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Introduction

• Today we will begin to prove the important asymptotic
properties of maximum likelihood estimates
• We begin with consistency: θ̂

P−→ θ∗ (this is weak
consistency; MLEs are also strongly consistent under the same
conditions, but we’ll only concern ourselves with proving the
weak case)
• Broadly speaking, we’ll break this up into two cases: where
the likelihood is unimodal and where it may not be (the latter
case being considerably more complicated as there could be
many local maxima, only one of which being the actual MLE)
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An inconsistent MLE

• To get a sense of the problems that arise when the likelihood
can have multiple peaks, consider the following model1:

Xi
iid∼ 1

2N(0, 1) + 1
2N(θ, exp(−2/θ2));

in words, an equal mixture of a standard normal and a normal
distribution whose variance goes to zero (fast!) as the mean
goes to zero
• Let’s generate some samples from this model with θ = 2 and
take at a look at its likelihood and what happens to it as
n→∞

1This example comes from Radford Neal
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An inconsistent MLE: n = 10
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An inconsistent MLE: n = 40

As n→∞, it is increasingly certain that a giant spike will occur
near zero: θ̂ P−→ 0 6= 2
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Unimodal functions

• To rule out such situations, let’s restrict attention to unimodal
likelihoods, starting with a definition of “unimodal”
• In one dimension, a function f is unimodal if there exists a
point m such that f is monotonically increasing for x ≤ m
and monotonically decreasing for x ≥ m
• Extending to multiple dimensions, a function f : Rd → R is
unimodal if there exists a point m such that for all ‖u‖ = 1,
f(m + xu) is a monotone decreasing function of x
• A point m ∈ Rd is a strict local maximum of a function
f : Rd → R if there exists a neighborhood Nr(m) such that
f(m) > f(x) for all x ∈ Nr(m) with x 6= m
• A unimodal function has exactly one such point, and that
point is the global maximum
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Sufficient conditions for unimodality

• Proving that a function is unimodal is typically challenging
unless we can resort to derivatives
• For any function that is twice differentiable, a sufficient (but
not necessary) condition for unimodality is that its Hessian
matrix H(x) is negative definite for all x
• In the likelihood context, this means that the information
matrix is positive definite for all θ
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Log concavity

• Furthermore, if its Hessian is negative definite at all points,
the function is concave
• In the likelihood context, then, if the information matrix is
positive definite for all θ, then its log-likelihood is a concave
function
• Such probability models are said to be log-concave
• Many common parametric models, including everything in the
exponential family, are log-concave
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Kullback-Liebler divergence

• Next, we need something like a “norm” that measures the
distance between two probability distributions
• Definition: For two distributions p and q, the

Kullback-Leibler divergence (commonly abbreviated KL
divergence, also known as KL information) is defined as

KL(p‖q) = Ep log p
q

=
∫

log p(x)
q(x)dP (x),

where the integrand is defined to be +∞ if q(x) = 0, p(x) > 0
and 0 if p(x) = 0
• Essentially, the KL divergence is measuring the ability of the
likelihood ratio to distinguish between two distributions
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Entropy

• The KL divergence is related to a
concept in physics and information
theory called entropy, which is defined
as

H(p) = −E log p

• Entropy measures the degree of
uncertainty in a distribution, with the
uniform and constant distributions
representing the extremes
• Note that
H(p) = −KL(p‖u) + Const, where u
is a uniform distribution

For example, in the
Bernoulli distribution:
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Gibbs’ inequality

• Note that the KL divergence is not symmetric: it is measuring
the distance from distribution p to distribution q, not the
other way around2

• Furthermore, the KL divergence does not satisfy the triangle
inequality, so is not a norm; hence the term “divergence” as
opposed to “distance”
• However, it does satisfy positivity
• Theorem (Gibbs’ inequality): For any two distributions p

and q, KL(p‖q) ≥ 0. Furthermore, KL(p‖q) = 0 if and only if
p = q almost everywhere.
• This theorem is also known as the Shannon-Kolmogorov
information inequality

2the symmetric version 1
2 KL(p‖q) + 1

2 KL(q‖p) is known as the
Jensen-Shannon divergence
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Consistency

• So, what does this have to do with consistency?
• By the WLLN, we have

1
n

log L(θ)
L(θ∗) = 1

n

∑
i

log Li(θ)
Li(θ∗)

P−→ −KL(θ∗‖θ),

which is less than 0 unless p(x|θ) = p(x|θ∗) almost
everywhere
• In other words, P{L(θ) < L(θ∗)} → 1 for all θ 6= θ∗
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Identifiability

• More quantitatively, the likelihood ratio converges to zero
exponentially fast, with a rate given by the KL divergence
• Again, the only condition here is that we do not have
p(x|θ) = p(x|θ∗) almost everywhere; this is known as
identifiability and if it is violated, the models p(x|θ) and
p(x|θ∗) are said to be not identifiable
• For example, suppose x1i

iid∼ N(µ+ α, 1) and
x2i

iid∼ N(µ+ β, 1); this is not identifiable because
{µ, α, β} = {0, 2, 4} specifies the same distribution as
{µ, α, β} = {3,−1, 1} (along with infinitely many other
combinations)
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Consistency?

• Are we done? Have we established consistency?
• In one dimension, yes!
• Theorem: Let {p(x|θ) : θ ∈ Θ ⊂ R} be a probability model

that is unimodal (with respect to θ) and identifiable, and
suppose Xi

iid∼ p(x|θ∗). Then θ̂ P−→ θ∗.
• The argument also works if the parameter space Θ is finite
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Multiple dimensions

• Unfortunately, this argument breaks down even with d = 2:

θ*

θ1

θ2

• To apply our earlier argument, we need to show that
P{L(θ∗) > L(θ)} → 1 for the entire ring; use Gibbs’
inequality all we like, but it’s no help – the ring contains an
infinite number of points
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Eigenvalue introduction

• To make progress in the multiparameter case, we will instead
use arguments based on taking Taylor series expansions of the
log-likelihood about the point θ∗

• This proof is also going to involve eigenvalues, so let’s take a
moment now to review their meaning and properties (probably
should have done this earlier in the course, but oh well)
• This is not going to be a comprehensive treatment of the
entire subject, just an overview of the most important
properties as they pertain to statistical theory – in particular,
we are only concerned with symmetric matrices here
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Eigendecompositions

• The most important thing about eigenvalues is that they
allow us to “diagonalize” a matrix: if A is a symmetric d× d
matrix, then it can be factored into:

A = QΛQ>,

where Λ is a diagonal matrix containing the eigenvalues
λ1, λ2, . . . , λd of A and the columns of Q are its eigenvectors
• Furthermore, eigenvectors are orthonormal, so we have

Q>Q = QQ> = I
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Eigenvalues and “size”

• This is very helpful from a conceptual standpoint, as it allows
us to separate the “size” of a matrix (Λ) from its
“direction(s)” (Q)
• For example, we have already seen that one measure of the
size of a matrix is based on λmax (for a symmetric matrix, its
spectral norm is its largest eigenvalue)
• In addition, the trace and determinant, two other ways of
quantifying the “size” of a matrix, are simple functions of the
eigenvalues:
◦ tr(A) =

∑
i λi

◦ |A| =
∏

i λi
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Eigenvalues and inverses

• Once one has obtained the eigendecomposition of A,
calculating its inverse is straightforward
• If A is not singular, then A−1 = QΛ−1Q>; note that since Λ

is diagonal, its inverse is trivial to calculate
• Even if A is singular, we can obtain a generalized inverse:

A− = QΛ−Q>, where (Λ−)ii = λ−1
i if λi 6= 0 and

(Λ−)ii = 0 otherwise
• Many other important properties of matrices can be deduced
entirely from their eigenvalues:
◦ A is positive definite if and only if λi > 0 for all i
◦ A is positive semidefinite if and only if λi ≥ 0 for all i
◦ If A has rank r, then A has r nonzero eigenvalues and the

remaining d− r eigenvalues are zero
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Extreme values

• Lastly, there is a connection between a matrix’s eigenvalues
and the extreme values of its quadratic form
• Let the eigenvalues λ1, . . . , λd of A be ordered from largest to

smallest. Over the set of all vectors x such that ‖x‖2 = 1,

max xT Ax = λ1

and

min xT Ax = λd
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Consistency: Assumptions

OK, back to consistency; what assumptions do we need?
(A) IID: X1, . . . , Xn are iid with density p(x|θ∗).
(B) Interior point: There exists an open set Θ∗ ⊂ Θ ⊂ Rd that

contains θ∗.
(C) Smoothness: For all x, p(x|θ) is continuously differentiable

with respect to θ up to third order on Θ∗, and satisfies the
following conditions:
(i) Derivatives up to second order can be passed under the

integral sign in
∫
dP (x|θ).

(ii) The Fisher information I1(θ∗) is positive definite.
(iii) The third derivatives ∇3`(θ) are bounded by M on Θ∗:

supθ∈Θ∗

∣∣∇3`(θ)jkm

∣∣ ≤M for all j, k,m.
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Consistency: Assumptions (cont’d)

• To avoid the possibility of multiple local maxima, I’ll also add
the following assumption:

(D) Log-concavity: The Fisher information I1(θ) is positive
definite for all θ ∈ Θ
• Obviously, Assumption (D) implies much of assumption (C); I
give them as separate assumptions here since assumptions
(A)-(C) are standard, while assumption (D) is “extra”
• Next time, we will consider what happens when we remove it,
retaining only (A)-(C)
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Consistency of the MLE

• OK, let’s now prove the following important theorem
• Theorem (Consistency of the MLE): Suppose assumptions
(A)-(D) are met. Then the maximum likelihood estimator θ̂ is
consistent: ∥∥∥θ̂ − θ∗

∥∥∥ P−→ 0.

• Connecting this to our earlier remarks on uniform convergence
towards the beginning of the course, note that pointwise
convergence of the likelihood ratio around the boundary of Θ∗

was not enough; we needed uniform convergence over the
entire boundary
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Derivative conditions

• It is possible to prove consistency of the MLE under
considerably weaker conditions than this; in particular,
without any requirements on differentiability
• In particular, Wald (1949) used a compactness argument to
show consistency; the gist of it is that if Θ is compact, there
exists a finite subcover of Θ, which allows us to use Gibbs’
inequality (since we need only use it a finite number of times)
• However, this proof is a bit more abstract and the conditions
a bit harder to understand, so we have presented the approach
originally published by Cramér (1946), which is also the
approach more common in the literature (or at least, the
literature I read)
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Convergence in non-standard settings

• Keep in mind that we have provided consistency conditions
that are sufficient, not necessary
• It is therefore possible for the MLE to be consistent even in
situations that do not meet our regularity conditions; for
example:
◦ Xi

iid∼ Bern(θ); θ̂ P−→ θ even if θ = 1 (on the boundary)
◦ Xi

iid∼ Laplace(θ); θ̂ P−→ θ even though likelihood not
differentiable at θ

◦ Xi
iid∼ Unif(0, θ); θ̂ P−→ θ even though likelihood isn’t even

continuous at θ (let alone differentiable)
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