
Vector norms and inequalities
Vector calculus

Integration and measure

Analysis review, Part 1

Patrick Breheny

August 26

Patrick Breheny University of Iowa Likelihood Theory (BIOS 7110) 1 / 34



Vector norms and inequalities
Vector calculus

Integration and measure

Definitions
Matrix norms
Inequalities

Introduction

• Before we get to likelihood theory, we are going to spend the
first part of this course reviewing/extending/deepening our
knowledge of mathematical and statistical tools
• In particular, lower-level analysis and mathematical statistics
courses often focus on single-variable results
• In practice, however, statistics is almost always a multivariate
pursuit
• Thus, one of the things we will focus on in this review is
covering results you may have seen for single variables in
terms of vectors
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Norms: Introduction

• Central to this pursuit is the idea of measuring the size of a
vector; such a measurement is called a norm
• This is straightforward for scalars – you can simply take the
absolute value
• Vectors are more complicated; as we will see, there are many
ways of measuring the size of a vector
• However, in order to be a meaningful measure of size, there
are certain conditions any norm must satisfy
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Norm: Definition

• Definition: A norm is a function ‖·‖ : Rd → R such that for
all x,y ∈ Rd,
◦ ‖x‖ ≥ 0, with ‖x‖ = 0 iff x = 0 (positivity)
◦ ‖ax‖ = |a| ‖x‖ for any a ∈ R (homogeneity)
◦ ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

• The triangle inequality is also sometimes expressed as

‖x− z‖ ≤ ‖x− y‖+ ‖y− z‖ ,

or

d(x, z) ≤ d(x,y) + d(y, z),

where d(x,y) quantifies the distance between x and y
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Reverse triangle inequality

• A related inequality:
• Theorem (reverse triangle inequality): For any x,y ∈ Rd,

‖x‖ − ‖y‖ ≤ ‖x− y‖

• Corollary: For any x,y ∈ Rd,

‖x‖ − ‖y‖ ≤ ‖x + y‖
‖y‖ − ‖x‖ ≤ ‖x + y‖
‖y‖ − ‖x‖ ≤ ‖x− y‖
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Examples of norms

• By far the most common norm is the Euclidean (L2) norm:

‖x‖2 =
√∑

i
x2
i

• However, there are many other norms; for example, the
Manhattan (L1) norm:

‖x‖1 =
∑

i
|xi|

• Both Euclidean and Manhattan norms are members of the Lp
family of norms: for p ≥ 1,

‖x‖p =
(∑

i
|xi|p

)1/p
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Examples of norms (cont’d)

• Another norm worth knowing about is the L∞ norm:

‖x‖∞ = max
i
|xi| ,

which is the limit of the family of Lp norms as p→∞
• One last “norm” worth mentioning is the L0 norm:

‖x‖0 =
∑

i
1{xi 6= 0};

be careful, however: this is not a proper norm! (why not?)
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Matrix norms

• There are also matrix norms, although we will not work with
these as often
• In addition to the three requirements listed earlier, matrix
norms must also satisfy a requirement of submultiplicativity:

‖AB‖ ≤ ‖A‖ ‖B‖ ;

unlike the other requirements, this only applies to n× n
matrices
• The simplest matrix norm is the Frobenius norm

‖A‖F =
√∑

i,j
a2
ij
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Spectral norm

• Another common matrix norm is the spectral norm:

‖A‖2 =
√
λmax,

where λmax is the largest eigenvalue of A>A
• There are many other matrix norms
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Cauchy-Schwarz

• There are several important inequalities involving norms that
you should be aware of; the most important is the
Cauchy-Schwarz inequality, arguably the most useful
inequality in all of mathematics
• Theorem (Cauchy-Schwarz): For x,y ∈ Rd,

x>y ≤ ‖x‖2 ‖y‖2 ,

where equality holds only if x = ay for some scalar a
• Note: the above is the Cauchy-Schwarz inequality, but in
statistics, its probabilistic version goes by the same name:

E |XY | ≤
√
E(X2)E(Y 2)

for random variables X and Y , with equality iff X = aY
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Hölder’s inequality

• The Cauchy-Schwarz inequality is actually a special case of
Hölder’s inequality:
• Theorem (Hölder): For 1/p+ 1/q = 1 and x,y ∈ Rd,

x>y ≤ ‖x‖p ‖y‖q ,

again with exact equality iff x = ay for some scalar a (unless
p or q is exactly 1)
• Probabilistic analogue:

E |XY | ≤ p

√
E |X|p q

√
E |Y |q
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Jensen’s inequality

• Another extremely important inequality is Jensen’s inequality;
surely you’ve seen it before, but perhaps not in vector form
• Theorem (Jensen): For a,x ∈ Rd with ai > 0 for all i, if g

is a convex function, then

g

(∑
i aixi∑
i ai

)
≤
∑
i aig(xi)∑

i ai

• Probabilistic analog:

g(EX) ≤ Eg(X)

• The inequalities are reversed if g is concave
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Relationships between norms

• Getting back to the different norms, there are many important
relationships between norms that are often useful to know
• Theorem: For all x ∈ Rd,

‖x‖2 ≤ ‖x‖1 ≤
√
d ‖x‖2

• Obvious, but useful:

‖x‖∞ ≤ ‖x‖1 ≤ d ‖x‖∞
‖x‖∞ ≤ ‖x‖2 ≤

√
d ‖x‖∞
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Equivalence of norms

• The relationships on the previous slide suggest the following
statement, which is in fact always true: for any two norms a
and b, there exist constants c1 and c2 such that

‖x‖a ≤ c1 ‖x‖b ≤ c2 ‖x‖a

• This result is known as the equivalence of norms and means
that we can often generalize results for any one norm to all
norms
• For example, we will often encounter results that look like:

A = B + ‖r‖

and show that ‖r‖ → 0, so A ≈ B
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Equivalence of norms (cont’d)

• By the equivalence of norms, if, say, ‖r‖1 → 0, then ‖r‖2 → 0
and so on for all norms (except not the L0 “norm”!)
• In this course, we will almost always be working with the
Euclidean norm, so much so that I will typically write ‖x‖ to
mean the Euclidean norm and not even bother with the
subscript
• That said, it is important to note that with these
relationships, we can always derive corollaries that extend
results to other norms
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Equivalence of matrix norms

• Like vector norms, matrix norms are also equivalent
• For example,

‖A‖2 ≤ ‖A‖F ≤
√
r ‖A‖2 ,

where r is the rank of A
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Continuity

• One essential use of norms is to define what it means for
elements of a vector space to be “local”
• Specifically, the neighborhood of a point p ∈ Rd is the set
{x : ‖x− p‖ < δ}, abbreviated Nδ(p)
• Needed, for example, in the definition of a continuity for a
vector-valued function:
• Definition: A function f : Rd → R is said to be continuous
at a point p if for all ε > 0, there exists δ > 0:

‖x− p‖ < δ =⇒ |f(x)− f(p)| < ε

• Note that by the equivalence of norms, we can just say that a
function is continuous – it can’t be, say, continuous with
respect to ‖·‖2 and not continuous with respect to ‖·‖1
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Continuity and convergence

• The norm itself is a continuous function:
• Theorem: Let f(x) = ‖x‖, where ‖·‖ is any norm. Then
f(x) is continuous.
• One consequence of this result is that element-wise
convergence is equivalent to convergence in norm
• Definition: We say that the vector xn converges to x,

denoted xn → x, if each element of xn converges to the
corresponding element of x.
• Theorem: xn → x if and only if ‖xn − x‖ → 0.
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• This brings us to the important topic of vector calculus, which
we will use frequently in this course
• Definition: For a function f : Rd → R, its derivative is the

1× d row vector

ḟ(x) =
[
∂f
∂x1
· · · ∂f∂xd

]
• In statistics, it is generally more common (but not always the
case) to use the gradient (also called “denominator layout” or
the “Hessian formulation”)

∇f(x) = ḟ(x)>;

i.e., ∇f(x) is a d× 1 column vector
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• Definition: For a function f : Rd → Rk, its derivative is the
k × d matrix with ijth element

ḟ(x)ij = ∂fi(x)
∂xj

• Correspondingly, the gradient is a d× k matrix:

∇f(x) = ḟ(x)>

• In our course, this will usually come up in the context of
taking second derivatives; however, by the symmetry of
second derivatives, we have

∇2f(x) = f̈(x)
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Inner product: ∇x(A>x) = A
Quadratic form: ∇x(x>A>x) = (A + A>)x
Chain rule: ∇xf(y) = ∇xy∇yf
Product rule: ∇(f>g) = (∇f)g + (∇g)f
Inverse function theorem: ∇xy = (∇yx)−1

Note that for the inverse function theorem to apply, the gradient
must be invertible
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Vector calculus identities (row-vector layout)

Inner product: Dx(Ax) = A
Quadratic form: Dx(x>A>x) = x>(A + A>)
Chain rule: Dxf(y) = DyfDxy
Product rule: D(f>g) = g>ḟ + f>ġ
Inverse function theorem: Dxy = (Dyx)−1

I don’t expect to use these, but for your future reference, here they
are
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Exercise: In linear regression, the ridge regression estimator is
obtained by minimizing the function

‖y−Xβ‖2 + λ ‖β‖2 ,

where λ is a prespecified tuning parameter. Show that

β̂ridge = (X>X + λI)−1X>y.
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Integration and measure: Introduction

• Our final topic for today is a brief treatment of measure theory
• This is not a measure theory-based course, but it is worth
knowing some basic results that will help you read papers that
use measure theoretical language
• In particular, we will go over

◦ The Riemann-Stieltjes integral
◦ The Lebesgue decomposition theorem
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Introduction to Riemann-Stieltjes integration

• Probability and expectation are intimately connected with
integration
• The basic forms of integration that you learn as an
undergraduate are known as Riemann integrals; a more
rigorous form is the Lebesgue integral, but that rests on quite
a bit of measure theory
• The Riemann-Stieltjes integral is a useful bridge between the
two, and particularly useful in statistics
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Partitions and lower/upper sums

• Definition: A partition P of the interval [a, b] is a finite set of
points x0, x1, . . . , xn such that

a = x0 < x1 < · · · < xn = b.

• Let µ be a bounded, nondecreasing function on [a, b], and let

∆µi = µ(xi)− µ(xi−1);

note that µi ≥ 0
• Finally, for any function g define the lower and upper sums

L(P, g, µ) =
n∑
i=1

mi∆µi mi = inf
[xi,xi−1]

g

U(P, g, µ) =
n∑
i=1

Mi∆µi Mi = sup
[xi,xi−1]

g
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Refinements

• Definition: A partition P ∗ is a refinement of P if P ∗ ⊃ P
(every point of P is a point of P ∗). Given partitions P1 and
P2, we say that P ∗ is their common refinement if
P ∗ = P1 ∪ P2.
• Theorem: If P ∗ is a refinement of P , then

L(P, g, µ) ≤ L(P ∗, g, µ)

and

U(P ∗, g, µ) ≤ U(P, g, µ)

• Theorem: L(P1, g, µ) ≤ U(P2, g, µ)
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The Riemann-Stieltjes integral
Definition: If the following two quantities are equal:

inf
P
U(P, g, µ)

sup
P
L(P, g, µ),

then g is said to be integrable (measurable) with respect to µ over
[a, b], and we denote their common value∫ b

a
gdµ

or sometimes ∫ b

a
g(x)dµ(x)
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Implications for probability

• The application to probability is clear: any CDF can play the
role of µ (CDFs are bounded and nondecreasing), so expected
values can be written

Eg(X) =
∫
g(x) dF (x)

• Why is this more appealing than the usual Riemann integral?
• The main reason is that the above statement is valid
regardless of whether X has a continuous or discrete
distribution (or some combination of the two) – we require
only that F is nondecreasing, not that it is continuous
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Continuous and discrete measures

• Suppose F is the CDF of a discrete random variable that
places point mass pi on support point si; then∫

g dF =
∞∑
i=1

g(si)pi

• Suppose F is the CDF of a continuous random variable with
corresponding density f(x); then assuming g(X) is integrable
(measurable), ∫

g dF =
∫
g(x)f(x) dx

• In other words, the Riemann-Stieltjes integral reduces to
familiar forms in both continuous and discrete cases
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Example

• However, the Riemann-Stieltjes integral also works in mixed
cases
• Exercise: Suppose X has a distribution such that
P (X = 0) = 1/3, but if X 6= 0, then it follows an exponential
distribution with λ = 2. Suppose g(x) = x2; what is

∫
g dF?
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Decomposing random variables

• Now, you might be wondering: can we always do this?
• Can we always just separate out any random variable into its
continuous and discrete components and handle them
separately like this?
• The answer, unfortunately, is no
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Lebesgue decomposition theorem

• Theorem (Lebesgue decomposition): Any probability
distribution F can uniquely be decomposed as

F = FD + FAC + FSC,

where
◦ FD is the discrete component (i.e., probability is given by a

sum of point masses)
◦ FAC is the absolutely continuous component (i.e., probability is

given by an integral with respect to a density function)
◦ FSC is the singular continuous component (i.e, it’s weird)

• The theorem is typically stated in terms of measures, but I’m
using (sub)distribution functions here for the sake of
familiarity

Patrick Breheny University of Iowa Likelihood Theory (BIOS 7110) 33 / 34



Vector norms and inequalities
Vector calculus

Integration and measure

Riemann-Stieltjes integration
Lebesgue decomposition theorem

Important takeaways

• Obviously, we’re skipping the technical details of measure
theory as well as the proof of this theorem, but you don’t need
a technical understanding to see why it’s important
• It’s not the case that all distributions can be decomposed into
discrete and “continuous” components – there is a third
possibility: singular
• However, if we add the restriction that we are dealing with
non-singular (or regular) distributions, then yes, all
distributions can be decomposed into the familiar continuous
and discrete cases
• To be technically accurate, one might wish to clarify
“absolutely continuous” instead of continuous when you’re
referring to a distribution with a density (in non-technical
contexts, this is implicit)
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