
z tests
t tests

Summary

One-sample inference: Continuous data

Patrick Breheny

March 25

Patrick Breheny Introduction to Biostatistics (171:161) 1/33



z tests
t tests

Summary

Introduction
z tests
What’s wrong with z-tests?

Introduction

So far we’ve discussed how to carry out hypothesis tests and
construct confidence intervals for categorical outcomes:
success versus failure, life versus death

Today we turn our attention to continuous outcomes like
blood pressure, cholesterol, etc.

We’ve seen how continuous data must be summarized and
plotted differently, and how continuous probability
distributions work very differently from discrete ones

As we’ll see today, there are also difference in how these data
must be analyzed
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Notation

The usual notation for working with means is similar to that
of proportions:

µ denote the population mean (the true, unknown population
mean)
The observed sample mean can be denoted either x̄ or µ̂, to
emphasize that it estimates the population mean
µ0 will denote the hypothesized value of the population mean
under the null
H0 is shorthand for the null hypothesis, as in H0 : µ = µ0
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Using the central limit theorem

We’ve already used the central limit theorem to construct
confidence intervals and perform hypothesis tests for
categorical data

The same logic can be applied to continuous data as well,
with one wrinkle

For categorical data, the parameter we were interested in (p)
also determined the standard deviation:

√
p(1− p)

For continuous data, the mean tells us nothing about the
standard deviation
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Estimating the standard error

In order to perform any inference using the CLT, we need a
standard error

We know that SE = SD/
√
n, so it seems reasonable to

estimate the standard error using the sample standard
deviation as a stand-in for the population standard deviation

This turns out to work decently well for large n, but as we will
see, has problems when n is small

Patrick Breheny Introduction to Biostatistics (171:161) 5/33



z tests
t tests

Summary

Introduction
z tests
What’s wrong with z-tests?

Procedure for a z-test

So the procedure for z-tests is:

#1 Calculate the standard error: SE = SD/
√
n

#2 Calculate the test statistic z = (x̄− µ0)/SE
#3 Calculate the area under the normal curve outside ±z

This is the same procedure we had before with categorical
data, except for how we estimate the SD

One can also make z-confidence intervals based on the same
idea
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FVC example

Let’s calculate a p-value based on this z-test, returning to the
same cystic fibrosis crossover study that we’ve discussed a few
times now

However, instead of focusing on whether the patient did
better on drug or placebo (a categorical outcome), let us now
focus on how much better the patient did on the drug
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FVC example (cont’d)

In the study, the mean difference in reduction in FVC (placebo
− drug) was 137, with standard deviation 223

Performing the z-test:

#1 SE = 223/
√

14 = 60
#2

z =
137− 0

60
= 2.28

#3 The area outside ±2.28 is 2(0.011) = 0.022

This is fairly substantial evidence that the drug helps prevent
deterioration in lung function
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Flaws with the z-test

However, as I mentioned before, these procedures are flawed
when n is small

This is a completely separate flaw than the issue of “how
accurate is the normal approximation?”

Indeed, this is a problem even when the sampling distribution
is perfectly normal

This flaw can be witnessed by repeatedly drawing random
samples from the normal distribution, then constructing 95%
confidence intervals and seeing how often they contain the
true mean
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Simulation results
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What would a simulation involving hypothesis tests look like?
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Why isn’t the z-test working?

The flaw with the z-test is that it is ignoring one of the
sources of the variability in the test statistic

We’re acting as if we know the standard error, but we’re really
just estimating it from the data

In doing so, we underestimate the amount of uncertainty we
have about the population based on the data
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Fixing the z-test

The procedure to modify the z-test to account for this
uncertainty is called the t-test, and was invented by W.S.
Gossett

Gossett’s employers had him publish under the pen name
“Student” because they didn’t want the competition to know
how useful his results could be

Because of this, the t-test is often called “Student’s t-test”
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Student’s curve

Gossett showed that when the SE is estimated from the
standard deviation instead of calculated exactly from the
population, the statistic

x̄− µ
SE

does not follow a normal curve, but a slightly different curve
instead

This curve is often called Student’s curve, or the t-distribution
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Degrees of freedom

Actually, there is a Student’s curve for every number

Just as the binomial distribution has parameters n and p, the
t distribution has a parameter called the degrees of freedom,
abbreviated df

The term “degrees of freedom” refers to the fact that the sum
of the deviations (which the SD is based on) has to add up to
zero, so not all measurements can vary freely

In the present context,

df = n− 1
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Student’s curve vs. the normal curve, df = 4
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Student’s curve vs. the normal curve, df = 14
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Student’s curve vs. the normal curve, df = 99
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Student’s curve and the normal curve

There are many similarities between the normal curve and
Student’s curve:

Both are symmetric around 0
The total area under the curve is equal to 1
As the degrees of freedom go up, Student’s curve looks more
and more similar in shape to the normal curve

However, there is one very important difference:

The tails of Student’s curve are thicker than those of the
normal distribution
This difference can be quite pronounced for small samples
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Calculating the area under Student’s curve

Just as for the normal curve, to calculate areas under
Student’s curve, we will need a computer or a table

I have added a t-table to the course website

To accommodate fitting a large number of curves onto a
single table, the rows now represent degrees of freedom, and
the columns represent two-tailed areas

So suppose, for example, that we are interested in Student’s
curve with 10 degrees of freedom

If we want the t values that contain the middle 90% of the
area, we look under df = 10 and α = 0.1 and find that the
answer is: (−1.81, 1.81)
If we want to know how much area is outside ±2, the best we
can do with the table is to say that it’s between 0.05 and 0.10
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Procedure

The procedure for carrying out a one-sample t-test is exactly
the same as that for the z-test, except for the distribution to
which we compare the test statistic:

#1 Calculate the standard error SE = SD/
√
n

#2 Calculate the test statistic

t =
x̄− µ0

SE

#3 Calculate the area under the Student’s curve with n− 1
degrees of freedom curve outside ±t

As a bit of nomenclature, when applied to paired data, this
test is called “the paired t-test”
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Does the t-test fix the z-test’s problem?
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FVC example

In the cystic fibrosis experiment, the mean difference in FVC
reduction (placebo − drug) was 137, with standard deviation
223:

#1 SE = 223/
√

14 = 60
#2

t =
137− 0

60
= 2.28

#3 The area outside ±2.28 on the Student’s curve with 13
degrees of freedom is 0.04

Our p-value from the z-test was 0.02, which overstates the
evidence against the null hypothesis
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z-tests vs. t-tests

For reasonably large sample sizes (> 50), the z- and t-tests
are essentially the same

However, it is difficult to justify z-tests and z-confidence
intervals, as their p-values and coverage probabilities are not
correct

So, in practice, no one uses z-tests for one-sample, continuous
data

On the other hand, t-tests are probably the most common
type of statistical test on the planet

Searching Google Scholar for “z test” returns 84,800 hits; “t
test” returns 3.6 million
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Procedure for finding confidence intervals

The procedure for calculating an x% confidence interval for
the mean is similar to calculating an approximate interval for
percentages:

#1 Calculate the standard error: SE = SD/
√
n

#2 Determine the values of the t-distribution with n− 1 degrees
of freedom that contain the middle x% of the data; denote
these values ±tx%

#3 Calculate the confidence interval:

(x̄− tx%SE, x̄+ tx%SE)
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FVC example: Patients taking drug

For patients taking the drug in the cystic fibrosis crossover
experiment, the mean reduction in FVC was 160, with
standard deviation 197

Let’s calculate a 95% confidence interval for the average
reduction in lung function that individuals with cystic fibrosis
in the population would be likely to experience over a 25-week
period, if they took this drug:

#1 The standard error is 197/
√

14 = 53
#2 The values ±2.16 contain the middle 95% of Student’s curve

with 13 degrees of freedom
#3 Thus, my confidence interval is:

(160− 2.16 · 53, 160 + 2.16 · 53)

= (46, 274)
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FVC example: Patients taking placebo

For patients taking the placebo, the mean reduction in FVC
was 296, with standard deviation 297

#1 The standard error is 297/
√

14 = 79
#2 The values ±2.16 still contain the middle 95% of Student’s

curve with 13 degrees of freedom
#3 Thus, my confidence interval is:

(296− 2.16 · 79, 296 + 2.16 · 79)

= (125, 467)
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Comparing drug and placebo

Note that our two confidence intervals ((46,274);(125,467))
overlap quite a bit

On the surface, this would seem to indicate a lack of evidence
that the drug is effective

However, recall that paired designs are powerful ways to
reduce noise; constructing separate confidence intervals does
not take advantage of this design

To assess whether drug is more effective than placebo, we
should instead construct a single confidence interval for the
difference in FVC reduction for each patient
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FVC example: Difference between two treatments

The mean difference in reduction in FVC (placebo − drug)
was 137, with standard deviation 223
#1 The standard error is 223/

√
14 = 60

#2 Once again, the values ±2.16 contain the middle 95% of
Student’s curve with 13 degrees of freedom

#3 Thus, the confidence interval is:

(137− 2.16 · 60, 137 + 2.16 · 60)

= (7, 267)

This gives us a range of likely values by which taking the drug
would slow the decline of lung function in cystic fibrosis
patients

Note that all of the values are positive, indicating benefit from
taking the drug, which agrees with the hypothesis test
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Remark: CIs for categorical data (percentages)

When calculating approximate confidence intervals for
percentages, you still use the normal curve, not Student’s
curve

The reason is that you’re not estimating a standard deviation
separately from the mean; you just estimate p, so there is still
just one source of uncertainty

Of course, if you use the exact method, you don’t need to
worry about this
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Concerns about t-tests

The t-test fixes an important problem with the z-test
(correcting for the uncertainty in the sample standard
deviation), but still relies on the normal approximation

It is important to keep in mind that the t-test treats the
sampling distribution of the mean as if it were a normal curve

Thus, the t-test relies on the same central limit theorem
arguments as the z-test

If the sample size is small and the data is skewed (or
odd-shaped in some other way), the sampling distribution may
not look particularly normal, and the t-test will be
questionable
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Binomial vs. t-tests

For this reason, people sometimes split continuous data into
categories so that they can use the exact results from the
previous lecture

This is exactly what we did when we recorded the number of
patients who did better on drug than on placebo

Recall that when we used the binomial test, we calculated a
p-value of .06 (as opposed to the t-test p-value of .04)

These are two different p-values, calculated using the same
data

Neither one is wrong, they are just two different ways of
performing the hypothesis test, and in fact are testing slightly
different hypotheses
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Advantages and disadvantages

Each approach has advantages and disadvantages

The advantage of the binomial test is that it makes fewer
assumptions – is n = 14 large enough to rely on the central
limit theorem? If not, our p-value from the t-test may be
unreliable

The advantage of the paired t-test is that it is generally more
powerful than the binomial test – the binomial test throws
away the magnitude of the difference, while the t-test uses all
the information

There are other approaches as well, which strike a balance
between these advantages and disadvantages – we will cover
them later
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Summary

z-tests fail for continuous data because they ignore
uncertainty about SD – this is especially problematic for small
sample sizes

t-tests fix this problem (although they still rely on the CLT):

Know how to calculate the one-sample t-test (also known as
the paired t-test)
Know how to construct confidence intervals for one-sample
continuous data using Student’s distribution

Constructing a CI for the difference between two groups is not
the same as constructing two CIs, one for each group, then
seeing if they overlap
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