Analysis review, Part 1

Patrick Breheny

August 26

Definitions Matrix norms Inequalities

Introduction

- Before we get to likelihood theory, we are going to spend the first part of this course reviewing/extending/deepening our knowledge of mathematical and statistical tools
- In particular, lower-level analysis and mathematical statistics courses often focus on single-variable results
- In practice, however, statistics is almost always a multivariate pursuit
- Thus, one of the things we will focus on in this review is covering results you may have seen for single variables in terms of vectors

Definitions Matrix norms Inequalities

Norms: Introduction

- Central to this pursuit is the idea of measuring the size of a vector; such a measurement is called a *norm*
- This is straightforward for scalars you can simply take the absolute value
- Vectors are more complicated; as we will see, there are many ways of measuring the size of a vector
- However, in order to be a meaningful measure of size, there are certain conditions any norm must satisfy

Definitions Matrix norms Inequalities

Norm: Definition

- **Definition:** A *norm* is a function $\|\cdot\| : \mathbb{R}^d \to \mathbb{R}$ such that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,
 - $\begin{array}{l} \circ & \|\mathbf{x}\| \ge 0, \text{ with } \|\mathbf{x}\| = 0 \text{ iff } \mathbf{x} = \mathbf{0} \\ \circ & \|a\mathbf{x}\| = |a| \|\mathbf{x}\| \text{ for any } a \in \mathbb{R} \\ \circ & \|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| \end{array}$ (homogeneity) (triangle inequality)
- The triangle inequality is also sometimes expressed as

$$\left\|\mathbf{x} - \mathbf{z}\right\| \le \left\|\mathbf{x} - \mathbf{y}\right\| + \left\|\mathbf{y} - \mathbf{z}\right\|,$$

or

$$d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}),$$

where $d(\mathbf{x},\mathbf{y})$ quantifies the distance between \mathbf{x} and \mathbf{y}

Definitions Matrix norms Inequalities

Reverse triangle inequality

- A related inequality:
- Theorem (reverse triangle inequality): For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\|\mathbf{x}\| - \|\mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\|$$

• Corollary: For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\begin{split} \|\mathbf{x}\| - \|\mathbf{y}\| &\leq \|\mathbf{x} + \mathbf{y}\| \\ \|\mathbf{y}\| - \|\mathbf{x}\| &\leq \|\mathbf{x} + \mathbf{y}\| \\ \|\mathbf{y}\| - \|\mathbf{x}\| &\leq \|\mathbf{x} - \mathbf{y}\| \end{split}$$

Definitions Matrix norms Inequalities

Examples of norms

• By far the most common norm is the Euclidean (L_2) norm:

$$\left\|\mathbf{x}\right\|_2 = \sqrt{\sum_i x_i^2}$$

• However, there are many other norms; for example, the Manhattan (*L*₁) norm:

$$\left\|\mathbf{x}\right\|_1 = \sum_i |x_i|$$

• Both Euclidean and Manhattan norms are members of the L_p family of norms: for $p \ge 1$,

$$\left\|\mathbf{x}\right\|_{p} = \left(\sum_{i} |x_{i}|^{p}\right)^{1/p}$$

Definitions Matrix norms Inequalities

Examples of norms (cont'd)

• Another norm worth knowing about is the L_{∞} norm:

$$\left\|\mathbf{x}\right\|_{\infty} = \max_{i} \left|x_{i}\right|,$$

which is the limit of the family of L_p norms as $p \to \infty$

• One last "norm" worth mentioning is the L₀ norm:

$$\|\mathbf{x}\|_0 = \sum_i 1\{x_i \neq 0\};$$

be careful, however: this is not a proper norm! (why not?)

Definitions Matrix norms Inequalities

Matrix norms

- There are also matrix norms, although we will not work with these as often
- In addition to the three requirements listed earlier, matrix norms must also satisfy a requirement of *submultiplicativity*:

 $\left\|\mathbf{AB}\right\| \leq \left\|\mathbf{A}\right\| \left\|\mathbf{B}\right\|;$

unlike the other requirements, this only applies to $\boldsymbol{n}\times\boldsymbol{n}$ matrices

• The simplest matrix norm is the Frobenius norm

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i,j} a_{ij}^2}$$

Definitions Matrix norms Inequalities

Spectral norm

• Another common matrix norm is the spectral norm:

$$\|\mathbf{A}\|_2 = \sqrt{\lambda_{\max}},$$

where λ_{\max} is the largest eigenvalue of $\mathbf{A}^{ op}\mathbf{A}$

• There are many other matrix norms

Definitions Matrix norms Inequalities

Cauchy-Schwarz

- There are several important inequalities involving norms that you should be aware of; the most important is the Cauchy-Schwarz inequality, arguably the most useful inequality in all of mathematics
- Theorem (Cauchy-Schwarz): For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\mathbf{x}^{ op}\mathbf{y} \leq \|\mathbf{x}\|_2 \, \|\mathbf{y}\|_2 \, ,$$

where equality holds only if $\mathbf{x} = a\mathbf{y}$ for some scalar a

• Note: the above is *the* Cauchy-Schwarz inequality, but in statistics, its probabilistic version goes by the same name:

$$\mathbb{E}\left|XY\right| \le \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$

for random variables X and Y, with equality iff X = aY

Definitions Matrix norms Inequalities

Hölder's inequality

- The Cauchy-Schwarz inequality is actually a special case of Hölder's inequality:
- Theorem (Hölder): For 1/p + 1/q = 1 and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\mathbf{x}^{ op}\mathbf{y} \leq \left\|\mathbf{x}\right\|_{p} \left\|\mathbf{y}\right\|_{q},$$

again with exact equality iff $\mathbf{x} = a\mathbf{y}$ for some scalar a (unless p or q is exactly 1)

• Probabilistic analogue:

$$\mathbb{E}\left|XY\right| \le \sqrt[p]{\mathbb{E}\left|X\right|^{p}} \sqrt[q]{\mathbb{E}\left|Y\right|^{q}}$$

Definitions Matrix norms Inequalities

Jensen's inequality

- Another extremely important inequality is Jensen's inequality; surely you've seen it before, but perhaps not in vector form
- Theorem (Jensen): For $\mathbf{a}, \mathbf{x} \in \mathbb{R}^d$ with $a_i > 0$ for all i, if g is a convex function, then

$$g\left(\frac{\sum_{i} a_{i} x_{i}}{\sum_{i} a_{i}}\right) \leq \frac{\sum_{i} a_{i} g(x_{i})}{\sum_{i} a_{i}}$$

• Probabilistic analog:

$$g(\mathbb{E}X) \le \mathbb{E}g(X)$$

• The inequalities are reversed if g is concave

Definitions Matrix norms Inequalities

Relationships between norms

- Getting back to the different norms, there are many important relationships between norms that are often useful to know
- Theorem: For all $\mathbf{x} \in \mathbb{R}^d$,

$$\|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le \sqrt{d} \, \|\mathbf{x}\|_2$$

• Obvious, but useful:

$$\begin{aligned} \|\mathbf{x}\|_{\infty} &\leq \|\mathbf{x}\|_{1} \leq d \, \|\mathbf{x}\|_{\infty} \\ \|\mathbf{x}\|_{\infty} &\leq \|\mathbf{x}\|_{2} \leq \sqrt{d} \, \|\mathbf{x}\|_{\infty} \end{aligned}$$

Definitions Matrix norms Inequalities

Equivalence of norms

• The relationships on the previous slide suggest the following statement, which is in fact always true: for any two norms *a* and *b*, there exist constants *c*₁ and *c*₂ such that

$$\left\|\mathbf{x}\right\|_{a} \le c_{1} \left\|\mathbf{x}\right\|_{b} \le c_{2} \left\|\mathbf{x}\right\|_{a}$$

- This result is known as the *equivalence of norms* and means that we can often generalize results for any one norm to all norms
- For example, we will often encounter results that look like:

$$A = B + \|\mathbf{r}\|$$

and show that $\|\mathbf{r}\| \to 0$, so $A \approx B$

Definitions Matrix norms Inequalities

Equivalence of norms (cont'd)

- By the equivalence of norms, if, say, $||r||_1 \rightarrow 0$, then $||r||_2 \rightarrow 0$ and so on for all norms (except not the L_0 "norm"!)
- In this course, we will almost always be working with the Euclidean norm, so much so that I will typically write $||\mathbf{x}||$ to mean the Euclidean norm and not even bother with the subscript
- That said, it is important to note that with these relationships, we can always derive corollaries that extend results to other norms

Definitions Matrix norms Inequalities

Equivalence of matrix norms

- · Like vector norms, matrix norms are also equivalent
- For example,

$$\left\|\mathbf{A}\right\|_{2} \leq \left\|\mathbf{A}\right\|_{F} \leq \sqrt{r} \left\|\mathbf{A}\right\|_{2},$$

where r is the rank of ${\bf A}$

Definitions Matrix norms Inequalities

Continuity

- One essential use of norms is to define what it means for elements of a vector space to be "local"
- Specifically, the *neighborhood* of a point $\mathbf{p} \in \mathbb{R}^d$ is the set $\{\mathbf{x} : \|\mathbf{x} \mathbf{p}\| < \delta\}$, abbreviated $N_{\delta}(\mathbf{p})$
- Needed, for example, in the definition of a continuity for a vector-valued function:
- Definition: A function f : ℝ^d → ℝ is said to be continuous at a point p if for all ε > 0, there exists δ > 0:

$$\|\mathbf{x} - \mathbf{p}\| < \delta \implies |f(\mathbf{x}) - f(\mathbf{p})| < \epsilon$$

• Note that by the equivalence of norms, we can just say that a function is continuous – it can't be, say, continuous with respect to $\|\cdot\|_2$ and not continuous with respect to $\|\cdot\|_1$

Definitions Matrix norms Inequalities

Continuity and convergence

- The norm itself is a continuous function:
- Theorem: Let $f(\mathbf{x}) = \|\mathbf{x}\|$, where $\|\cdot\|$ is any norm. Then $f(\mathbf{x})$ is continuous.
- One consequence of this result is that element-wise convergence is equivalent to convergence in norm
- Definition: We say that the vector x_n converges to x, denoted x_n → x, if each element of x_n converges to the corresponding element of x.
- **Theorem:** $\mathbf{x}_n \to \mathbf{x}$ if and only if $\|\mathbf{x}_n \mathbf{x}\| \to 0$.

Real-valued functions: Derivative and gradient

- This brings us to the important topic of vector calculus, which we will use frequently in this course
- Definition: For a function $f: \mathbb{R}^d \to \mathbb{R}$, its *derivative* is the $1 \times d$ row vector

$$\dot{f}(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1} \cdots \frac{\partial f}{\partial x_d}\right]$$

• In statistics, it is generally more common (but not always the case) to use the gradient (also called "denominator layout" or the "Hessian formulation")

$$\nabla f(\mathbf{x}) = \dot{f}(\mathbf{x})^{\mathsf{T}};$$

i.e., $\nabla f(\mathbf{x})$ is a $d \times 1$ column vector

Vector-valued functions

• **Definition:** For a function $f : \mathbb{R}^d \to \mathbb{R}^k$, its *derivative* is the $k \times d$ matrix with ijth element

$$\dot{\mathbf{f}}(\mathbf{x})_{ij} = \frac{\partial f_i(\mathbf{x})}{\partial x_j}$$

• Correspondingly, the gradient is a $d \times k$ matrix:

$$\nabla \mathbf{f}(\mathbf{x}) = \dot{\mathbf{f}}(\mathbf{x})^{\mathsf{T}}$$

 In our course, this will usually come up in the context of taking second derivatives; however, by the symmetry of second derivatives, we have

$$\nabla^2 f(\mathbf{x}) = \ddot{f}(\mathbf{x})$$

Vector calculus identities

Note that for the inverse function theorem to apply, the gradient must be invertible

Vector calculus identities (row-vector layout)

I don't expect to use these, but for your future reference, here they are

Practice

Exercise: In linear regression, the ridge regression estimator is obtained by minimizing the function

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2,$$

where λ is a prespecified tuning parameter. Show that

$$\widehat{\boldsymbol{\beta}}_{\text{ridge}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

Riemann-Stieltjes integration Lebesgue decomposition theorem

Integration and measure: Introduction

- Our final topic for today is a brief treatment of measure theory
- This is not a measure theory-based course, but it is worth knowing some basic results that will help you read papers that use measure theoretical language
- In particular, we will go over
 - The Riemann-Stieltjes integral
 - The Lebesgue decomposition theorem

Introduction to Riemann-Stieltjes integration

- Probability and expectation are intimately connected with integration
- The basic forms of integration that you learn as an undergraduate are known as Riemann integrals; a more rigorous form is the Lebesgue integral, but that rests on quite a bit of measure theory
- The Riemann-Stieltjes integral is a useful bridge between the two, and particularly useful in statistics

Partitions and lower/upper sums

• **Definition:** A partition P of the interval [a, b] is a finite set of points x_0, x_1, \ldots, x_n such that

$$a = x_0 < x_1 < \dots < x_n = b.$$

• Let μ be a bounded, nondecreasing function on [a,b], and let

$$\Delta \mu_i = \mu(x_i) - \mu(x_{i-1});$$

note that $\mu_i \geq 0$

• Finally, for any function g define the lower and upper sums

$$L(P, g, \mu) = \sum_{i=1}^{n} m_i \Delta \mu_i \qquad m_i = \inf_{[x_i, x_{i-1}]} g$$
$$U(P, g, \mu) = \sum_{i=1}^{n} M_i \Delta \mu_i \qquad M_i = \sup_{[x_i, x_{i-1}]} g$$

Riemann-Stieltjes integration Lebesgue decomposition theorem

Refinements

- Definition: A partition P* is a refinement of P if P* ⊃ P (every point of P is a point of P*). Given partitions P₁ and P₂, we say that P* is their common refinement if P* = P₁ ∪ P₂.
- **Theorem:** If P^* is a refinement of P, then

$$L(P,g,\mu) \le L(P^*,g,\mu)$$

and

$$U(P^*, g, \mu) \le U(P, g, \mu)$$

• Theorem: $L(P_1, g, \mu) \le U(P_2, g, \mu)$

Riemann-Stieltjes integration Lebesgue decomposition theorem

The Riemann-Stieltjes integral

Definition: If the following two quantities are equal:

$$\begin{split} \inf_{P} U(P,g,\mu) \\ \sup_{P} L(P,g,\mu), \end{split}$$

then g is said to be integrable (measurable) with respect to μ over [a,b], and we denote their common value

$$\int_{a}^{b}gd\mu$$

or sometimes

$$\int_a^b g(x) d\mu(x)$$

Riemann-Stieltjes integration Lebesgue decomposition theorem

Implications for probability

• The application to probability is clear: any CDF can play the role of μ (CDFs are bounded and nondecreasing), so expected values can be written

$$\mathbb{E}g(X) = \int g(x) \, dF(x)$$

- Why is this more appealing than the usual Riemann integral?
- The main reason is that the above statement is valid regardless of whether X has a continuous or discrete distribution (or some combination of the two) – we require only that F is nondecreasing, not that it is continuous

Continuous and discrete measures

• Suppose F is the CDF of a discrete random variable that places point mass p_i on support point s_i ; then

$$\int g \, dF = \sum_{i=1}^{\infty} g(s_i) p_i$$

• Suppose F is the CDF of a continuous random variable with corresponding density f(x); then assuming g(X) is integrable (measurable),

$$\int g \, dF = \int g(x) f(x) \, dx$$

• In other words, the Riemann-Stieltjes integral reduces to familiar forms in both continuous and discrete cases

Riemann-Stieltjes integration Lebesgue decomposition theorem

Example

- However, the Riemann-Stieltjes integral also works in mixed cases
- Exercise: Suppose X has a distribution such that P(X = 0) = 1/3, but if $X \neq 0$, then it follows an exponential distribution with $\lambda = 2$. Suppose $g(x) = x^2$; what is $\int g \, dF$?

Riemann-Stieltjes integration Lebesgue decomposition theorem

Decomposing random variables

- Now, you might be wondering: can we always do this?
- Can we always just separate out any random variable into its continuous and discrete components and handle them separately like this?
- The answer, unfortunately, is no

Lebesgue decomposition theorem

• **Theorem (Lebesgue decomposition):** Any probability distribution *F* can uniquely be decomposed as

$$F = F_{\mathsf{D}} + F_{\mathsf{AC}} + F_{\mathsf{SC}},$$

where

- $\circ~F_{\rm D}$ is the discrete component (i.e., probability is given by a sum of point masses)
- F_{AC} is the absolutely continuous component (i.e., probability is given by an integral with respect to a density function)
- F_{SC} is the singular continuous component (i.e, it's weird)
- The theorem is typically stated in terms of measures, but I'm using (sub)distribution functions here for the sake of familiarity

Important takeaways

- Obviously, we're skipping the technical details of measure theory as well as the proof of this theorem, but you don't need a technical understanding to see why it's important
- It's not the case that all distributions can be decomposed into discrete and "continuous" components – there is a third possibility: singular
- However, if we add the restriction that we are dealing with *non-singular* (or *regular*) distributions, then yes, all distributions can be decomposed into the familiar continuous and discrete cases
- To be technically accurate, one might wish to clarify "absolutely continuous" instead of continuous when you're referring to a distribution with a density (in non-technical contexts, this is implicit)