Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 8

Due: Monday, November 2

1. Completing the square part 2. Do part (b) of problem 1 from assignment 6 .
2. Score test with nuisance parameters. Prove the following theorem, which was stated in our lecture on score, Wald, and likelihood ratio approaches:

Theorem: If (A)-(C) hold and $\boldsymbol{\theta}_{0}=\boldsymbol{\theta}_{1}^{*}$, then

$$
\mathbf{u}_{1}\left(\hat{\boldsymbol{\theta}}_{0}\right)^{\top} \mathscr{V}_{11}\left(\hat{\boldsymbol{\theta}}_{0}\right) \mathbf{u}_{1}\left(\hat{\boldsymbol{\theta}}_{0}\right) \xrightarrow{\mathrm{d}} \chi_{r}^{2} .
$$

Hint: Take a Taylor series expansion of $\mathbf{u}(\boldsymbol{\theta})$ about $\boldsymbol{\theta}^{*}$, evaluated at $\hat{\boldsymbol{\theta}}_{0}$.
In this theorem, you may make use of the following lemma, which you do not need to prove (its proof is essentially identical to the case for the unrestricted MLE $\hat{\boldsymbol{\theta}}$).

Lemma: If (A)-(C) hold and $\boldsymbol{\theta}_{0}=\boldsymbol{\theta}_{1}^{*}$, then

$$
\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{2}\left(\boldsymbol{\theta}_{0}\right)-\boldsymbol{\theta}_{2}^{*}\right)=\boldsymbol{\mathscr { I }}_{22}^{-1}\left(\boldsymbol{\theta}^{*}\right) \frac{1}{\sqrt{n}} \mathbf{u}_{2}\left(\boldsymbol{\theta}^{*}\right)+o_{p}(1),
$$

where $\mathbf{u}=\left(\mathbf{u}_{1}^{\top} \mathbf{u}_{2}^{\top}\right)^{\top}$ describes the partitioned score vector, \mathscr{J}_{22} is the lower right block of the Fisher information for a single observation, and here the final $o_{p}(1)$ term is a $(d-r) \times 1$ vector, all of whose elements are converging in probability to zero.
3. Projection matrices and the χ^{2} distribution. A matrix \mathbf{P} satisfying $\mathbf{P}=\mathbf{P P}$ is known as an idempotent matrix, or projection matrix. Below, suppose that \mathbf{P} is a symmetric projection matrix.
(a) Show that every eigenvalue of \mathbf{P} must be either 1 or 0 .
(b) Show that the rank of \mathbf{P} equals the trace of \mathbf{P}.
(c) Show that if $\mathbf{z} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})$, then $\mathbf{z}^{\top} \mathbf{P z} \sim \chi_{r}^{2}$, where r is the rank of \mathbf{P}.

