Likelihood Theory and Extensions (BIOS:7110) Breheny

Assignment 2 Due: Monday, September 14

- 1. Vector norms.
 - (a) Show that $\|\cdot\|_2$ is a norm.
 - (b) Show that $\|\cdot\|_{\infty}$ is a norm.
 - (c) Let $\|\cdot\|_{1/2}$ denote the function of **x** you would obtain by using p = 1/2 in the definition of an L_p norm. Is $\|\cdot\|_{1/2}$ a norm? Why or why not?
- 2. Logistic regression. The logistic regression model states that Y_i is equal to 1 with probability π_i and 0 otherwise, with π_i related to a set of linear predictors $\{\eta_i\}$ by the following model:

$$\log rac{\pi_i}{1-\pi_i} = \eta_i \qquad ext{for } i = 1, 2, \dots, n$$

 $\boldsymbol{\eta} = \mathbf{X} \boldsymbol{\beta}$

where $\boldsymbol{\eta} \in \mathbb{R}^n$, $\boldsymbol{\beta} \in \mathbb{R}^d$, and **X** is an $n \times d$ matrix.

- (a) Let ℓ_i denote the contribution to the log-likelihood from observation *i*. Find the partial derivative of ℓ_i with respect to η_i . Simplify your answer as much as possible.
- (b) Let $\ell : \mathbb{R}^n \to \mathbb{R}$ denote the log-likelihood as a function of the linear predictors η . Find $\nabla_{\eta} \ell$.
- (c) Find $\nabla_{\beta} \eta$.
- (d) Find $\nabla_{\boldsymbol{\beta}} \ell$.

3. O-notation proofs. Prove the following results:

- (a) O(1)o(1) = o(1).
- (b) $\{1 + o(1)\}^{-1} = O(1).$
- (c) $o\{O(1)\} = o(1)$.
- 4. Exponential Taylor series.
 - (a) Show that

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

- (b) What is the infinite series for e^{ax} ?
- (c) What is the infinite series for b^x ?
- (d) Let $f : \mathbb{R}^d \to \mathbb{R}$. What is the second-order Taylor series for $f(\mathbf{x}) = \exp(\mathbf{a}^{\mathsf{T}}\mathbf{x})$ about $\mathbf{x} = \mathbf{0}$? Give both the *o*-notation and Lagrange forms.

- (e) Suppose $\mathbf{a} = \begin{bmatrix} 2 & -1 \end{bmatrix}^{\top}$ and $\mathbf{x} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$. Find the point \mathbf{x}^* on the line segment connecting \mathbf{x} and $\mathbf{0}$ that satisfies the Lagrange form of Taylor's theorem.
- 5. Uniform convergence. For each of the following sequences, determine the pointwise limit of $\{f_n\}$ and decide whether $f_n \to f$ uniformly on the set given or not.
 - (a) $f_n(x) = \sqrt[n]{x}$ on [0, 1].
 - (b) $f_n(x) = e^x / x^n$ on $(1, \infty)$.
 - (c) $f_n(\mathbf{x}) = n^{-1} \exp\{-\|\mathbf{x}\|^2\}$ on \mathbb{R}^d .