Survival analysis

Patrick Breheny

April 30

Patrick Breheny

University of Iowa Introduction to Biostatistics (BIOS 4120)

Challenges in time-to-event analysis Time-to-event data

Survival analysis

- A very common outcome in medical studies is the time until an event occurs:
 - The time until a patient dies
 - $\circ\;$ The time until a patient suffers a heart attack
 - The time until a liver transplant patient needs a new liver
 - The time until the recurrence of cancer following treatment
- Data involving such an outcome is often called "time-to-event" data or "failure-time data", and the branch of statistics that deals with analyzing these data is called *survival analysis*

Challenges in time-to-event analysis Time-to-event data

Aplastic anemia study

- The study we are going to look at today involves patients with severe aplastic anemia, a condition in which the bone marrow produces an insufficient number of new red blood cells
- These patients were given a bone marrow transplant from a compatible family member
- A common complication of bone marrow transplantation is graft-versus-host disease (GVHD), in which the immune cells produced by the new bone marrow recognize the recipient as a foreign body and mount an attack
- To ward off GVHD, the recipients were randomized to receive one of two drug combinations:
 - Methotrexate (MTX)
 - Methotrexate and cyclosporine (MTX + CSP)

urvival functions The log-rank test Summary Challenges in time-to-event analysis Time-to-event data

Aplastic anemia study (cont'd)

- The goals of the study were to answer the questions:
 - Which treatment is more effective at preventing GVHD?
 - · Which treatment is more effective at saving lives?
- Both outcomes were measured as time-to-event data
- Our goal today is to answer these questions, addressing both statistical significance and clinical impact

Challenges in time-to-event analysis Time-to-event data

What's wrong with a *t*-test?

- At first, it might seem that the time until an event occurs is continuous, and that we could use methods for continuous data to analyze time-to-event data
- However, there is a fundamental feature of time-to-event data that destroys any attempt to use such methods: the event doesn't always occur!
 - Only 16 out of 46 subjects developed GVHD
 - Only 13 subjects died during the course of the study
- Thus, a lot of the information is *missing*; we know when some of the patients die or develop GVHD, but not all of them

Challenges in time-to-event analysis Time-to-event data

Couldn't we just throw out the missing data?

- It might seem as though you could fix this problem by throwing out the subjects with missing data
- Nothing could be further from the truth!
- Consider an individual from the MTX+CSP group who survived the entire time from transplantation until the end of the study (3.8 years) – this, in a study where many patients died less than a year following transplantation
- Producing such patients is the entire point of the study; throwing this patient out is a very bad idea that goes against the entire principle of the study

urvival functions he log-rank test Summary Challenges in time-to-event analysis Time-to-event data

A new type of data

- Indeed, there are no good ways to analyze time-to-event data using the methods we have learned already
- It is a fundamentally different type of data than either continuous or categorical data, requiring entirely new approaches:
 - New summary statistics
 - New methods for plotting the data
 - New methods for inference

Challenges in time-to-event analysis Time-to-event data

Censoring and partial information

- Consider the patient who survived for 3.8 years and then the study ended
- It's true that we don't know when this patient would die; however, we know that he survived **at least 3.8 years**
- Any meaningful analysis of time-to-event data has to take this kind of partial information into account; doing so is what survival analysis is all about
- The statistical term for this kind of partial information is that the actual length of time that the patient survived is *censored*

Introduction vival functions

Challenges in time-to-event analysis Time-to-event data

Examples of censoring

There are many kinds of things that can lead to censoring:

- The end of the study
- Patient moves and the investigators lose contact with them
- Death: for example, when studying graft-versus-host disease, the patient may die before we see whether or not they develop GVHD

urvival functions The log-rank test Summary Challenges in time-to-event analysis Time-to-event data

The data

- Time-to-event outcomes consist of two pieces of information:
 - The length of time that the patient was on the study
 - Whether or not the time period ended with the event in question (as opposed to some sort of censoring event)
- For example, in the anemia data:

Therapy	Time	GVHD
MTX+CSP	3	No
MTX+CSP	10	Yes
MTX+CSP	12	No
MTX+CSP	16	Yes
MTX+CSP	22	Yes

. . .

ırvival functions he log-rank test Summary Challenges in time-to-event analysis Time-to-event data

Time on study

- It is worth mentioning what exactly is being measured by the "time" variable
- Rarely is it actual "calendar time"
- Instead, the "clock" starts "ticking" for each patient individually at the moment when they enter the study (for the anemia data, when they receive the bone marrow transplant)
- In reality, these transplants all occur on different dates
- However, by starting the measurement of time when transplantation occurs, we create an abstract setting in which all patients receive transplants at the same time (time=0)
- Time measured in this way is sometimes called "time on study"

urvival functions The log-rank test Summary Challenges in time-to-event analysis Time-to-event data

Functions of time

- The key concept in thinking about survival data is to think of everything that occurs as a function of time (time on study)
- Random variables that vary with time are often called processes
- As time progresses forward, several fundamental things change:
 - The events that we are studying occur
 - Censoring occurs
 - The amount of people in our study changes

urvival functions The log-rank test Summary Challenges in time-to-event analysis Time-to-event data

Notation

- Analyzing time-to-event data requires keeping track of two processes:
 - $\circ n(t)$, the number of subjects in the study at time t; more precisely, the number *at risk* for the event at time t
 - $\circ d(t)$, the number of events that occur at time t
- These processes occur separately in the two groups, and subscripts are often used to distinguish the processes $\{n_1(t), n_2(t), d_1(t), d_2(t)\}$

ourvival functions The log-rank test Summary Challenges in time-to-event analysis Time-to-event data

Notation: example

For example, in the anemia data:

			t	n(t)	d(t)
Therapy	Time	GVHD	0	22	0
MTX+CSP	3	No	3	22	0
MTX+CSP	10	Yes	4	21	0
MTX+CSP	10	No	10	21	1
MTX+CSP	12	Yes	11	20	0
MTX+CSP	22	Yes	12	20	0
WITX+C3P	22	res	16	19	1
	•••		22	18	1

Survival functions The log-rank test Summary Challenges in time-to-event analysis Time-to-event data

Notation: example (cont'd)

In the MTX only group,

Therapy	Time	GVHD			
MTX	9	Yes	\overline{t}	n(t)	d(t)
MTX	11	Yes		$\frac{n(t)}{24}$	
MTX	12	Yes	0		0
MTX	20	Yes	9	24	1
мтх	20	Yes	11	23	1
MTX	25	Yes	12	22	1
MTX	25	Yes	20	21	2
MTX	25 25	No	25	19	2
	-		28	16	2
MTX	28	Yes			
MTX	28	Yes			

The survival function

- Summary statistics for time-to-event data revolve around the *survival function*
- Like so many other things in survival analysis, the survival function is a function of time, and is defined as the probability of the event in question not occurring by time t (*i.e.*, the patient surviving until time t or later)
- The survival function is usually denoted by S(t)
- So, in the GVHD example, if we say that S(10) = .95, this means that there is only a 5% chance of developing GVHD by day 10 (or equivalently, a 95% chance of surviving GVHD-free until day 10)

Estimating S(t): the challenge

- It might seem easy to calculate the observed S(t) in our sample: if 20% of our subjects have developed GVHD by day 30, then $\hat{S}(30) = .8$
- Recall, however, the fundamental challenge of time-to-event data: we don't get to observe the time at which everyone develops GVHD
- If, say, a patient is censored at day 3, we have no idea whether they would have developed GVHD by day 30 or not

Estimating S(t): the solution

- The solution to this problem was proposed by Kaplan and Meier in 1958
- Their insight was to recognize that at time *t*, the observed probability of the event occurring is

$$\frac{d(t)}{n(t)}$$

or conversely, the probability of the event not occurring is

$$\frac{n(t) - d(t)}{n(t)}$$

Estimating S(t): the solution (cont'd)

- Thus, we can estimate S(t) by starting at t = 0, where S(0) = 1, and moving forward in time, decreasing S(t) by d(t)/n(t) as we go
- Expressing this as a formula,

$$\hat{S}(t) = \prod_{i} \frac{n(t_i) - d(t_i)}{n(t_i)}$$

where the Π is analogous to the Σ notation for sums, but refers to products, and the t_i 's are all of the times at which the event occurred prior to t

• The method of estimating S(t) is called the Kaplan-Meier estimator

Example

For example, in the MTX+CSP group,

t	n(t)	d(t)	t	$\frac{n(t) - d(t)}{n(t)}$	$\hat{S}(t)$
0	22	0	0	1	1
10	21	1	10	20/21	.952
16	19	1	16	18/19	.902
22	18	1	22	17/18	.852

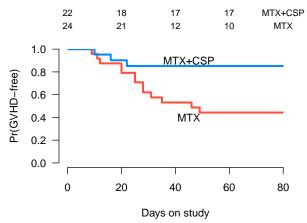
Example (cont'd)

In the MTX group,

t	n(t)	d(t)	t	$\frac{n(t) - d(t)}{n(t)}$	$\hat{S}(t)$
0	24	0	0	24/24	1
9	24	1	9	23/24	.958
11	23	1	11	22/23	.917
12	22	1	12	21/22	.875
20	21	2	20	19/21	.792
25	19	2	25	17/19	.708
28	16	2	28	14/16	.620

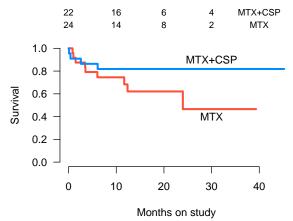
Kaplan-Meier curve: GVHD

The result of all these calculations is usually summarized in a plot called a *Kaplan-Meier curve*:



Kaplan-Meier curve: Survival

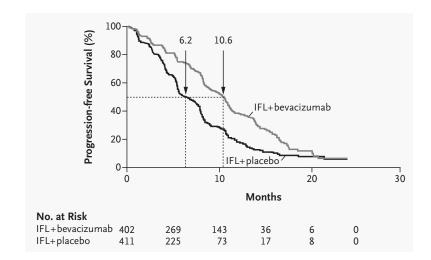
We could go through the same process again, only treating deaths as the event of interest:



Summary statistics

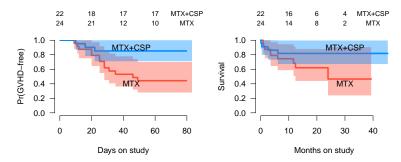
- Summary statistics for time-to-event data are derived from the Kaplan-Meier estimate
- For example, the authors of this study reported "2 year survival rates of 82% and 60%" in the two groups
- In addition, a median survival time is also widely reported
- For the MTX group, the median survival time is 24 months; however, a median survival time for the MTX+CSP group cannot be calculated because the Kaplan-Meier curve never drops below .5

Kaplan-Meier curve: Avastin study



Confidence intervals

In addition, we can calculate confidence intervals for the curves:



The log-rank test

- Having calculated these survival curves, a natural question is: are they significantly different from each other?
- The standard hypothesis test for answering this question is called the *log-rank test* and was first proposed in 1966 by Nathan Mantel
- This approach relies on the same idea as the Kaplan-Meier estimator of starting at time 0 and progressing forward through time, focusing on the times at which events occur

Constructing a 2x2 table

- For each time at which the event in question occurs, we can construct a 2x2 table
- For example, a patient in the MTX group contracted GVHD on day 9:

	GVHD		
	Yes No		
MTX	1	23	
MTX+CSP	0	21	

• We could perform a $\chi^2\text{-test}$ on these data, but with only one observed case of GVHD, it would have very low power

Many 2x2 tables

- But of course, we don't just have one observed case of GVHD
- The very next day (day 10), we have:

	GVHD		
	Yes	No	
MTX	0	23	
MTX+CSP	1	20	

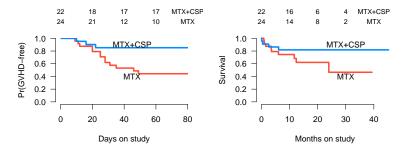
• Note that the evidence at day 10 favors MTX, while the evidence at day 9 favored MTX+CSP

Combining 2x2 tables

- The beauty of the log-rank test lies in how it combines all of these 2x2 contingency tables
- In a sense, this is like calculating the weighted average of all the test statistics from the individual tests
- However, the exact details get somewhat complicated, and we will not go over them in this course
- We'll just look at some log-rank test results and use R (in lab) to carry out the test

Kaplan-Meier curve: GVHD

For GVHD, the *p*-value of the log-rank test is .01; for survival, the *p*-value is 0.16:



Kaplan-Meier curves and *p*-values

- This last example emphasizes an important point with respect to the interpretation of Kaplan-Meier curves
- Kaplan-Meier curves often have long flat regions
- These regions catch the eye, but remember that they represent the absence of data: no events are occurring in these regions
- Accordingly, these regions receive no weight from the log-rank test
- Final comment: the amount of variability present in the Kaplan-Meier estimate of a survival curve is not intuitive, so it is important to look at confidence intervals and *p*-values in addition to the curves themselves

Summary

- Time-to-event analysis is complicated by the presence of censoring, which produces partially missing outcomes
- The Kaplan-Meier curve is an elegant way to estimate survival using that partial information appropriately; know how to calculate $\hat{S}(t)$
- Two-year/five-year/etc. survival probabilities and median survival times are also common survival summaries, and can be determined from a Kaplan-Meier curve
- The log-rank test can be used to test the null hypothesis of equal survival curves