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Introduction

Our analysis review continues today with three more topics:
• O, o notation: An extremely useful tool
• Taylor series expansions: Probably the single most useful
mathematical tool in all of statistics
• Uniform convergence: An often poorly understood topic that
not everyone is familiar with
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O-notation: Introduction

• When investigating the asymptotic behavior of functions, it is
often convenient to replace unwieldy expressions with
compact notation
• For example, suppose we have a term like

exp{−1
2 ‖x− µ‖2}

2
√
nθ
∫∞

0 g(s)ds ;

if we’re investigating what this looks like asymptotically (with
respect to n), maybe we can just replace this with c/

√
n,

where c is a constant
• If the term ends up going away as n→∞, why bother writing

down all those extra terms over and over again?
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O-notation

• Defining a bunch of new constants, however, makes the math
hard to follow; enter O-notation
• Definition: A sequence of numbers Xn is said to be O(1) if
there exist M and n0 such that

|Xn| < M

for all n > n0. Likewise, Xn is said to be O(rn) if there exist
M and n0 such that for all n > n0,∣∣∣∣Xn

rn

∣∣∣∣ < M.

• Note that Xn = O(1) does not necessarily mean that Xn is
bounded, just that it is eventually bounded
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• Its companion is o-notation
• Definition: A sequence of numbers Xn is said to be o(1) if it
converges to zero. Likewise, Xn is said to be o(rn) if

Xn

rn
→ 0

as n→∞.
• For example, the expression on slide 3 is o(1), and O(n−1/2)
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Algebra of O, o notation

O, o-notation are useful in combination because simple rules
govern how they interact with each other
Theorem: For a ≤ b:

O(1) +O(1) = O(1) O{O(1)} = O(1)
o(1) + o(1) = o(1) o{O(1)} = o(1)
o(1) +O(1) = O(1) o(rn) = rno(1)
O(1)O(1) = O(1) O(rn) = rnO(1)
O(1)o(1) = o(1) O(na) +O(nb) = O(nb)

{1 + o(1)}−1 = O(1) o(na) + o(nb) = o(nb)
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Remarks

• O, o “equations” are meant to be read left-to-right; for
example, O(

√
n) = O(n) is a valid statement, but

O(n) = O(
√
n) is not

• Exercise: Determine the order of

n−2
{

(−1)n n
√

2 + (1 + 1
n)n

}
.

• As we will see in a week or two, there are stochastic
equivalents of these concepts, involving convergence in
probability and being bounded in probability
• As such, we won’t do a great deal with O, o-notation right

now, but will use the stochastic equivalents extensively
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Taylor series: Introduction

• It is difficult to overstate the importance of Taylor series
expansions to statistical theory, and for that reason we are
now going to cover them fairly extensively
• In particular, Taylor’s theorem comes in a number of versions,
and it is worth knowing at least two of them, since they both
come up in statistics quite often
• Furthermore, students often have not seen the multivariate
versions of these expansions
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Taylor’s theorem

• Theorem (Taylor): Suppose n is a positive integer and
f : R→ R is n times differentiable at a point x0. Then

f(x) =
n∑

k=0

f (k)(x0)
k! (x− x0)k +Rn(x, x0),

where the remainder Rn satisfies

Rn(x, x0) = o(|x− x0|n) as x→ x0

• You could also say that Rn is O(|x− x0|n+1)
• This form of the remainder is sometimes called the Peano form
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Taylor’s theorem: Lagrange form

• Theorem (Taylor): If f (n+1) exists on the open interval and
f (n) is continuous on the closed interval between x and x0,
then there exists x∗ ∈ (x, x0):

Rn(x, x0) = f (n+1)(x∗)
(n+ 1)! (x− x0)(n+1).

• This is also known as the mean-value form, as the mean value
theorem is the central idea in proving the result
• Note that we have a simpler expression, but at the cost of
stronger assumptions: f (n+1) must exist along the entire
interval from x to x0, not just at the point x0
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Multivariable forms of Taylor’s theorem

• We now turn our attentions to the multivariate case
• For the sake of clarity, I’ll present the first- and second-order
expansions for each of the previous forms, rather than
abstract formulae involving f (n)

• Lastly, I’ll provide a form that goes out to third order,
although higher orders are less convenient as they can’t be
represented compactly using vectors and matrices
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Taylor’s theorem

• Theorem (Taylor): Suppose f : Rd → R is differentiable at a
point x0. Then

f(x) = f(x0) +∇f(x0)>(x− x0) + o(‖x− x0‖)

• Theorem (Taylor): Suppose f : Rd → R is twice
differentiable at a point x0. Then

f(x) = f(x0) +∇f(x0)>(x− x0)+
1
2(x− x0)>∇2f(x0)(x− x0) + o(‖x− x0‖2)
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Taylor’s theorem: Lagrange form

• Theorem (Taylor): Suppose f : Rd → R is differentiable on
Nr(x0). Then for any x ∈ Nr(x0), there exists x∗ on the line
segment connecting x and x0 such that

f(x) = f(x0) +∇f(x∗)>(x− x0)

• Theorem (Taylor): Suppose f : Rd → R is twice
differentiable on Nr(x0). Then for any x ∈ Nr(x0), there
exists x∗ on the line segment connecting x and x0 such that

f(x) = f(x0) +∇f(x0)>(x− x0)+
1
2(x− x0)>∇2f(x∗)(x− x0)

• “x∗ on the line segment connecting x and x0” means that
there exists w ∈ [0, 1] such that x∗ = wx + (1− w)(x0)
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Taylor’s theorem: Third order

Theorem (Taylor): Suppose f : Rd → R is three times
differentiable on Nr(x0). Then for any x ∈ Nr(x0), there exists x∗
on the line segment connecting x and x0 such that

f(x) = f(x0) +
d∑

j=1

∂f(x0)
∂xj

(xj − x0j)

+ 1
2

d∑
j=1

d∑
k=1

∂2f(x0)
∂xj∂xk

(xj − x0j)(xk − x0k)

+ 1
6

d∑
j=1

d∑
k=1

d∑
`=1

∂3f(x∗)
∂xj∂xk∂x`

(xj − x0j)(xk − x0k)(x` − x0`),

where ∂f(x0)/∂xj is shorthand for ∂f(x)/∂xj evaluated at x0
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Statistical convergence: Motivation

• Convergence is a very important concept in theoretical
statistics; for example, we often know that

fn(θ)→ f(θ);

here, I am using → in an intentionally vague sense – we will
talk more about probabilistic convergence in a few weeks
• For example, we might know that

1
n

n∑
i=1

(xi − θ)2 − σ2 → 0

• From this, we often want to know: suppose θ̂ → θ, does

1
n

n∑
i=1

(xi − θ̂)2 − σ2 → 0?
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• In other words, does fn(θ̂)→ f(θ) as θ̂ → θ?
• We’ll return to the probabilistic question later in the course;
for now, let’s discuss the problem in deterministic terms
• Suppose we have a sequence of functions f1, f2, . . . such that
for all values of x, we have fn(x)→ f(x)
• Our central question is whether the following holds or not:

lim
x→x0

lim
n→∞

fn(x) = lim
n→∞

lim
x→x0

fn(x)
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• Unfortunately, the answer is no – in general, this is not true
• For example:

fn(x) =
{
xn x ∈ [0, 1]
1 x ∈ (1,∞)

• We have

lim
x→1−

lim
n→∞

fn(x) = 0

lim
n→∞

lim
x→1−

fn(x) = 1
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Illustration
The underlying issue is that fn doesn’t really converge to f in the
sense of always lying within ±ε of it:
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Uniform convergence

• The relationship between fn and f is one of pointwise
convergence; we need something stronger
• Definition: A sequence of function f1, f2, . . ., converges

uniformly on a set E to a function f if for every ε > 0 there
exists N such that n > N implies

|fn(x)− f(x)| < ε

for all x ∈ E
• Corollary: fn → f uniformly on E if and only if

sup
x∈E
|fn(x)− f(x)| → 0.
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Why this is useful

• This is useful because with uniform convergence, we can reach
the kind of conclusion we originally sought
• Theorem: Suppose fn → f uniformly, with fn continuous for

all n. Then fn(x)→ f(x0) as x→ x0.
• Note that this argument does not work without uniform
convergence
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• The theorem on the previous page can actually be made
somewhat stronger:
• Theorem: Suppose fn → f uniformly on E and that

limx→x0 fn(x) exists for all n. Then for any limit point x0 of
E,

lim
x→x0

lim
n→∞

fn(x) = lim
n→∞

lim
x→x0

fn(x).

• Corollary: If {fn} is a sequence of continuous functions on E
and if fn → f uniformly on E, then f is continuous on E.
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Related concepts

• There are number of related concepts similar to uniform
convergence
• Definition: A function f : Rd → R is called uniformly

continuous if for all ε > 0, there exists δ > 0 such that for all
x,y ∈ Rd : ‖x− y‖ < δ, we have |f(x)− f(y)| < ε.
• For example, f(x) = x2 is uniformly continuous over [0, 1] but

not over [0,∞)
• Definition: A sequence X1, X2, . . . of random variables is
said to be uniformly bounded if there exists M such that
|Xn| < M for all Xn.
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