Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 3 Due: Monday, September 13

- 1. O-notation proofs. Prove the following results:
 - (a) O(1)o(1) = o(1).
 - (b) $\{1 + o(1)\}^{-1} = O(1).$
 - (c) $o\{O(1)\} = o(1)$.
- 2. Exponential Taylor series.
 - (a) Show that

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

- (b) What is the infinite series for e^{ax} ?
- (c) What is the infinite series for b^x ?
- (d) Let $f : \mathbb{R}^d \to \mathbb{R}$. What is the second-order Taylor series for $f(\mathbf{x}) = \exp(\mathbf{a}^{\mathsf{T}}\mathbf{x})$ about $\mathbf{x} = \mathbf{0}$? Give both the *o*-notation and Lagrange forms.
- (e) Suppose $\mathbf{a} = \begin{bmatrix} 2 & -1 \end{bmatrix}^{\top}$ and $\mathbf{x} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$. Find the point \mathbf{x}^* on the line segment connecting \mathbf{x} and $\mathbf{0}$ that satisfies the Lagrange form of Taylor's theorem.