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Intro

• Today, we continue with our goal of deriving the asymptotic
properties of maximum likelihood estimators
• Previously, we established conditions under which the MLE
was consistent: ‖θ̂ − θ‖ P−→ 0
• Today, we will see that under those same conditions,√

n(θ̂ − θ) converges in distribution to a multivariate normal
• After establishing this, we will consider how these results
change if we remove the log-concavity assumption and allow
for the possibility of multiple maxima
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Preliminary: Another Taylor series

• The main idea behind the proof is to take a Taylor series
expansion not of the likelihood function, but rather the score
function
• Since the score function is vector-valued (and we have only
considered real-valued Taylor series expansions so far), let us
first derive a vector-valued extension to our existing Taylor
series results
• Theorem: Suppose f : Rd → Rk is twice differentiable on
Nr(x0), and that ∇2f is bounded on Nr(x0). Then for any
x ∈ Nr(x0),

f(x) = f(x0) + [∇f(x0) +O(‖x− x0‖)1d×k]> (x− x0),

where 1 is a matrix of ones (i.e., every element equals one)
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Remark

• The reason we need a theorem along these lines is that
unfortunately, there is not a Lagrange-type result for
vector-valued functions
• In other words, it is not true that there exists an x̄ such that

f(x) = f(x0) +∇f(x̄)>(x− x0);

such a point exists for each element of f separately, but these
points will not be the same
• Thus, instead of ∇f(x̄), we would have a matrix with columns
∇f1(x̄1),∇f2(x̄2), and so on
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Asymptotic normality of the MLE

• We can now prove a central limit theorem-like result for the
MLE of any smooth log-concave model
• Theorem (Asymptotic normality of the MLE): Suppose

assumptions (A)-(D) from the previous lecture are met. Then
the maximum likelihood estimator θ̂ satisfies

√
n(θ̂ − θ∗) d−→ N(0,I1(θ∗)−1).

• We can now see another intuitive interpretation of the
information: as information increases, the variance of the
MLE θ̂ decreases
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Influence function

• During our proof, we saw that we can write
√
n(θ̂ − θ∗) = 1√

n
I−1

1 (θ∗)u(θ∗) + op(1)

• In other words,

θ̂ = θ∗ + 1
n

∑
i
I−1

1 (θ∗)ui(θ∗) + op(1/
√
n)

• In statistics, the relationship between an estimate and the
weight given to an individual observation is known as the
influence function
• We can see here that for maximum likelihood estimators, the
influence function has a very simple form (asymptotically):
IF(x) = I−1

1 (θ∗)u(θ∗|x)
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Non-standard problems

• Unlike the consistency proof, we do need differentiability
requirements for asymptotic normality to hold
• For example, we remarked previously that for Xi

iid∼ Unif(0, θ),
the MLE is consistent despite the likelihood not being
continuous or differentiable at θ∗
• However, today’s theorem does not hold for the uniform
distribution:
◦ Converges much faster: θ̂ − θ∗ is Op(1/n), not Op(1/

√
n)

◦ I(θ) is not even defined in the uniform case
◦ Asymptotic distribution is not normal: n(θ∗− θ̂) d−→ Exp(1/θ)
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Alternative regularity conditions

• Thus, our conditions today are closer to being necessary
conditions than those last time – there is less room to
substitute weaker conditions and still obtain the result
• It is perhaps worth noting that it is possible to prove
asymptotic normality without requiring any conditions on the
third derivative; however, there must be some condition that
guarantees uniform convergence
• If the third derivative condition is removed, it must be
replaced with something like: there exists a function K(X)
with EK(X) <∞ such for all i, j, we have
|I(θ|X)ij | ≤ K(X) for all θ ∈ Θ∗

• This condition is, of course, harder to check than whether
third derivatives are bounded
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Local asymptotic normality

• A rather different approach to proving MLE asymptotics was
pursued by Le Cam (1986), who abandoned the entire idea of
n→∞ in favor of what he called local asymptotic normality
(LAN)
• Instead of considering limits as n→∞, Le Cam showed that

as the shape of the log-likelihood becomes more quadratic,
the distribution of the MLE becomes more normal
• We won’t go into any of the details here, but this is an
interesting phenomenon to be aware of, since your sample size
will never be infinite, but you can always plot the
log-likelihood and assess how close to a quadratic it is
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Multiple roots

• Finally, let’s consider what happens if we drop assumption
(D), that our likelihood is log-concave
• In this case, there are potentially many solutions to the
likelihood equations

u(θ) = 0,

even if the MLE is unique
• Furthermore, as our counterexample at the beginning of the
last lecture shows, if the likelihood has multiple modes there
is no guarantee that the MLE is even consistent
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Local log-concavity

• However, as you probably noticed, in our proof of these two
theorems, we only used assumption (D) at the very last step
• If we remove assumption (D), every step of the proof remains,
except for the fact that at the end, all we can say is that there
is a local maximum (i.e., a solution to the likelihood
equations, not the solution to the likelihood equations) inside
Θ∗ that is consistent and asymptotically normal
• In other words, the likelihood isn’t log-concave everywhere,
but if the other conditions are met, and in particular if I(θ∗)
is positive definite, then there is a neighborhood Θ∗ inside of
which the likelihood is log-concave, and our theorems hold in
a local sense
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Revisiting our inconsistent MLE
The MLE isn’t consistent but there is local solution which is:
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Restating our earlier theorems
• With this in mind, we can offer more general restatements of
our earlier theorems
• Theorem (Consistency of the MLE): Suppose assumptions
(A)-(C) are met. Then with probability tending to 1, there
exists a consistent sequence of solutions θ̂n to the likelihood
equations: ∥∥∥θ̂n − θ∗

∥∥∥ P−→ 0.

• Theorem (Asymptotic normality of the MLE): Suppose
assumptions (A)-(C) from the previous lecture are met. Then
with probability tending to 1, there exists a consistent
sequence of solutions θ̂n to the likelihood equations satisfying

√
n(θ̂n − θ∗) d−→ N(0,I1(θ∗)−1).
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Useful?

• Now, is this a useful generalization?
• Not necessarily:

◦ First of all, whatever algorithm we’re using to maximize the
likelihood is probably only going to return a single solution –
we have no guarantees about its properties

◦ Second of all, even if we were able to find all solutions of the
likelihood equations, we have no way of knowing which one to
choose
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Useful? (cont’d)

• But also . . . maybe?
• Suppose we have an estimator θ̃, not the MLE, that we knew

to be consistent
• We could, for example, pick the solution to the likelihood
equations closest to θ̃

• More ambitiously, we could take a Taylor series expansion of
the likelihood equations about the point θ̃, then estimate θ
via:

θ̂ = θ̃ + I(θ̃)−1u(θ̃)

• You can iterate this process if desired, repeating the above
calculation until convergence (this is Newton’s method), or
just stop after one application (the “one-step estimator”)
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One-step estimator theorem

• We’ll skip the proof of this, but if θ̃ is not only consistent but√
n-consistent, then our results hold not just for some

mysterious, unknown root of the likelihood equations, but for
the unique root defined on the previous slide
• Theorem: Suppose conditions (A)-(C) from the previous
lecture are met, and that θ̃ is a

√
n-consistent estimator of θ.

Define θ̂n = θ̃n + I(θ̃n)−1u(θ̃n). Then
√
n(θ̂n − θ∗) d−→ N(0,I1(θ∗)−1).

• One can also use I(θ̃) to construct θ̂ and the theorem still
holds
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Cauchy example

• For example, suppose Xi
iid∼ Cauchy(θ); as we have already

seen, this likelihood has multiple local maxima and it is
unclear whether any given solution to the likelihood equations
is consistent and asymptotically normal
• However, it can be shown that the sample median, θ̃, is not
the MLE but is a

√
n-consistent estimator of θ

• Thus, the procedure on the previous slide can be used to
obtain the likelihood root with known consistency and
asymptotic normality properties
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A word of caution

• The Cauchy distribution is a nice success story of maximum
likelihood in the presence of multiple roots, but is arguably
more of the exception than the rule
• Every situation is different, of course, but personally, I would
argue that it’s inherently rather dangerous to go around
constructing inference based entirely on maximum likelihood
in the presence of a likelihood with multiple maxima – at best
risky, and at worst outright misleading
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