Analysis review, Part 1

Patrick Breheny

August 26

Introduction

- Before we get to likelihood theory, we are going to spend the first part of this course reviewing/extending/deepening our knowledge of mathematical and statistical tools
- In particular, lower-level analysis and mathematical statistics courses often focus on single-variable results
- In practice, however, statistics is almost always a multivariate pursuit
- Thus, one of the things we will focus on in this review is covering results you may have seen for single variables in terms of vectors

Norms: Introduction

- Central to this pursuit is the idea of measuring the size of a vector; such a measurement is called a norm
- This is straightforward for scalars - you can simply take the absolute value
- Vectors are more complicated; as we will see, there are many ways of measuring the size of a vector
- However, in order to be a meaningful measure of size, there are certain conditions any norm must satisfy

Norm: Definition

- Definition: A norm is a function $\|\cdot\|: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$,

$$
\begin{aligned}
& \circ\|\mathbf{x}\| \geq 0, \text { with }\|\mathbf{x}\|=0 \text { iff } \mathbf{x}=\mathbf{0} \\
& \circ\|a \mathbf{x}\|=|a|\|\mathbf{x}\| \text { for any } a \in \mathbb{R} \\
& \circ\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|
\end{aligned}
$$

- The triangle inequality is also sometimes expressed as

$$
\|\mathbf{x}-\mathbf{z}\| \leq\|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}-\mathbf{z}\|
$$

Or

$$
d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z})
$$

where $d(\mathbf{x}, \mathbf{y})$ quantifies the distance between \mathbf{x} and \mathbf{y}

Reverse triangle inequality

- A related inequality:
- Theorem (reverse triangle inequality): For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$,

$$
\|\mathbf{x}\|-\|\mathbf{y}\| \leq\|\mathbf{x}-\mathbf{y}\|
$$

- Corollary: For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$,

$$
\begin{aligned}
\|\mathbf{x}\|-\|\mathbf{y}\| & \leq\|\mathbf{x}+\mathbf{y}\| \\
\|\mathbf{y}\|-\|\mathbf{x}\| & \leq\|\mathbf{x}+\mathbf{y}\| \\
\|\mathbf{y}\|-\|\mathbf{x}\| & \leq\|\mathbf{x}-\mathbf{y}\|
\end{aligned}
$$

Examples of norms

- By far the most common norm is the Euclidean $\left(L_{2}\right)$ norm:

$$
\|\mathbf{x}\|_{2}=\sqrt{\sum_{i} x_{i}^{2}}
$$

- However, there are many other norms; for example, the Manhattan $\left(L_{1}\right)$ norm:

$$
\|\mathbf{x}\|_{1}=\sum_{i}\left|x_{i}\right|
$$

- Both Euclidean and Manhattan norms are members of the L_{p} family of norms: for $p \geq 1$,

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Examples of norms (cont'd)

- Another norm worth knowing about is the L_{∞} norm:

$$
\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|,
$$

which is the limit of the family of L_{p} norms as $p \rightarrow \infty$

- One last "norm" worth mentioning is the L_{0} norm:

$$
\|\mathbf{x}\|_{0}=\sum_{i} 1\left\{x_{i} \neq 0\right\}
$$

be careful, however: this is not a proper norm! (why not?)

Matrix norms

- There are also matrix norms, although we will not work with these as often
- In addition to the three requirements listed earlier, matrix norms must also satisfy a requirement of submultiplicativity:

$$
\|\mathbf{A B}\| \leq\|\mathbf{A}\|\|\mathbf{B}\| ;
$$

unlike the other requirements, this only applies to $n \times n$ matrices

- The simplest matrix norm is the Frobenius norm

$$
\|\mathbf{A}\|_{F}=\sqrt{\sum_{i, j} a_{i j}^{2}}
$$

Spectral norm

- Another common matrix norm is the spectral norm:

$$
\|\mathbf{A}\|_{2}=\sqrt{\lambda_{\max }}
$$

where $\lambda_{\text {max }}$ is the largest eigenvalue of $\mathbf{A}^{\top} \mathbf{A}$

- There are many other matrix norms

Cauchy-Schwarz

- There are several important inequalities involving norms that you should be aware of; the most important is the Cauchy-Schwarz inequality, arguably the most useful inequality in all of mathematics
- Theorem (Cauchy-Schwarz): For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$,

$$
\mathbf{x}^{\top} \mathbf{y} \leq\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}
$$

where equality holds only if $\mathbf{x}=a \mathbf{y}$ for some scalar a

- Note: the above is the Cauchy-Schwarz inequality, but in statistics, its probabilistic version goes by the same name:

$$
\mathbb{E}|X Y| \leq \sqrt{\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)}
$$

for random variables X and Y, with equality iff $X=a Y$

Hölder's inequality

- The Cauchy-Schwarz inequality is actually a special case of Hölder's inequality:
- Theorem (Hölder): For $1 / p+1 / q=1$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$,

$$
\mathbf{x}^{\top} \mathbf{y} \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}
$$

again with exact equality iff $\mathbf{x}=a \mathbf{y}$ for some scalar a (unless p or q is exactly 1)

- Probabilistic analogue:

$$
\mathbb{E}|X Y| \leq \sqrt[p]{\mathbb{E}|X|^{p}} \sqrt[q]{\mathbb{E}|Y|^{q}}
$$

Jensen's inequality

- Another extremely important inequality is Jensen's inequality; surely you've seen it before, but perhaps not in vector form
- Theorem (Jensen): For $\mathbf{a}, \mathbf{x} \in \mathbb{R}^{d}$ with $a_{i}>0$ for all i, if g is a convex function, then

$$
g\left(\frac{\sum_{i} a_{i} x_{i}}{\sum_{i} a_{i}}\right) \leq \frac{\sum_{i} a_{i} g\left(x_{i}\right)}{\sum_{i} a_{i}}
$$

- Probabilistic analog:

$$
g(\mathbb{E} X) \leq \mathbb{E} g(X)
$$

- The inequalities are reversed if g is concave

Relationships between norms

- Getting back to the different norms, there are many important relationships between norms that are often useful to know
- Theorem: For all $\mathrm{x} \in \mathbb{R}^{d}$,

$$
\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1} \leq \sqrt{d}\|\mathbf{x}\|_{2}
$$

- Obvious, but useful:

$$
\begin{aligned}
\|\mathbf{x}\|_{\infty} & \leq\|\mathbf{x}\|_{1} \leq d\|\mathbf{x}\|_{\infty} \\
\|\mathbf{x}\|_{\infty} & \leq\|\mathbf{x}\|_{2} \leq \sqrt{d}\|\mathbf{x}\|_{\infty}
\end{aligned}
$$

Equivalence of norms

- The relationships on the previous slide suggest the following statement, which is in fact always true: for any two norms a and b, there exist constants c_{1} and c_{2} such that

$$
\|\mathbf{x}\|_{a} \leq c_{1}\|\mathbf{x}\|_{b} \leq c_{2}\|\mathbf{x}\|_{a}
$$

- This result is known as the equivalence of norms and means that we can often generalize results for any one norm to all norms
- For example, we will often encounter results that look like:

$$
A=B+\|\mathbf{r}\|
$$

and show that $\|\mathbf{r}\| \rightarrow 0$, so $A \approx B$

Equivalence of norms (cont'd)

- By the equivalence of norms, if, say, $\|r\|_{1} \rightarrow 0$, then $\|r\|_{2} \rightarrow 0$ and so on for all norms (except not the L_{0} "norm"!)
- In this course, we will almost always be working with the Euclidean norm, so much so that I will typically write $\|\mathbf{x}\|$ to mean the Euclidean norm and not even bother with the subscript
- That said, it is important to note that with these relationships, we can always derive corollaries that extend results to other norms

Equivalence of matrix norms

- Like vector norms, matrix norms are also equivalent
- For example,

$$
\|\mathbf{A}\|_{2} \leq\|\mathbf{A}\|_{F} \leq \sqrt{r}\|\mathbf{A}\|_{2},
$$

where r is the rank of \mathbf{A}

Continuity

- One essential use of norms is to define what it means for elements of a vector space to be "local"
- Specifically, the neighborhood of a point $\mathbf{p} \in \mathbb{R}^{d}$ is the set $\{\mathbf{x}:\|\mathbf{x}-\mathbf{p}\|<\delta\}$, abbreviated $N_{\delta}(\mathbf{p})$
- Needed, for example, in the definition of a continuity for a vector-valued function:
- Definition: A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is said to be continuous at a point \mathbf{p} if for all $\epsilon>0$, there exists $\delta>0$:

$$
\|\mathbf{x}-\mathbf{p}\|<\delta \Longrightarrow|f(\mathbf{x})-f(\mathbf{p})|<\epsilon
$$

- Note that by the equivalence of norms, we can just say that a function is continuous - it can't be, say, continuous with respect to $\|\cdot\|_{2}$ and not continuous with respect to $\|\cdot\|_{1}$

Continuity and convergence

- The norm itself is a continuous function:
- Theorem: Let $f(\mathbf{x})=\|\mathbf{x}\|$, where $\|\cdot\|$ is any norm. Then $f(\mathbf{x})$ is continuous.
- One consequence of this result is that element-wise convergence is equivalent to convergence in norm
- Definition: We say that the vector \mathbf{x}_{n} converges to \mathbf{x}, denoted $\mathbf{x}_{n} \rightarrow \mathbf{x}$, if each element of \mathbf{x}_{n} converges to the corresponding element of \mathbf{x}.
- Theorem: $\mathbf{x}_{n} \rightarrow \mathbf{x}$ if and only if $\left\|\mathbf{x}_{n}-\mathbf{x}\right\| \rightarrow 0$.

Real-valued functions: Derivative and gradient

- This brings us to the important topic of vector calculus, which we will use frequently in this course
- Definition: For a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, its derivative is the $1 \times d$ row vector

$$
\dot{f}(\mathbf{x})=\left[\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{d}}\right]
$$

- In statistics, it is generally more common (but not always the case) to use the gradient (also called "denominator layout" or the "Hessian formulation")

$$
\nabla f(\mathbf{x})=\dot{f}(\mathbf{x})^{\top}
$$

i.e., $\nabla f(\mathbf{x})$ is a $d \times 1$ column vector

Vector-valued functions

- Definition: For a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$, its derivative is the $k \times d$ matrix with $i j$ th element

$$
\dot{\mathbf{f}}(\mathbf{x})_{i j}=\frac{\partial f_{i}(\mathbf{x})}{\partial x_{j}}
$$

- Correspondingly, the gradient is a $d \times k$ matrix:

$$
\nabla \mathbf{f}(\mathbf{x})=\dot{\mathbf{f}}(\mathbf{x})^{\top}
$$

- In our course, this will usually come up in the context of taking second derivatives; however, by the symmetry of second derivatives, we have

$$
\nabla^{2} f(\mathbf{x})=\ddot{f}(\mathbf{x})
$$

Vector calculus identities

Inner product:
Quadratic form:
Chain rule:
Product rule:
Inverse function theorem:

$$
\begin{aligned}
\nabla_{\mathbf{x}}\left(\mathbf{A}^{\top} \mathbf{x}\right) & =\mathbf{A} \\
\nabla_{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{x}\right) & =\left(\mathbf{A}+\mathbf{A}^{\top}\right) \mathbf{x} \\
\nabla_{\mathbf{x}} \mathbf{f}(\mathbf{y}) & =\nabla_{\mathbf{x}} \mathbf{y} \nabla_{\mathbf{y}} \mathbf{f} \\
\nabla\left(\mathbf{f}^{\top} \mathbf{g}\right) & =\left(\nabla_{\mathbf{f}}\right) \mathbf{g}+(\nabla \mathbf{g}) \mathbf{f} \\
\nabla_{\mathbf{x}} \mathbf{y} & =\left(\nabla_{\mathbf{y}} \mathbf{x}\right)^{-1}
\end{aligned}
$$

Note that for the inverse function theorem to apply, the gradient must be invertible

Vector calculus identities (row-vector layout)

Inner product:
Quadratic form:
Chain rule:
Product rule:
Inverse function theorem:

$$
\begin{aligned}
D_{\mathbf{x}}(\mathbf{A} \mathbf{x}) & =\mathbf{A} \\
D_{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{x}\right) & =\mathbf{x}^{\top}\left(\mathbf{A}+\mathbf{A}^{\top}\right) \\
D_{\mathbf{x}} \mathbf{f}(\mathbf{y}) & =D_{\mathbf{y}} \mathbf{f} D_{\mathbf{x}} \mathbf{y} \\
D\left(\mathbf{f}^{\top} \mathbf{g}\right) & =\mathbf{g}^{\top} \dot{\mathbf{f}}+\mathbf{f}^{\top} \dot{\mathbf{g}} \\
D_{\mathbf{x}} \mathbf{y} & =\left(D_{\mathbf{y}} \mathbf{x}\right)^{-1}
\end{aligned}
$$

I don't expect to use these, but for your future reference, here they are

Practice

Exercise: In linear regression, the ridge regression estimator is obtained by minimizing the function

$$
\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda\|\boldsymbol{\beta}\|^{2}
$$

where λ is a prespecified tuning parameter. Show that

$$
\widehat{\boldsymbol{\beta}}_{\text {ridge }}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Integration and measure: Introduction

- Our final topic for today is a brief treatment of measure theory
- This is not a measure theory-based course, but it is worth knowing some basic results that will help you read papers that use measure theoretical language
- In particular, we will go over
- The Riemann-Stieltjes integral
- The Lebesgue decomposition theorem

Introduction to Riemann-Stieltjes integration

- Probability and expectation are intimately connected with integration
- The basic forms of integration that you learn as an undergraduate are known as Riemann integrals; a more rigorous form is the Lebesgue integral, but that rests on quite a bit of measure theory
- The Riemann-Stieltjes integral is a useful bridge between the two, and particularly useful in statistics

Partitions and lower/upper sums

- Definition: A partition P of the interval $[a, b]$ is a finite set of points $x_{0}, x_{1}, \ldots, x_{n}$ such that

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b .
$$

- Let μ be a bounded, nondecreasing function on $[a, b]$, and let

$$
\Delta \mu_{i}=\mu\left(x_{i}\right)-\mu\left(x_{i-1}\right)
$$

note that $\mu_{i} \geq 0$

- Finally, for any function g define the lower and upper sums

$$
\begin{aligned}
L(P, g, \mu)=\sum_{i=1}^{n} m_{i} \Delta \mu_{i} & m_{i}=\inf _{\left[x_{i}, x_{i-1}\right]} g \\
U(P, g, \mu)=\sum_{i=1}^{n} M_{i} \Delta \mu_{i} & M_{i}=\sup _{\left[x_{i}, x_{i-1}\right]} g
\end{aligned}
$$

Refinements

- Definition: A partition P^{*} is a refinement of P if $P^{*} \supset P$ (every point of P is a point of P^{*}). Given partitions P_{1} and P_{2}, we say that P^{*} is their common refinement if $P^{*}=P_{1} \cup P_{2}$.
- Theorem: If P^{*} is a refinement of P, then

$$
L(P, g, \mu) \leq L\left(P^{*}, g, \mu\right)
$$

and

$$
U\left(P^{*}, g, \mu\right) \leq U(P, g, \mu)
$$

- Theorem: $L\left(P_{1}, g, \mu\right) \leq U\left(P_{2}, g, \mu\right)$

The Riemann-Stielties integral

Definition: If the following two quantities are equal:

$$
\begin{gathered}
\inf _{P} U(P, g, \mu) \\
\sup _{P} L(P, g, \mu)
\end{gathered}
$$

then g is said to be integrable (measurable) with respect to μ over $[a, b]$, and we denote their common value

$$
\int_{a}^{b} g d \mu
$$

or sometimes

$$
\int_{a}^{b} g(x) d \mu(x)
$$

Implications for probability

- The application to probability is clear: any CDF can play the role of μ (CDFs are bounded and nondecreasing), so expected values can be written

$$
\mathbb{E} g(X)=\int g(x) d F(x)
$$

- Why is this more appealing than the usual Riemann integral?
- The main reason is that the above statement is valid regardless of whether X has a continuous or discrete distribution (or some combination of the two) - we require only that F is nondecreasing, not that it is continuous

Continuous and discrete measures

- Suppose F is the CDF of a discrete random variable that places point mass p_{i} on support point s_{i}; then

$$
\int g d F=\sum_{i=1}^{\infty} g\left(s_{i}\right) p_{i}
$$

- Suppose F is the CDF of a continuous random variable with corresponding density $f(x)$; then assuming $g(X)$ is integrable (measurable),

$$
\int g d F=\int g(x) f(x) d x
$$

- In other words, the Riemann-Stieltjes integral reduces to familiar forms in both continuous and discrete cases

Example

- However, the Riemann-Stieltjes integral also works in mixed cases
- Exercise: Suppose X has a distribution such that $P(X=0)=1 / 3$, but if $X \neq 0$, then it follows an exponential distribution with $\lambda=2$. Suppose $g(x)=x^{2}$; what is $\int g d F$?

Decomposing random variables

- Now, you might be wondering: can we always do this?
- Can we always just separate out any random variable into its continuous and discrete components and handle them separately like this?
- The answer, unfortunately, is no

Lebesgue decomposition theorem

- Theorem (Lebesgue decomposition): Any probability distribution F can uniquely be decomposed as

$$
F=F_{\mathrm{D}}+F_{\mathrm{AC}}+F_{\mathrm{SC}},
$$

where

- F_{D} is the discrete component (i.e., probability is given by a sum of point masses)
- F_{AC} is the absolutely continuous component (i.e., probability is given by an integral with respect to a density function)
- $F_{\text {SC }}$ is the singular continuous component (i.e, it's weird)
- The theorem is typically stated in terms of measures, but I'm using (sub)distribution functions here for the sake of familiarity

Important takeaways

- Obviously, we're skipping the technical details of measure theory as well as the proof of this theorem, but you don't need a technical understanding to see why it's important
- It's not the case that all distributions can be decomposed into discrete and "continuous" components - there is a third possibility: singular
- However, if we add the restriction that we are dealing with non-singular (or regular) distributions, then yes, all distributions can be decomposed into the familiar continuous and discrete cases
- To be technically accurate, one might wish to clarify "absolutely continuous" instead of continuous when you're referring to a distribution with a density (in non-technical contexts, this is implicit)

