Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 2

Due: Wednesday, September 8

- 1. Vector norms.
 - (a) Show that $\|\cdot\|_2$ is a norm.
 - (b) Show that $\|\cdot\|_{\infty}$ is a norm.
 - (c) Let $\|\cdot\|_{1/2}$ denote the function of \mathbf{x} you would obtain by using p = 1/2 in the definition of an L_p norm. Is $\|\cdot\|_{1/2}$ a norm? Why or why not?
- 2. Uniform convergence. For each of the following sequences, determine the pointwise limit of $\{f_n\}$ and decide whether $f_n \to f$ uniformly on the set given or not.
 - (a) $f_n(x) = \sqrt[n]{x}$ on [0, 1].
 - (b) $f_n(x) = e^x/x^n$ on $(1, \infty)$.
 - (c) $f_n(\mathbf{x}) = n^{-1} \exp\{-\|\mathbf{x}\|^2\}$ on \mathbb{R}^d .
- 3. Logistic regression. The logistic regression model states that Y_i is equal to 1 with probability π_i and 0 otherwise, with π_i related to a set of linear predictors $\{\eta_i\}$ by the following model:

$$\log \frac{\pi_i}{1 - \pi_i} = \eta_i \quad \text{for } i = 1, 2, \dots, n$$
$$\boldsymbol{\eta} = \mathbf{X}\boldsymbol{\beta}$$

where $\boldsymbol{\eta} \in \mathbb{R}^n$, $\boldsymbol{\beta} \in \mathbb{R}^d$, and **X** is an $n \times d$ matrix.

- (a) Let ℓ_i denote the contribution to the log-likelihood from observation *i*. Find the partial derivative of ℓ_i with respect to η_i . Simplify your answer as much as possible.
- (b) Let $\ell: \mathbb{R}^n \to \mathbb{R}$ denote the log-likelihood as a function of the linear predictors η . Find $\nabla_{\eta} \ell$.
- (c) Find $\nabla_{\beta} \eta$.
- (d) Find $\nabla_{\beta} \ell$.
- 4. The Riemann-Stieltjes Integral. Suppose μ is a bounded, nondecreasing function on [a, b] and that μ is continuous at a point $x_0 \in [a, b]$. Further suppose that $g(x_0) = 1$ and g(x) = 0 if $x \neq x_0$. Prove that $\int g d\mu = 0$. Hint: Show that for any $\epsilon > 0$, we can find a partition P such that $0 \leq U(P, g, \mu) < \epsilon$.