Practice Problem: Lab 10

Consider a problem in which we observe students to see if they took notes by hand or by laptop and recorded whether they passed or failed. Of the 67 that used a laptop 44 passed. Of the 76 that wrote by hand 56 of them passed. Construct an observed and expected table. Compute the chi-squared statistic and find the p-value from the chi-squared table. Interpret your results.

Expected cell $\mathrm{E}_{\mathrm{ij}}=\left(\mathrm{n}_{\mathrm{i}+}{ }^{*} \mathrm{n}_{+\mathrm{j}}\right) / \mathrm{n}_{++}$

Observed

	Pass	Fail	Total
Laptop	44	23	67
Hand	56	20	76
Total	100	43	143

Expected: (67*100) / $143=46.85$ etc

	Pass	Fail	Total
Laptop	46.85	20.14	67
Hand	53.14	22.85	76
Total	100	43	143

$$
\chi^{2}=\frac{(44-46.85)^{2}}{46.83}+\frac{(23-20.14)^{2}}{20.17}+\frac{(56-53.14)^{2}}{53.12}+\frac{(20-22.85)^{2}}{22.88}
$$

$\chi^{2}=1.087$
$\mathrm{df}=1$

From the table, everything below 1.087 is $p=0.701$.

Therefore p-value: 1-0.701= $\underline{\mathbf{0 . 2 9 9}}$

There is about a 30% probability of observing such an association by chance alone. There is no statistical evidence that writing notes on a laptop or by hand impacts test performance.

Power

```
\cdots {r}
mean_diff <- mean(corn$crossed - corn$Self)
sd_diff <- sd(corn$crossed - corn$self)
power.t.test(de1ta = mean_diff, }\textrm{n}=15\mathrm{ ,
    sd = sd_diff, type = "paired")
**
```

Practice Problem: Paired T-test:

```
``{r}
# Using R function:
t.test(Corn$Crossed, corn$Self, paired = TRUE)
# By hand
corn$corndiff <- Corn$Crossed - corn$Self
SE <- sd(Corn$corndiff)/sqrt(15)
t <- (mean(Corn$corndiff) - 0) / SE
2*(1-pt(t, df=14))
```

```
    Paired t-test
```

 Paired t-test
 data: Corn$Crossed and Corn$self
data: Corn$Crossed and Corn$self
t = 2.1781, df = 14, p-value = 0.04699
t = 2.1781, df = 14, p-value = 0.04699
alternative hypothesis: true difference in means is not equal to 0
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
95 percent confidence interval:
0.3290402 42.7376265
0.3290402 42.7376265
sample estimates:
sample estimates:
mean of the differences
mean of the differences
21.53333
[1] 0.04699031

```
```

