Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 4 Due: Monday, September 28

- 1. Convergence in quadratic mean and probability. This problem involves proving the theorems from the slide titled "Convergence in mean vs convergence in probability" from the "Modes of convergence" lecture. Hint: You may wish to review Markov's inequality.
 - (a) Prove that if $\mathbf{x}_n \xrightarrow{r} \mathbf{x}$ for some r > 0, then $\mathbf{x}_n \xrightarrow{P} \mathbf{x}$.
 - (b) Prove that if $\mathbf{a} \in \mathbb{R}^d$, then $\mathbf{x}_n \xrightarrow{\mathrm{qm}} \mathbf{a}$ if and only if $\mathbb{E}\mathbf{x}_n \to \mathbf{a}$ and $\mathbb{V}\mathbf{x}_n \to \mathbf{0}_{d \times d}$.
- 2. Bounded in probability vs convergence in distribution. Prove that if a sequence of random vectors $\mathbf{x}_n \in \mathbb{R}^d$ converges in distribution, then \mathbf{x}_n is bounded in probability.
- 3. The Cramér-Wold device. Let $\mathbf{x}_n \in \mathbb{R}^d$ be a sequence of random vectors. Prove that if $\mathbf{a}^\top \mathbf{x}_n \stackrel{d}{\longrightarrow} \mathbf{a}^\top \mathbf{x}$ for all vectors $\mathbf{a} \in \mathbb{R}^d$, then $\mathbf{x}_n \stackrel{d}{\longrightarrow} \mathbf{x}$. Hint: Continuity theorem.