Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 2

Due: Monday, September 14

1. Vector norms.
(a) Show that $\|\cdot\|_{2}$ is a norm.
(b) Show that $\|\cdot\|_{\infty}$ is a norm.
(c) Let $\|\cdot\|_{1 / 2}$ denote the function of \mathbf{x} you would obtain by using $p=1 / 2$ in the definition of an L_{p} norm. Is $\|\cdot\|_{1 / 2}$ a norm? Why or why not?
2. Logistic regression. The logistic regression model states that Y_{i} is equal to 1 with probability π_{i} and 0 otherwise, with π_{i} related to a set of linear predictors $\left\{\eta_{i}\right\}$ by the following model:

$$
\begin{aligned}
& \log \frac{\pi_{i}}{1-\pi_{i}}=\eta_{i} \quad \text { for } i=1,2, \ldots, n \\
& \boldsymbol{\eta}=\mathbf{X} \boldsymbol{\beta}
\end{aligned}
$$

where $\boldsymbol{\eta} \in \mathbb{R}^{n}, \boldsymbol{\beta} \in \mathbb{R}^{d}$, and \mathbf{X} is an $n \times d$ matrix.
(a) Let ℓ_{i} denote the contribution to the log-likelihood from observation i. Find the partial derivative of ℓ_{i} with respect to η_{i}. Simplify your answer as much as possible.
(b) Let $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}$ denote the log-likelihood as a function of the linear predictors $\boldsymbol{\eta}$. Find $\nabla_{\boldsymbol{\eta}} \ell$.
(c) Find $\nabla_{\beta} \boldsymbol{\eta}$.
(d) Find $\nabla_{\beta} \ell$.
3. O-notation proofs. Prove the following results:
(a) $O(1) o(1)=o(1)$.
(b) $\{1+o(1)\}^{-1}=O(1)$.
(c) $o\{O(1)\}=o(1)$.
4. Exponential Taylor series.
(a) Show that

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} .
$$

(b) What is the infinite series for $e^{a x}$?
(c) What is the infinite series for b^{x} ?
(d) Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. What is the second-order Taylor series for $f(\mathbf{x})=\exp \left(\mathbf{a}^{\top} \mathbf{x}\right)$ about $\mathbf{x}=\mathbf{0}$? Give both the o-notation and Lagrange forms.
(e) Suppose $\mathbf{a}=\left[\begin{array}{ll}2 & -1\end{array}\right]^{\top}$ and $\mathbf{x}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}$. Find the point \mathbf{x}^{*} on the line segment connecting \mathbf{x} and $\mathbf{0}$ that satisfies the Lagrange form of Taylor's theorem.
5. Uniform convergence. For each of the following sequences, determine the pointwise limit of $\left\{f_{n}\right\}$ and decide whether $f_{n} \rightarrow f$ uniformly on the set given or not.
(a) $f_{n}(x)=\sqrt[n]{x}$ on $[0,1]$.
(b) $f_{n}(x)=e^{x} / x^{n}$ on $(1, \infty)$.
(c) $f_{n}(\mathbf{x})=n^{-1} \exp \left\{-\|\mathbf{x}\|^{2}\right\}$ on \mathbb{R}^{d}.

