# BIOS: 4120 Lab 9 Answer Key 

March 31, 2020

## Example 1: a z-test for categorical data

Suppose the incidence rate of myocardial infarction per year was 0.005 among males age 45-54 in 1970. For 1 year starting in 1980, 5000 males age $45-54$ were followed, and 15 new myocardial infarction cases were observed.
From the central limit theorem, we know that the sample proportion approximately follows a normal distribution (if the sample size is reasonably large), so we can perform a z-test on this data.
Conduct a hypothesis test to determine if true myocardial infarction rate changed from 1970 to 1980. How would you interpret the result?
$H_{0}: \pi=0.005$
$H_{A}: \pi \neq 0.005$
$\pi=0.005$
$\hat{\pi}=\frac{15}{5000}=0.003$
$n=5000$
$S E=\sqrt{\frac{\pi(1-\pi)}{n}}$
$S E=\sqrt{\frac{0.005(1-0.005)}{5000}}$
$S E=0.000997$
Remember that to compute a test statistic we use:
$z=\frac{\hat{\pi}-\pi}{S E}$
$z=\frac{0.003-0.005}{0.000997}$
$z=-2.01$
Find 2 -tailed probability by looking up this z-score on the z-table:
$p=2(0.022)=0.044$
Interpretation: Based on this data, there is significant evidence to suggest that the true myocardial infarction rate changed from 1970 to $1980(\mathrm{p}=0.044)$.

## Using R:

We can use the 'pnorm' function to calculate this p-value in $R$.

```
round(2*pnorm(2.01,mean=0,sd=1,lower.tail=FALSE),5)
```

\#\# [1] 0.04443

```
# OR
round(2*(1-pnorm(2.01,mean=0,sd=1)),5)
## [1] 0.04443
```

We can compare this to what we would get use the exact test using binom.test().

```
binom.test(15, 5000, p = 0.005)
##
## Exact binomial test
##
## data: 15 and 5000
## number of successes = 15, number of trials = 5000, p-value = 0.04422
## alternative hypothesis: true probability of success is not equal to 0.005
## 95 percent confidence interval:
## 0.001680019 0.004943224
## sample estimates:
## probability of success
## 0.003
```

From the p-value that's given $(\mathrm{p}=0.04422)$ we are able to see that normal approximation is virtually identical to the exact binomial test. Why do you think this is especially when p is so close to 0 ?
The CLT approach works reasonably well when n is fairly large and p is not close to 0 or 1 . However, in this instance, despite p being close to 0 , due to the exremely large sample size we are able to approximate with great accuracy.

## Creating a confidence interval (z)

Now we want to create a $95 \%$ confidence interval for $\pi$. Interpret the interval.
Remember that now standard error is based on $\hat{\pi}$ and becomes:
$S E=\sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$
$S E=\sqrt{\frac{0.003(1-0.003)}{5000}}$
$S E=0.000773$
We will have to find $z_{\alpha / 2}$ using the z-table. What is our $\alpha$ for a $95 \%$ confidence interval?
$z_{\alpha / 2}=1.96$ (from table)
Remember that the equation for the confidence interval is:

```
\hat{\pi}\pm\mp@subsup{z}{\alpha/2}{*}*SE
0.003\pm 1.96*0.000773
(0.0015, 0.0045)
```

Interpretation: We can say with $95 \%$ confidence that this interval contains the true myocardial infarction rate in 1980.
Interpretation Note: Remember that when we say " $95 \%$ confidence" about an interval, this does NOT mean that there is a $95 \%$ probability of the true parameter being in the interval. It means that if we were to repeat this experiment a bunch of times, $95 \%$ of the intevals constructed in this manner would contain the true parameter. It's a bit of a touchy subject, so overall just be careful to not say "probability" when you're interpreting confidence intervals.

## Using R:

To calculate a confidence interval in R, we use the 'qnorm' function.

```
0.003 + qnorm(0.025)* sqrt((0.003*(1-0.003))/5000)
## [1] 0.001484097
0.003 + qnorm(0.975)* sqrt((0.003*(1-0.003))/5000)
## [1] 0.004515903
```

This can also be found in one step using a vector as shown below:

```
0.003 + qnorm(c(0.025,0.975))* sqrt((0.003*(1-0.003))/5000)
```

\#\# [1] 0.0014840970 .004515903

Notice that this confidence interval varies a bit from the confidence interval created using 'binom.test' (0.00168, 0.00494).

Now that we've seen an example of categorical data, let's look at a continuous data example.

## Example 2: a t-test

The distribution of weights for the population of males in the United States is approximately normal. We believe the mean $\mu=172.2$. We conduct an experiment with a sample size of 50 , and we find our sample mean to be 180 and the sample standard deviation to be 30 . Conduct a hypothesis test to determine if the true mean is 172.2 based on our data. How would you interpret the result?
$H_{0}: \mu=172.2$
$H_{A}: \mu \neq 172.2$
$\mu=172.2$
$\hat{\mu}=180$
$s=30$
$n=50$
$d f=n-1=49$
To compute a test statistic we use:
$t=\frac{\hat{\mu}-\mu}{s / \sqrt{n}}$
$t=\frac{180-172.2}{30 / \sqrt{50}}$
$t=1.84$
Find 2-tailed probability using this test statistic and Student's t-table:
$(2 \times 0.05<p<2 \times 0.1) \Longrightarrow(0.1<p<0.2)$
Interpretation: There is not significant evidence to suggest that the true mean weight of males in the United States is not equal to 172.2 , based on this data $(0.1<\mathrm{p}<0.2)$.

## Using R:

We can use the 'pt' function to calculate this p-value in R.

```
mu <- 172.2
mu.hat <- 180
s <- 30
n <- 50
t <- (mu.hat-mu)/(s/sqrt(n))
2*pt(1.84, df=n-1,lower.tail=FALSE)
## [1] 0.07182936
```

Notice that this p-value fits with what we were able to calculate by hand.

## Constructing a confidence interval (t)

Now we want to create a $95 \%$ confidence interval for $\mu$. Interpret the interval.
$\hat{\mu}=180$
$s=30$
$n=50$
$S E=\frac{30}{\sqrt{50}}$
Remember that the equation for creating a confidence interval is:
$\hat{\mu} \pm t_{\alpha / 2} * S E$
We can then find $t_{\alpha / 2}$, plug in our given values, and calculate the interval.
$t_{\alpha / 2}=2.01$ (from table)
$180 \pm 2.01 * \frac{30}{\sqrt{50}}$
(171.4, 188.5)

Interpretation: We can say with $95 \%$ confidence that this interval contains the true mean weight of males in the US.

## Using R:

```
mu.hat + qt(c(.025,.975), n-1)*s/sqrt(n)
## [1] 171.4741 188.5259
# which is the same as
180 + qt(c(.025,.975), 49)*30/sqrt(50)
## [1] 171.4741 188.5259
```


## Practice Problem 1:

Suppose that the average IQ is 95 . Perform a test to see if the children in the lead-IQ dataset have an average IQ. Also, create a $95 \%$ confidence interval for the mean IQ based on this data.

## Answer:

```
H0:\mu=95
HA:\mu\not=95
leadIQ<-read.delim("http://myweb.uiowa.edu/pbreheny/data/lead-iq.txt")
mu <- 95
mu.hat <- mean(leadIQ$IQ)
s <- sd(leadIQ$IQ)
n <- length(leadIQ$IQ)
df <- n-1
t <- (mu.hat-mu)/(s/sqrt(n))
2*pt(t,df)
## [1] 0.002981458
```

This gives you a p-value of 0.00298 which means that there is very significant evidence to suggest that the true IQ of children in this dataset is not 100 .

```
mu.hat+qt(c(.025,.975),n-1)*s/sqrt(n)
## [1] 88.52022 93.64107
```

This gives a confidence interval of 88.52 to 93.64 . We could also use the 't.test' function (as shown below) for this dataset, and it would provide us with both the p-value and the $95 \%$ confidence interval. This function works similarly to the 'binom.test' function.

```
t.test(leadIQ$IQ,mu=95,alternative="two.sided")
##
## One Sample t-test
##
## data: leadIQ$IQ
## t = -3.03, df = 123, p-value = 0.002981
## alternative hypothesis: true mean is not equal to 95
## 95 percent confidence interval:
## 88.52022 93.64107
## sample estimates:
## mean of x
## 91.08065
```


## Practice Problem 2:

A patient recently diagnosed with Alzheimer's disease takes a cognitive abilities test. The patient scores a 45 on the test. The mean of this test is $\mu=52$ and the variance was $\sigma^{2}=25$. Assume the cognitive abilities test scores are normally distributed. Find the answers to the following questions with the Z distribution table, your calculators, or in R. Remember the Z table gives you the left-tailed probability.
a) What percent of individuals scored between a 47 and a 56 ?

```
pnorm(47, 52, 5, lower.tail = FALSE) - pnorm(56, 52, 5, lower.tail = FALSE)
```

\#\# [1] 0.6294893
b) Suppose we have a sample of 9 individuals. Calculate the probability that the sample mean test score is greater than 60 .

```
pnorm(60, 52, 5/3, lower.tail = F)
```

\#\# [1] 7.933282e-07
c) Patients can be considered for an alternative treatment if they score below a 43 on this test. What percent of patients can be considered for this treatment?

```
pnorm(43, 52, 5)
```

```
## [1] 0.03593032
```

d) Find the test score where $27.1 \%$ of patients lie above.

```
qnorm(.271, 52, 5, lower.tail = FALSE)
## [1] 55.04896
```

e) What is the probability that at least 2 patients of 25 sampled Alzheimer's patients will be considered for the alternative treatment?

```
pbinom(1, 25, 0.036, lower.tail = FALSE)
```

\#\# [1] 0.2267949

## Practice Problem 3:

Wilson's orchard's pumpkins' weights are known to follow a normal distribution with population mean $\mu=18 \mathrm{lbs}$. and variance $\sigma^{2}=16 \mathrm{lbs}$. Each year Wilson's orchard randomly selects 4 pumpkins and measures the mean weight of the pumpkins.
a) What distribution do the sample means follow?
$\bar{X} \sim N\left(\mu, \sigma^{2} / n\right) \sim N(18,4)$
b) Using this distribution, calculate the probability that this year's sample mean weight is less than 16 lbs.
pnorm(16, 18, 4/2)
\#\# [1] 0.1586553
c) What is the probability that this year's sample mean weight is greater than 21 lbs?
pnorm(21, 18, 2, lower.tail = FALSE)
\#\# [1] 0.0668072
d) What is the probability that at least 2 of the next 5 years' sample means are between 14 and 20 lbs?

```
(p <- pnorm(14, 18, 2, lower.tail = FALSE) - pnorm(20, 18, 2, lower.tail = FALSE))
```

\#\# [1] 0.8185946
pbinom(1, 5, p, lower.tail = FALSE)
\#\# [1] 0.9953711

