BIOS: 4120 Lab 7

February 27-28, 2017

In today's lab we will revisit probability, discuss the binomial distribution and its functions in R, and review for quiz 2 .

Note: The numbers in this lab are made up rather than based on real data.

Probability Review:

Let event A be that a potato is a Yukon Gold potato.
Suppose the probability that a potato is a Yukon Gold is $1 / 3$.
Let event B be that a potato is used to make mashed potatoes. Suppose the probability that a potato is mashed, given that it was Yukon Gold, is $3 / 4$.
Suppose the probability that a potato is mashed, given that it was not Yukon Gold, is $1 / 2$.
A. What is the probability that a potato is Yukon Gold, given that it is mashed?
B. What is the probability that a potato is mashed?
C. What is the probability that a potato is both Yukon Gold AND mashed?
D. What is the probability that a potato is Yukon Gold OR mashed?
E. Assuming picking potatoes involves independent events, what is the probability that I pick two Yukon Golds in a row?

Probability Review Answers:

A. $P(A \mid B)=3 / 7$
B. $P(B)=7 / 12$
C. $P(A \cap B)=1 / 4$
D. $P(A \cup B)=2 / 3$
E. $P(A) * P(A)=1 / 9$

Binomial Distribution

From lecture, we know that when there are two possible outcomes that occur/don't occur n times, the number of ways of one event occurring k times is $\frac{n!}{k!(n-k)!}$.
We also know that, given independence, the probability of an intersection of events is $p^{k}(1-p)^{1-k}$.
Combining these, we get the formula for the binomial distribution:

$$
\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Using the information about Yukon Gold potatoes from the Probability Review section, let's find the probability that if 3 potatoes are picked, 2 are Yukon Gold. We can calculate this probability using the formula in R :

```
n<-3
k<-2
p<-1/3
factorial(n)/(factorial(k)*factorial(n-k)) * p^k * (1-p)^(n-k)
## [1] 0.2222222
```

We can also use R's built-in function to answer this question:

```
dbinom(x=2,size=3,prob=1/3)
## [1] 0.2222222
```

R's built-in functions can also help us answer other questions. For example, let us now consider picking 10 potatoes and getting 5 Yukon Golds. We can find the probability of this event just like we did earlier:

```
dbinom(x=5, size=10, prob=1/3)
```

\#\# [1] 0.1365645
However, we may also be interested in finding the probability of seeing an event as extreme or more extreme than the one we observed. Since the probability of picking a Yukon Gold is $1 / 3$ and we picked a total of 10 potatoes, we would expect to see about 3.33 Yukon Golds. What we observed (5) is 1.67 greater than what we'd expect, so in order to be as extreme or more extreme, we are interested in anything greater or equal to 5 or less than or equal to 1.67. Since the data is discrete, this is the same thing as $P(x \leq 1 \cup x \geq 5)$.
We can calculate this using pbinom(), which finds the probability of being less than or equal to a value. If we want to find the probability of being greater or equal to a number, we tell R to calculate 1-pbinom() of one less than what we're interested in.

```
pbinom(1,size=10,prob=1/3) #Less than or equal to 1.67
## [1] 0.1040492
1-pbinom(4,size=10,prob=1/3) #Greater than or equal to 5
## [1] 0.2131281
# Total of the Extremes:
pbinom(1,size=10,prob=1/3) + (1-pbinom(4,size=10,prob=1/3))
## [1] 0.3171773
# Equivalently:
binom.test(x=5,n=10,p=1/3)$p.value
## [1] 0.3171773
```


Quiz Review

Problem 1:

```
## Mean of X: 11.33
## Mean of y: 15.88
## Std Dev of X: 2.19
## Std Dev of Y: 2.07
## Correlation: 0.8727
```

A. If we have an X -value of 14.33 , what would we predict the Y -value to be?
B. If we have a Y-value of 11.73 , what would we expect the X -value to be?

Answers:

A.

```
Zx <- (14.33-11.33)/2.19
Zy <- Zx * 0.8727
(y <- 15.88 + Zy * 2.07)
## [1] 18.35464
```

B.

```
Zy <- (11.73-15.88)/2.07
Zx <- Zy*cor(X,Y)
(x <- mean(X) + Zx * sd(X))
## [1] 7.501018
```


Problem 2:

What can you say about the distribution (center, shape, spread)? Based on the histogram, what's the approximate standard deviation?

Answer:

The distribution has one peak and is centered around 17. It appears slightly skewed to the left, and ranges from about 10 to about 20 . The standard deviation appears to be around 2 .

Problem 3:

Compare the two plots (center, shape, spread, outliers).What are the 25 th percentiles? The 75 th percentiles?

Answer:

The distribution on the left appears to be centered around 35 while the distribution on the right appears to be centered around 48-50. The one on the left ranges from about 15 to about 70 . The one on the right appears left-skewed, and ranges from about 25 to about 60 . The boxplot on the left has quite a few outliers while the plot on the right only appears to have one.

The boxplot plot on the left has a 25 th percentile slightly below 30 , and its 75 th percentile is about 40 . The boxplot on the right has a 25 th percentile of about 42-43 and a 75 th percentile around 54-55.

Problem 4:

Suppose 1000 people take a medical screening test. 270 people get a positive test result, $1 / 3$ of which actually have the disease. The prevalence of disease is 0.1 . Construct a table with the given information. What are the sensitivity and specificity?

Answers:

	Disease	No Disease	Total
Positive (+)	90	180	270
Negative (-)	10	720	730
Total	100	900	1000

Figure 1: Medical Screening Test Table

Sensitivity: $90 / 100=0.9$
Specificity: $720 / 900=0.8$

