the score test statistic is

$$
z=\frac{x-\mu}{\sigma}
$$

- Confidence intervals would involve the use of noncentral hypergeometric distributions

Matched pairs, binary outcome

- On a related note, let's consider the question of matched pairs of subjects with a binary outcome (essentially, this is a discrete version of the Neyman-Scott problem)
- Suppose we have n pairs of observations with $Y_{i 1}$ and $Y_{i 2}$ representing independent binary outcomes, and our probability model is

$$
\begin{aligned}
& \operatorname{logit}\left(\pi_{i 1}\right)=\alpha_{i} \\
& \operatorname{logit}\left(\pi_{i 2}\right)=\alpha_{i}+\beta
\end{aligned}
$$

this would arise, for example, in a study of identical twins where one was exposed to a risk factor and the other was not

Profile likelihood bias

- Our interest is the odds ratio e^{β}, but as in the Neyman-Scott problem, the number of nuisance parameters is growing with n
- This causes problems with the profile likelihood: letting a denote with number of $\left\{Y_{i 1}=1, Y_{i 2}=0\right\}$ pairs and b denote with number of $\left\{Y_{i 1}=0, Y_{i 2}=1\right\}$ pairs,

$$
\begin{aligned}
\hat{\alpha}_{i}(\beta) & =-\beta / 2 \\
\widehat{\beta} & =2 \log \frac{b}{a} \\
\widehat{\mathrm{OR}} & =\left(\frac{b}{a}\right)^{2}
\end{aligned}
$$

- The estimator (b / a) is known to be consistent, so the MLE here converges to OR^{2}, highly biased if $\mathrm{OR} \neq 1$

Conditional likelihood to the rescue

- Using conditional likelihood, however, this problem is avoided
- Within each table, we can condition on $y_{i 1}+y_{i 2}$, arriving at a Bernoulli distribution if the pair is informative
- Since pairs are independent of each other, the total likelihood is then

$$
\ell(\theta)=\sum_{i} \ell_{i}(\theta)
$$

- The result is that b has a binomial likelihood conditional on $a+b$ and the MLE is now consistent
- In this context, the score test is known as McNemar's test

General 2×2 tables

- The same logic works for more general 2×2 tables
- Here, each table's conditional likelihood corresponds to the hypergeometric distribution and the log-likelihood from these tables are again additive
- Again, the score test is particularly convenient:

$$
z=\frac{\sum_{i}\left(x_{i}-\mu_{i}\right)}{\sqrt{\sum_{i} \sigma_{i}^{2}}}
$$

where μ_{i} and σ_{i}^{2} are the mean and variance of the hypergeometric distribution for table i

- This is known as the Mantel-Haenzel test

Generality of conditional likelihood

- So, is conditional likelihood a general method, or only available in specialized cases?
- To some extent, both
- On the one hand, it is always possible to derive a conditional likelihood for exponential families; however, the resulting likelihood is often rather complicated

Exponential family: Setup

- Letting $\mathbf{v}=\mathbf{s}_{1}(x)$ and $\mathbf{w}=\mathbf{s}_{2}(x)$ denote the sufficient statistics of the exponential family,

$$
p(\mathbf{v}, \mathbf{w})=\exp \left\{\boldsymbol{\theta}^{\top} \mathbf{v}+\boldsymbol{\eta}^{\top} \mathbf{w}-\psi(\boldsymbol{\theta}, \boldsymbol{\eta})\right\} f_{0}(x)
$$

- To derive the conditional likelihood, we first need to derive the marginal distribution of \mathbf{w}
- We can obtain this by summing (or integrating) $p(\mathbf{v}, \mathbf{w})$ over the set $\left\{x: \mathbf{s}_{2}(x)=\mathbf{w}\right\}$:

Exponential family: Conditional likelihood

The conditional likelihood then arises from

$$
\begin{aligned}
p(\mathbf{v} \mid \mathbf{w}) & =p(\mathbf{v}, \mathbf{w}) / p(\mathbf{w}) \\
& =\frac{\sum_{x: \mathbf{s}_{1}(x)=\mathbf{v}, \mathbf{s}_{2}(x)=\mathbf{w}} \exp \left\{\boldsymbol{\theta}^{\top} \mathbf{v}+\boldsymbol{\eta}^{\top} \mathbf{w}-\psi(\boldsymbol{\theta}, \boldsymbol{\eta})\right\} f_{0}(x)}{\sum_{x: \mathbf{s}_{2}(x)=\mathbf{w}} \exp \left\{\boldsymbol{\theta}^{\top} \mathbf{s}_{1}(x)+\boldsymbol{\eta}^{\top} \mathbf{w}-\psi(\boldsymbol{\theta}, \boldsymbol{\eta})\right\} f_{0}(x)} \\
& =\frac{\exp \left\{\boldsymbol{\theta}^{\top} \mathbf{v}\right\} \sum_{x: \mathbf{s}_{1}(x)=\mathbf{v}, \mathbf{s}_{2}(x)=\mathbf{w}} f_{0}(x)}{\sum_{x: \mathbf{s}_{2}(x)=\mathbf{w}} \exp \left\{\boldsymbol{\theta}^{\top} \mathbf{s}_{1}(x)\right\} f_{0}(x)}
\end{aligned}
$$

Note that:

- The likelihood is free of $\boldsymbol{\eta}$
- The expression is considerably simplified if $f_{0}(x)=1$
- Sums would be replaced by integrals if x was continuous

Conditional logistic regression

- A common application of this idea is the logistic regression setting
- Consider the model $Y_{i} \sim \operatorname{Bern}\left(\pi_{i}\right)$ with

$$
\log \frac{\pi_{i}}{1-\pi_{i}}=\alpha+\beta x_{i}
$$

- The probability model is therefore

$$
\log p(\mathbf{y})=\alpha \sum_{i} y_{i}+\beta \sum_{i} x_{i} y_{i}-\sum_{i} \log \left(1+\exp \left\{\alpha+\beta x_{i}\right\}\right)
$$

Conditional logistic regression (cont'd)

- Letting $v=\sum x_{i} y_{i}$ and $w=\sum y_{i}$, this is an exponential family, and we have the conditional likelihood

$$
L(\beta)=\frac{\exp (\beta v)}{\sum_{u} \exp (\beta u)},
$$

where the sum in the denominator is over all values of $u=\sum x_{i} y_{i}^{*}$ such that $\sum y_{i}^{*}=w$, where y_{i}^{*} represents potential values that the random variable Y_{i} could have taken

- Since the y_{i}^{*} values are all 0 or 1 , this corresponds to the permutations of y
- Similar to what we've seen before, this is particularly appealing when the data is matched or paired; this is probably the most common use of conditional logistic regression

Remarks

- The usual likelihood-based approaches to inference can now be applied, although we face a computational challenge in terms of evaluating $\sum \exp \left(\beta x_{i} y_{i}\right)$ over all possible permutations of \mathbf{y}
- Nevertheless, fast algorithms have been developed to tackle this problem and the method (known as conditional logistic regression) is widely implemented in statistical software
- We focused on the simple regression case here, but the idea can be extended to multivariate settings as well
- Futhermore, exact approaches to inference are possible using permutation tests (as in our earlier examples)

