Probability I

Patrick Breheny

February 14

Probability

- People talk loosely about probability all the time: "What are the chances the Hawkeyes will win this weekend?", "What's the chance of rain tomorrow?"
- For scientific purposes, we need to be more specific in terms of defining and using probabilities

Events

- A random process is a phenomenon whose outcome cannot be predicted with certainty
- An event is a collection of outcomes
- Examples:

Random process	Event
Flipping a coin	Obtaining heads
Child receives a vaccine	Child contracts polio
Roll a die	Die shows 1 or 2
10 children receive vaccine	At least 1 child contracts polio

Long-run frequency

- The probability of heads when flipping a coin is 50%
- The probability of rolling a 1 on a 6 -sided die is $1 / 6$
- Everyone agrees with these statements, but what do they really mean?
- The probability of an event occurring is defined as the fraction of time that it would happen if the random process occurs over and over again under the same conditions
- Therefore, probabilities are always between 0 and 1

Long-run frequency (cont'd)

- Probabilities are denoted with a $P(\cdot)$, as in P (Heads) or P (Child develops polio) or "Let H be the event that the outcome of a coin flip is heads. Then $P(H)=0.5$ "
- Example:
- The probability of being dealt a full house in poker is 0.0014
- If you were dealt 100,000 poker hands, how many full houses should you expect?
- $100,000(0.0014)=140$
- Note: It is important to distinguish between a probability of .0014 and a probability of $.0014 \%$ (which would be a probability of .000014)

Long-run frequency (cont'd)

- This works both ways:
- For the polio data, 28 per 100,000 children who got the vaccine developed polio
- The probability that a child in our sample who got the vaccine developed polio is $28 / 100,000=.00028$
- Of course, what we really want to know is not the probability of a child in our sample developing polio, but the probability of a child in the population developing polio - we're getting there

Intersections, unions, and complements

- We are often interested in events that are derived from other events:
- Rolling a 2 or 3
- Patient who receives a therapy is relieved of symptoms and suffers from no side effects
- The event that A does not occur is called the complement of A and is denoted A^{C}
- The event that both A and B occur is called the intersection and is denoted $A \cap B$
- The event that either A or B occurs is called the union and is denoted $A \cup B$

Venn diagrams

These relations between events can be represented visually using Venn diagrams:

Introduction

- Let event A denote rolling a 2 and event B denote rolling a 3
- What is the probability of rolling a 2 or a $3(A \cup B)$?
- It turns out to be

$$
\frac{1}{6}+\frac{1}{6}=\frac{2}{6}
$$

- On the surface, then, it would seem that $P(A \cup B)=P(A)+P(B)$
- However, this is not true in general

A counterexample

- Let A denote rolling a number 3 or less and B denote rolling an odd number
- $P(A)+P(B)=0.5+0.5=1$
- Clearly, however, we could roll a 4 or a 6 , which is neither A nor B
- What's wrong?

Double counting

- With a Venn diagram, we can get a visual idea of what is going wrong:

- When we add $P(A)$ and $P(B)$, we count $A \cap B$ twice
- Subtracting $P(A \cap B)$ from our answer corrects this problem

The addition rule

- In order to determine the probability of $A \cup B$, we need to know:
- $P(A)$
- $P(B)$
- $P(A \cap B)$
- If we're given those three things, then we can use the addition rule:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- This rule is always true for any two events

Mutually exclusive events

- So why did $P(A \cup B)=P(A)+P(B)$ work when A was rolling a 2 and B was rolling a 3 ?
- Because $P(A \cap B)=0$, so it didn't matter whether we subtracted it or not
- A special term is given to the situation when A and B cannot possibly occur at the same time: such events are called mutually exclusive

Mutually exclusive events, example

- According to the National Center for Health Statistics, the probability that a randomly selected woman who gave birth in 1992 was aged 20-24 was 0.263
- The probability that a randomly selected woman who gave birth in 1992 was aged $25-29$ was 0.290
- Are these events mutually exclusive?
- Yes, a woman cannot be two ages at the same time
- Therefore, the probability that a randomly selected woman who gave birth in 1992 was aged 20-29 was $0.263+0.290=.553$

Example: Failing to use the addition rule

- In the 17th century, French gamblers used to bet on the event that in 4 rolls of the die, at least one "ace" would come up (an ace is rolling a one)
- In another game, they rolled a pair of dice 24 times and bet on the event that at least one double-ace would turn up
- The Chevalier de Méré, a French nobleman, thought that the two events were equally likely

Example: Failing to use the addition rule

- His reasoning was as follows: letting A_{i} denote the event of rolling an ace on roll i and $A A_{i}$ denote the event of rolling a double-ace on roll i

$$
\begin{aligned}
P\left(A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right) & =P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)+P\left(A_{4}\right) \\
& =\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
P\left(A A_{1} \cup A A_{2} \cdots\right) & =P\left(A A_{1}\right)+P\left(A A_{2}\right)+\cdots \\
& =\frac{24}{36}=\frac{2}{3}
\end{aligned}
$$

Example: Failing to use the addition rule

- Is the Chevalier using the addition rule properly?
- Are A_{1} and A_{2} mutually exclusive?
- No; it is possible to get an ace on roll \#1 and roll \#2, so you have to subtract $P\left(A_{1} \cap A_{2}\right), P\left(A_{1} \cap A_{3}\right), \ldots$
- We'll calculate the real probabilities a little later

Using the addition rule correctly

- An article in the American Journal of Public Health reported that in a certain population, the probability that a child's gestational age is less than 37 weeks is 0.142
- The probability that his or her birth weight is less than 2500 grams is 0.051
- The probability of both is 0.031
- Can we figure out the probability that either event will occur?
- Yes: $0.142+0.051-0.031=0.162$

The complement rule

- Because an event must either occur or not occur, $P(A)+P\left(A^{C}\right)=1$
- Thus, if we know the probability of an event, we can always determine the probability of its complement:

$$
P\left(A^{C}\right)=1-P(A)
$$

- This simple but useful rule is called the complement rule
- Example: If the probability of getting a full house is 0.0014 , then the probability of not getting a full house must be $1-0.0014=0.9986$

Summary

- The probability of an event is the fraction of time that it happens (under identical repeated conditions)
- Know the meaning of complements $\left(A^{C}\right)$, intersections $(A \cap B)$, and unions $(A \cup B)$
- Addition rule: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- If (and only if!) A and B are mutually exclusive, we can ignore $P(A \cap B)$ in the addition rule
- Complement rule: $P\left(A^{C}\right)=1-P(A)$

