Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 4

Due: Monday, September 20

- 1. Gaussian graphical model. As we discussed in class, the precision matrix Θ is of interest as it describes conditional independence relationships. One way to estimate Θ is $\widehat{\Theta} = \mathbf{S}^{-1}$, where \mathbf{S} is the sample variance-covariance matrix (throughout this problem, you may assume that all variance-covariance matrices are full rank). Here, we consider a different approach.
 - (a) Suppose we partition Θ so that the top left corner is isolated (i.e., the top left corner of the partition is 1×1 and the bottom right is $(d-1) \times (d-1)$, where d is the dimension of the multivariate distribution). Show that

$$-\boldsymbol{\theta}_{21}/\theta_{11} = \boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21},$$

where Σ is the variance-covariance matrix, partitioned in the same way as Θ . Hint: use the definition of a matrix inverse.

(b) Now consider the conditional distribution of $x_1|\mathbf{x}_2$. Show that if \mathbf{x} is multivariate normal, then the conditional distribution of $x_1|\mathbf{x}_2$ can be written as

$$X_1 = \alpha + \mathbf{x}_2^{\mathsf{T}} \boldsymbol{\beta} + \varepsilon,$$

where $\varepsilon \sim N(0, \sigma^2)$. Express β and σ^2 in terms of the precision matrix Θ .

(c) Part (b) suggests that we can estimate Θ using linear regression. Simulate some multivariate normal data using the following code:

```
set.seed(1)
n <- 100
A <- rnorm(n)
B <- A + rnorm(n)
C <- B + rnorm(n)
D <- B + rnorm(n)
X <- cbind(A, B, C, D)
S <- cov(X)</pre>
```

Then regress each element of \mathbf{x} on the others. We are going to use these regression fits to estimate Θ ; however, let us carry out a simple model selection procedure first, in which we drop any covariates that are not significant at the $\alpha = 0.05$ level. Then refit the model with only the significant covariates, and use $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^2$ to fill in the appropriate elements of Θ ; set $\beta_j = 0$ if the term was not included in the model.

- (d) Does your estimate of Θ from (c) reflect the correct conditional independence relationships among A, B, C, and D? Comment briefly.
- (e) Letting $\mathbf{x}^{\top} = [A B C D]$, show that the data generating mechanism of the above code results in \mathbf{x} having a multivariate normal distribution, and calculate the true precision matrix Θ^* .
- (f) We now have two estimators for Θ : \mathbf{S}^{-1} and the estimator from part (c). Which one is more accurate (for this particular data set)? Quantify the overall accuracy using $\|\widehat{\Theta} \Theta^*\|_F$.

- (g) One downside of the approach in (c) is that the estimate it produces, $\widehat{\Theta}$, is asymmetric. One simple remedy is to use $\widetilde{\Theta} = \frac{1}{2}\widehat{\Theta} + \frac{1}{2}\widehat{\Theta}^{\top}$ instead. Does this symmetrized estimate improve accuracy?
- 2. Power calculation using the noncentral χ^2 distribution. Suppose there is a latent random variable of interest Z that is continuously distributed between 0 and 1, but we observe only which of 10 bins it falls into: $(0, 0.1), (0.1, 0.2), \ldots, (0.9, 1.0)$. Thus, we observe **x**, a 10-dimensional random vector of counts corresponding to the bins, with n denoting the total count. This problem involves attempting to test the null hypothesis that all bins are equally likely by assuming that **x** (approximately) follows a multivariate normal distribution.
 - (a) Using the mean and variance of a multinomial distribution under the null, provide a function of \mathbf{x} that follows an approximate χ^2 distribution (i.e., that would follow a χ^2 distribution if \mathbf{x} were multivariate normal with the specified mean and variance).
 - (b) Now suppose that $Z \sim \text{Beta}(1,2)$. Create a plot overlaying two beta distributions: this one and the one corresponding to the null hypothesis.
 - (c) Under the alternative distribution specified in (b), the quantity from (a) will no longer follow an ordinary χ^2 distribution, but instead a noncentral χ^2 distribution. Create a plot overlaying two χ^2 densities, one of the null hypothesis and the other with a noncentrality parameter of 10. Use the number of degrees of freedom appropriate to this problem.
 - (d) Derive the noncentrality parameter for the distribution of x under the alternative hypothesis. Note that there is a problem with this calculation, in that the alternative hypothesis affects both the mean and the variance. For the purposes of this calculation, only account for its effect on the mean – assume that the variance is unchanged. Implement this calculation in a function, ncp(n); turn this code in separately as a .R file so that I can run it and see that it works correctly.
 - (e) Create a plot of *n* versus power (assuming an $\alpha = 0.05$ significance threshold), where *n* ranges from 10 to 100. Note that this calculation uses both the null distribution from (a) and the alternative distribution you derived in (d).
 - (f) In the power calculation above, there are two potential issues: (a) the true distribution is multinomial, not multivariate normal, and (b) we ignored the impact of the alternative distribution on variance when calculating the noncentrality parameter. Carry out a simulation to compare the true power to our approximation. Draw samples of size n = 50 from the multinomial distribution and carry out the χ^2 test that you derived above (don't "correct" for continuity). Calculate the average power over N = 10,000 replications.
- 3. Bounded in probability vs convergence in distribution. Prove that if a sequence of random vectors $\mathbf{x}_n \in \mathbb{R}^d$ converges in distribution, then \mathbf{x}_n is bounded in probability.