Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 5

Due: Monday, September 27

1. Convergence in quadratic mean and probability. This problem involves proving the theorems from the slide titled "Convergence in mean vs convergence in probability" from the "Modes of convergence" lecture. Hint: Markov's inequality.
(a) Prove that if $\mathbf{x}_{n} \xrightarrow{r} \mathbf{x}$ for some $r>0$, then $\mathbf{x}_{n} \xrightarrow{\mathrm{P}} \mathbf{x}$.
(b) Prove that if $\mathbf{a} \in \mathbb{R}^{d}$, then $\mathbf{x}_{n} \xrightarrow{\mathrm{qm}} \mathbf{a}$ if and only if $\mathbb{E} \mathbf{x}_{n} \rightarrow \mathbf{a}$ and $\mathbb{V} \mathbf{x}_{n} \rightarrow \mathbf{0}_{d \times d}$.
2. The Cramér-Wold device. Let $\mathbf{x}_{n} \in \mathbb{R}^{d}$ be a sequence of random vectors. Prove that if $\mathbf{a}^{\top} \mathbf{x}_{n} \xrightarrow{\mathrm{~d}} \mathbf{a}^{\top} \mathbf{x}$ for all vectors $\mathbf{a} \in \mathbb{R}^{d}$, then $\mathbf{x}_{n} \xrightarrow{\mathrm{~d}} \mathbf{x}$. Hint: Continuity theorem.
3. Simultaneous convergence in probability. Suppose $X_{n 1} \xrightarrow{\mathrm{P}} X_{1}, \ldots, X_{n d} \xrightarrow{\mathrm{P}} X_{d}$. Prove that the vector \mathbf{x}_{n} converges to the vector \mathbf{x} (i.e., that element-wise convergence in probability implies convergence in probability as defined in class). Note: do not assume that the elements of \mathbf{x}_{n} are independent from each other, or anything else about their joint distribution. Hint: Union bound.
