Conditional likelihood

Patrick Breheny

November 9

Introduction

- Today we're going to discuss an alternative approach to likelihood-based inference called conditional likelihood
- The main idea is that while the data may depend on both our parameters of interest θ and nuisance parameters η , perhaps we can transform the data in such a way that we can factor the likelihood into a conditional distribution depending only on θ

Conditional likelihood: Definition

• Specifically, suppose we can transform the data x into v and w such that

$$p(x|\boldsymbol{\theta}, \boldsymbol{\eta}) = p(v|w, \boldsymbol{\theta})p(w|\boldsymbol{\theta}, \boldsymbol{\eta})$$

- The first term, $L(\theta) = p(v|w,\theta)$, is known as the *conditional likelihood*; note that this term is free of nuisance parameters
- Note that, unlike the profile likelihood, the conditional likelihood is an actual likelihood, in the sense that it corresponds to an actual distribution of observed data

Factorization

Note that in our partition of the probability model, we have

$$p(x|\boldsymbol{\theta},\boldsymbol{\eta}) = L_1(\boldsymbol{\theta})L_2(\boldsymbol{\theta},\boldsymbol{\eta})$$

- With conditional likelihood, we are proposing to use only L_1 for inference, even though our parameter of interest θ also shows up in L_2
- Is this valid?
- Absolutely; there is no requirement that we use all of the data in order for likelihood-based inference to be valid
- Is it a good idea, though?

When conditional likelihood is appealing

- This depends on how much information we are losing (not always easy to measure)
- In general, conditional likelihood is appealing when either of the following conditions are met:
 - The conditional likelihood is simpler than the original or profile likelihood
 - The original or profile likelihood leads to biased or unstable estimates
- No matter how much simpler the conditional likelihood is, however, conditional likelihood is not going to be attractive if substantial information is being lost

Poisson model

 To get a sense of how conditional likelihood works, let's consider the case of two independent Poisson random variables:

$$X \sim \text{Pois}(\lambda)$$

 $Y \sim \text{Pois}(\mu)$

and suppose that we are interested in the relative risk $\theta=\mu/\lambda$

• One way of approaching this problem would be to derive the full likelihood $L(\lambda, \mu)$, then use likelihood theory and the delta method to derive the distribution of θ :

$$\frac{\hat{\theta} - \theta}{\text{SE}} \xrightarrow{\text{d}} \text{N}(0, 1),$$

where
$$SE^2 = (\mu^2 + \mu\lambda)/\lambda^3$$
, as $\mu, \lambda \to \infty$

Conditional likelihood

• However, suppose we instead let t=x+y and then proceeded along these lines:

$$p(x, y|\lambda, \mu) = p(y, t|\lambda, \mu)$$
$$= p(y|t, \lambda, \mu)p(t|\lambda, \mu)$$

- The second term, we will just ignore; the first term is the conditional likelihood
- Writing the conditional likelihood in terms of θ , we have

$$L(\theta) = \left(\frac{1}{1+\theta}\right)^x \left(\frac{\theta}{1+\theta}\right)^y;$$

note that this likelihood is free of nuisance parameters

Patrick Breheny University of Iowa Likelihood Theory (BIOS 7110) 7 / 25

Orthogonal parameters

- Are we losing information about θ ?
- In this particular case, we are losing nothing: letting $\eta = \lambda + \mu$, we can write

$$L(\theta, \eta) = L_1(\theta)L_2(\eta)$$

- In other words, θ does not show up in the part of the likelihood that we are ignoring
- When such a factorization exists, the parameters θ and η are said to be *orthogonal parameters*

Estimation and inference

- Now we can just carry out all the usual likelihood operations on the conditional likelihood
- The score is

$$u(\theta) = y/\theta - t/(1+\theta),$$

so $\hat{\theta} = y/x$, which seems like the obvious estimator

 The information, in this case, yields the same approximate variance as the delta method

$$\mathcal{I}(\theta) = \frac{y}{\theta^2} - \frac{t}{(1+\theta)^2},$$

Exact inference

 In the Poisson case, however, we don't really need asymptotic approximations, as we can carry out exact inference based on the conditional relationship

$$Y|T \sim \operatorname{Binom}(T, \frac{\theta}{1+\theta})$$

- Exact tests and confidence intervals for the binomial proportion could then be constructed and transformed to give confidence intervals for θ
- This is often true, generally speaking, for conditional likelihood approaches: non-asymptotic methods are often available, albeit not always so easily calculated

Profile likelihood

- \bullet Yet another way of approaching this problem is to derive the profile likelihood of θ
- In this case, we end up with the same likelihood as the conditional approach:

$$L(\theta) = \left(\frac{1}{1+\theta}\right)^x \left(\frac{\theta}{1+\theta}\right)^y$$

 This is only true in the case of orthogonal parameters, however (i.e., only if the nuisance parameters can be factored out does the profile likelihood automatically produce a conditional likelihood)

Binomial proportions

- Probably the most common application of conditional likelihood is for comparing two binomial proportions: $X \sim \operatorname{Binom}(n_1, \pi_1)$ and $Y \sim \operatorname{Binom}(n_2, \pi_2)$, and our interest is in the odds ratio θ
- By conditioning on the total T=X+Y, we arrive at a conditional distribution for X|T containing only the odds ratio that we can use as our conditional likelihood:

$$p(x|t) = \frac{\binom{n_1}{x} \binom{n_2}{t-x} \theta^x}{\sum_{s=0}^{t} \binom{n_1}{s} \binom{n_2}{t-s} \theta^s}$$

Information loss

- Unlike the earlier Poisson case, however, here the parameters are not orthogonal (the parameter of interest cannot be entirely factored apart from other parameters)
- Thus, there is the possibility of information loss
- Assessing the information loss would depend on how π_1 and π_2 are related to one another
- Intuitively, however, it seems unlikely that the total of X and Y can carry much meaningful information about the odds ratio unless we are willing to make very strong assumptions

Connection with hypergeometric distribution

- Returning to the conditional likelihood, at $\theta=0$ the conditional distribution is the hypergeometric distribution
- Thus, we could carry out non-asymptotic inference on the basis of this distribution: this is known as Fisher's exact test
- We could also use any of our asymptotic likelihood approaches

Score test

- The score test is particularly convenient to apply, since the likelihood is simplified considerably at the null hypothesis $\theta=1$
- Letting μ and σ denote the mean and standard deviation of the (n_1,n_2,t) hypergeometric distribution, the score test statistic is

$$z = \frac{x - \mu}{\sigma}$$

 Confidence intervals would involve the use of noncentral hypergeometric distributions

Matched pairs, binary outcome

- On a related note, let's consider the question of matched pairs of subjects with a binary outcome (essentially, this is a discrete version of the Neyman-Scott problem)
- Suppose we have n pairs of observations with Y_{i1} and Y_{i2} representing independent binary outcomes, and our probability model is

$$logit(\pi_{i1}) = \alpha_i$$
$$logit(\pi_{i2}) = \alpha_i + \beta;$$

this would arise, for example, in a study of identical twins where one was exposed to a risk factor and the other was not

Profile likelihood bias

- Our interest is the odds ratio e^{β} , but as in the Neyman-Scott problem, the number of nuisance parameters is growing with n
- This causes problems with the profile likelihood: letting a denote with number of $\{Y_{i1}=1,Y_{i2}=0\}$ pairs and b denote with number of $\{Y_{i1}=0,Y_{i2}=1\}$ pairs,

$$\hat{\alpha}_i(\beta) = \beta/2$$

$$\hat{\beta} = 2\log\frac{b}{a}$$

$$\widehat{OR} = \left(\frac{b}{a}\right)^2$$

• The estimator (b/a) is known to be consistent, so the MLE here converges to OR^2 , highly biased if $OR \neq 1$

Conditional likelihood to the rescue

- Using conditional likelihood, however, this problem is avoided
- Within each table, we can condition on $y_{i1} + y_{i2}$, arriving at a Bernoulli distribution if the pair is informative
- Since pairs are independent of each other, the total likelihood is then

$$\ell(\theta) = \sum_{i} \ell_i(\theta)$$

- The result is that b has a binomial likelihood conditional on a+b and the MLE is now consistent
- In this context, the score test is known as McNemar's test

General 2×2 tables

- The same logic works for more general 2×2 tables
- Here, each table's conditional likelihood corresponds to the hypergeometric distribution and the log-likelihood from these tables are again additive
- Again, the score test is particularly convenient:

$$z = \frac{\sum_{i} (x_i - \mu_i)}{\sqrt{\sum_{i} \sigma_i^2}},$$

where μ_i and σ_i^2 are the mean and variance of the hypergeometric distribution for table i

This is known as the Mantel-Haenzel test.

Generality of conditional likelihood

- So, is conditional likelihood a general method, or only available in specialized cases?
- To some extent, both
- On the one hand, it is always possible to derive a conditional likelihood for exponential families; however, the resulting likelihood is often rather complicated

Exponential family: Setup

• Letting $\mathbf{v} = \mathbf{s}_1(x)$ and $\mathbf{w} = \mathbf{s}_2(x)$ denote the sufficient statistics of the exponential family,

$$p(\mathbf{v}, \mathbf{w}) = \exp\{\boldsymbol{\theta}^{\mathsf{T}} \mathbf{v} + \boldsymbol{\eta}^{\mathsf{T}} \mathbf{w} - \psi(\boldsymbol{\theta}, \boldsymbol{\eta})\} f_0(x)$$

- To derive the conditional likelihood, we first need to derive the marginal distribution of w
- We can obtain this by summing (or integrating) $p(\mathbf{v}, \mathbf{w})$ over the set $\{x : \mathbf{s}_2(x) = \mathbf{w}\}$:

Exponential family: Conditional likelihood

The conditional likelihood then arises from

$$\begin{aligned} p(\mathbf{v}|\mathbf{w}) &= p(\mathbf{v}, \mathbf{w})/p(\mathbf{w}) \\ &= \frac{\sum_{x: \mathbf{s}_1(x) = \mathbf{v}, \mathbf{s}_2(x) = \mathbf{w}} \exp\{\boldsymbol{\theta}^\top \mathbf{v} + \boldsymbol{\eta}^\top \mathbf{w} - \psi(\boldsymbol{\theta}, \boldsymbol{\eta})\} f_0(x)}{\sum_{x: \mathbf{s}_2(x) = \mathbf{w}} \exp\{\boldsymbol{\theta}^\top \mathbf{s}_1(x) + \boldsymbol{\eta}^\top \mathbf{w} - \psi(\boldsymbol{\theta}, \boldsymbol{\eta})\} f_0(x)} \\ &= \frac{\exp\{\boldsymbol{\theta}^\top \mathbf{v}\} \sum_{x: \mathbf{s}_1(x) = \mathbf{v}, \mathbf{s}_2(x) = \mathbf{w}} f_0(x)}{\sum_{x: \mathbf{s}_2(x) = \mathbf{w}} \exp\{\boldsymbol{\theta}^\top \mathbf{s}_1(x)\} f_0(x)} \end{aligned}$$

Note that:

- ullet The likelihood is free of η
- The expression is considerably simplified if $f_0(x) = 1$
- Sums would be replaced by integrals if x was continuous

Patrick Breheny University of Iowa Likelihood Theory (BIOS 7110) 22 / 25

Conditional logistic regression

- A common application of this idea is the logistic regression setting
- Consider the model $Y_i \sim \mathrm{Bern}(\pi_i)$ with

$$\log \frac{\pi_i}{1 - \pi_i} = \alpha + \beta x_i$$

The probability model is therefore

$$\log p(\mathbf{y}) = \alpha \sum_{i} y_i + \beta \sum_{i} x_i y_i - \sum_{i} \log(1 + \exp\{\alpha + \beta x_i\})$$

Conditional logistic regression (cont'd)

• Letting $v=\sum x_iy_i$ and $w=\sum y_i$, this falls within the exponential family framework, and we have the conditional likelihood

$$L(\beta) = \frac{\exp(\beta v)}{\sum_{u} \exp(\beta u)},$$

where the sum in the denominator is over all values of $u = \sum x_i y_i$ such that $\sum y_i = w$

- Since the y_i values are all 0 or 1, this corresponds to the permutations of ${\bf y}$
- Similar to what we've seen before, this is particularly appealing when the data is matched or paired; this is probably the most common use of conditional logistic regression

Patrick Breheny University of Iowa Likelihood Theory (BIOS 7110) 24 / 25

Remarks

- The usual likelihood-based approaches to inference can now be applied, although we face a computational challenge in terms of evaluating $\sum \exp(\beta x_i y_i)$ over all possible permutations of \mathbf{y}
- Nevertheless, fast algorithms have been developed to tackle this problem and the method (known as conditional logistic regression) is widely implemented in statistical software
- We focused on the simple regression case here, but the idea can be extended to multivariate settings as well
- Futhermore, exact approaches to inference are possible using permutation tests (as in our earlier examples)