Lab 1: Intro to R

January 17-18, 2017

Disclaimer: YOU DO NOT ACTUALLY NEED R FOR THIS COURSE.

It's just free/convenient and handy. So we're teaching you how to use it.

Interface: What you're looking at

Look for RStudio in the start menu, and go ahead and open it up.
The first thing you'll want to do is go to File $->$ New File $->$ RScript.
This will open a window on the top left of your screen in RStudio where you'll be doing all of your work.
You'll now have four windows open in RStudio:

1. Script (top left)
2. Console (bottom left)
3. Variables (top right)
4. Graphs/Help/Stuff (bottom right)

Note: To actually run code, type it in the script, then highlight it and hit Ctrl-Enter to send it to the console to run.

Basics: R is a really fancy calculator.

```
4 + 6 - (24/6)
## [1] 6
(6 - 4) * 3
## [1] 6
5 - 2
## [1] 25
```

Functions you actually have to type in:

```
exp(2) # This is the number e (think natural logs) raised to the power inside the parentheses
## [1] 7.389056
sqrt(4)
## [1] 2
```

```
log(10) # This is log base e. For log base 10, the function is log10().
## [1] 2.302585
abs(-5) # Absolute value
## [1] 5
```


Sequences

Creating a sequence:

```
1:5 # Creates a sequence from 1 to 5
## [1] 1 2 3 4 5
seq(from=1,to=5,by=1) # Does the exact same thing
## [1] 1 2 3 4 5
```

Math with sequences:

```
1:5 + 5
```

\#\# [1] $\begin{array}{llllll}6 & 7 & 8 & 9 & 10\end{array}$
1:5 * 2
\#\# [1] $24 \begin{array}{llll} & 4 & 8 & 10\end{array}$

Storing Variables

Watch this:

```
x <- 5 # I just told R that x is now 5.
# Now when I say x, R substitutes in 5.
x
## [1] 5
# This is handy for things like
log(5) + 3/2 -> y # Note that the arrow goes both ways and assigns in the direction of the arrow.
y
## [1] 3.109438
```

Also note that R is case-sensitive, so X would be different from x .
You can store sequences as variables too. These types of variables are called vectors.

Reading in Data

All of the datasets for this class will be on the class website, and can be read in using the URL:

```
todays.data<-read.delim("http://myweb.uiowa.edu/pbreheny/data/titanic.txt")
```

Some basic things you can do with datasets:
(To be elaborated upon as needed throughout the semester)

```
head(todays.data)
## Class Sex Age Survived
## 1 3rd Male Child Died
## 2 3rd Male Child Died
## 3 3rd Male Child Died
## 4 3rd Male Child Died
## 5 3rd Male Child Died
## 6 3rd Male Child Died
summary(todays.data)
```

\#\#	Class	Sex	Age	Survived	
\#\#	1st :325	Female: 470	Adult:2092	Died :1490	
\#\#	2nd :285	Male :1731	Child: 109	Survived: 711	
\#\#	3rd :706				
\#\#	Crew:885				

Help

To access the help documentation on a function you're not sure about, type a question mark before the function. For example, try typing ?seq

Practice questions (Not for any sort of grade)

Problem 1

Part a
Create a sequence from 25 to 425 in increments of 25 .
Part b
Set Part a to variable named partB.
Part c
Divide the sequence by 25 using the variable created in Part b.
Part d
Take the square root of the sequence using the variable created in Part b.
What you should get upon running your code:

```
Part a
    25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
Part b
    Stores internally, doesn't print
Part c
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Part d
    5 7.071068 8.660254 10 11.18034 12.24745 13.22876 14.14214 15 15.81139 16.58312 17.32051 18.02776 18.7
```

