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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Balls in urns

Imagine a random process in which balls are placed into an
urn and picked out at random, so that each ball has an equal
chance of being drawn

Statisticians love these examples because lots of problems can
be thought of in terms of balls and urns

For example, imagine an urn that contains 1 red ball and 2
black balls

Let R denote drawing a red ball; what is P (R)?
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Balls in urns (cont’d)

Now, imagine we draw a ball, put it back in the urn, and draw
a second ball (this method of drawing balls from the urn is
called sampling with replacement)

What is the probability of drawing two red balls?

i.e., letting Ri denote that the ith ball was red, what is
P (R1 ∩R2)?

It turns out that this probability is:

1

3

(
1

3

)
=

1

9
≈ 11%

On the surface, then, it would seem that
P (A ∩B) = P (A) · P (B)

Once again, however, this is not true in general
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Balls in urns (cont’d)

Suppose we don’t put the 1st ball back after drawing it (this
method of drawing balls from the urn is called sampling
without replacement)

Now, it is impossible to draw red balls; instead of 11%, the
probability is 0

Why doesn’t multiplying the probabilities work?

Because the outcome of the first event changed the system;
after R1 occurs, P (R2) is no longer 1/3, but 0

When we draw without replacement, P (Ri) depends on what
has happened in the earlier draws
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Basic rules (cont’d)
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The multiplication rule

Conditional probability

The notion that the probability of an event may depend on
other events is called conditional probability

The conditional probability of event A given event B is
written as P (A|B)

For example, in our ball and urn problem, when sampling
without replacement:

P (R2) =
1
3

P (R2|R1) = 0
P (R2|RC

1 ) =
1
2
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

The multiplication rule

To determine P (A ∩B), we need to use the multiplication
rule:

P (A ∩B) = P (A)P (B|A)

Alternatively, if we know P (B) and P (A|B),

P (A ∩B) = P (B)P (A|B)

This rule is always true for any two events
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Calculating conditional probabilities

The multiplication rule also helps us calculate conditional
probabilities

Rearranging the formula, we have

P (A|B) =
P (A ∩B)

P (B)

Similarly,

P (B|A) = P (A ∩B)

P (A)
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Gestational age example

Recall our earlier example, where the probability that a child’s
gestational age is less than 37 weeks is 14.2%, the probability
that his or her birth weight is less than 2500 grams is 5.1%,
and the probability of both is 3.1%

What is the probability that a child’s birth weight will be less
than 2500 grams, given that his/her gestational age is less
than 37 weeks?

P (Low weight|Early labor) =
P (Low weight and early labor)

P (Early labor)

=
.031

.142
= 21.8%

Note that this is much higher than the unconditional
probability of 5.1%

Patrick Breheny Introduction to Biostatistics (171:161) 8/48



Basic rules (cont’d)
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The multiplication rule

Independence

Note that sometimes, event B is completely unaffected by
event A, and P (B|A) = P (B)

If this is the case, then events A and B are said to be
independent

This works both ways – all the following are equivalent:

P (A) = P (A|B)
P (B) = P (B|A)
A and B are independent

Otherwise, if the probability of A depends on B (or vice
versa), then A and B are said to be dependent
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Dependence and independence

Scientific questions often revolve around whether or not two events
are independent, and if they are dependent, how dependent are
they?

Event A Event B

Patient survives Patient receives treatment
Student is admitted Student is male
Person develops lung cancer Person smokes
Patient will develop disease Mutation of a certain gene

Patrick Breheny Introduction to Biostatistics (171:161) 10/48



Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Independence and the multiplication rule

Note that if A and B are independent, and only if they are
independent, then the multiplication rule reduces to
P (A ∩B) = P (A)P (B)

This form is often much easier to work with, especially when
more than two events are involved:

For example, consider an urn with 3 red balls and 2 black
balls; what is the probability of drawing three red balls?

With replacement (draws are independent):

P (Three red balls) =

(
3

5

)3

= 21.6%
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Independence and the multiplication rule (cont’d)

On the other hand, when events are dependent, we have to
use the multiplicative rule several times:

P (A ∩B ∩ C) = P (A)P (B|A)P (C|A ∩B)

and so on

So, when our draws from the urn are not independent
(sampled without replacement):

P (Three red balls) =
3

5
· 2
4
· 1
3
= 10%
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Independent versus mutually exclusive

It is important to keep in mind that “independent” and
“mutually exclusive” mean very different things

For example, consider drawing a random card from a standard
deck of playing cards

A deck of cards contains 52 cards, with 4 suits of 13 cards each
The 4 suits are: hearts, clubs, spades, and diamonds
The 13 cards in each suit are: ace, king, queen, jack, and 10
through 2

If event A is drawing a queen and event B is drawing a heart,
then A and B are independent, but not mutually exclusive

If event A is drawing a queen and event B is drawing a four,
then A and B are mutually exclusive, but not independent

It is impossible for two events to be both mutually exclusive
and independent
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Genetics

Independent events come up often in genetics

A brief recap of genetics to make sure that we’re all on the
same page:

Humans have two copies of each gene
They pass on one of those genes at random to their child
Certain diseases manifest symptoms if an individual contains at
least one copy of the harmful gene (these are called dominant
disorders)
Other diseases manifest symptoms only if an individual
contains two copies of the harmful gene (these are called
recessive disorders)
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Genetics example #1

Cystic fibrosis is an example of a recessive disorder

Suppose that an unaffected man and woman both have one
copy of the normal gene and one copy of the harmful gene

If they have a child, what is the probability that the child will
have cystic fibrosis?

Letting M/F denote the transmission of the harmful gene
from the mother/father,

P (Child has disease) = P (M ∩ F )
= P (M)P (F )

=
1

2
· 1
2

= 25%
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Genetics example #2

Huntington’s disease is an example of a dominant disorder
Suppose that a man and woman each carry one copy of the
normal gene and one copy of the harmful gene; if they have a
child, what is the probability that the child will have
Huntington’s disease?
To solve the problem, we need to combine the rules of
probability:

P (Child has disease) = P (M ∪ F )
= P (M) + P (F )− P (M ∩ F )
= P (M) + P (F )− P (M) · P (F )

=
1

2
+

1

2
− 1

2
· 1
2

= 75%
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Genetics example #2 (cont’d)

Alternatively, we could have solved the problem using:

P (Child has disease) = 1− P (Child does not have disease)

= 1− P (MC ∩ FC)

= 1− P (MC)P (FC)

= 1− .25
= 75%
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

The Chevalier de Méré, Part II

We can also use the rules of probability in combination to
solve the problem that stumped the Chevalier de Méré

Recall that we are interested in two probabilities:

What is the probability of rolling four dice and getting at least
one ace?
What is the probability of rolling 24 pairs of dice and getting
at least one double-ace?
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

The Chevalier de Méré, Part II (cont’d)

First, we can use the complement rule:

P (At least one ace) = 1− P (No aces)

Next, we can use the multiplication rule:

P (No aces) =P (No aces on roll 1)

· P (No aces on roll 2|No aces on roll 1)

· · ·

Are rolls of dice independent?

Yes; therefore,

P (At least one ace) = 1−
(
5

6

)4

= 51.7%
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

The Chevalier de Méré, Part II (cont’d)

By the same reasoning,

P (At least one double-ace) = 1−
(
35

36

)24

= 49.1%

Note that this is a little smaller than the first probability, and
that both are much smaller than the 2

3 probability reasoned by
the Chevalier

Patrick Breheny Introduction to Biostatistics (171:161) 20/48



Basic rules (cont’d)
“Advanced” rules

The multiplication rule

Caution

In genetics and dice, we could multiply probabilities, ignore
dependence, and still get the right answer

However, people often multiply probabilities when events are
not independent, leading to incorrect answers

This is probably the most common form of mistake that
people make when calculating probabilities
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Basic rules (cont’d)
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The multiplication rule

The Sally Clark case

A dramatic example of misusing the multiplication rule
occurred during the 1999 trial of Sally Clark, on trial for the
murder of her two children

Clark had two sons, both of which died of sudden infant death
syndrome (SIDS)

One of the prosecution’s key witnesses was the pediatrician
Roy Meadow, who calculated that the probability of one of
Clark’s children dying from SIDS was 1 in 8543, so the
probability that both children had died of natural causes was(

1

8543

)2

=
1

73, 000, 000

This figure was portrayed as though it represented the
probability that Clark was innocent, and she was sentenced to
life imprisonment
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Basic rules (cont’d)
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The multiplication rule

The Sally Clark case (cont’d)

However, this calculation is both inaccurate and misleading

In a concerned letter to the Lord Chancellor, the president of
the Royal Statistical Society wrote:

The calculation leading to 1 in 73 million is invalid.
It would only be valid if SIDS cases arose
independently within families, an assumption that
would need to be justified empirically. Not only was
no such empirical justification provided in the case,
but there are very strong reasons for supposing that
the assumption is false. There may well be unknown
genetic or environmental factors that predispose
families to SIDS, so that a second case within the
family becomes much more likely than would be a
case in another, apparently similar, family.
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Basic rules (cont’d)
“Advanced” rules

The multiplication rule

The Sally Clark case (cont’d)

There are also a number of issues, also mentioned in the
letter, with the accuracy of the calculation that produced the
“1 in 8543” figure

Finally, it is completely inappropriate to interpret the
probability of two children dying of SIDS as the probability
that the defendant is innocent

The probability that a woman would murder both of her
children is also extremely small; one needs to compare the
probabilities of the two explanations

The British court of appeals, recognizing the statistical flaws
in the prosecution’s argument, overturned Clark’s conviction
and she was released in 2003, having spent three years in
prison
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Basic rules (cont’d)
“Advanced” rules

The law of total probability
Bayes’ rule
Diagnostic testing

The law of total probability

A rule related to the addition rule is called the law of total
probability, which states that if you divide A into the part
that intersects B and the part that doesn’t, then the sum of
the probabilities of the parts equals P (A)

In mathematical notation,

P (A) = P (A ∩B) + P (A ∩BC)

This is really a special case of the addition rule, in the sense
that (A ∩B) ∪ (A ∩BC) = A and the two events are
mutually exclusive
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Basic rules (cont’d)
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The law of total probability
Bayes’ rule
Diagnostic testing

The law of total probability: a picture

Again, the logic behind the law of total probability is clear when
you see a Venn diagram:

A B A B A
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Diagnostic testing

The law of total probability in action

In the gestational age problem, suppose we want to determine
the probability of low birth weight (L) given that the
gestational age was greater than 37 weeks (EC)

We can use the formula for calculating conditional
probabilities along with the complement rule and law of total
probability to solve this problem:

P (L|EC) =
P (L ∩ EC)

P (EC)

=
P (L)− P (L ∩ E)

1− P (E)
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Basic rules (cont’d)
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The law of total probability
Bayes’ rule
Diagnostic testing

The law of total probability in action (cont’d)

P (L)− P (L ∩ E)

1− P (E)
=

0.051− 0.031

1− 0.142

= 2.3%

Note that the unconditional probability, 5.1%, is in between
the two conditional probabilities (2.3% and 21.8%)
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The law of total probability
Bayes’ rule
Diagnostic testing

Using tables instead of equations

People often find it conceptually easier to see probability
relationships by constructing tables

For example, given the information that P(early labor) is .142,
P(low birth weight) is .051, and P(both) is .031, we could
construct the following table:

Birth weight
< 2500g ≥ 2500g Total

Early labor 31 111 142
Full term 20 838 858

Total 51 949 1000

The probability of low birth weight given full term delivery is
then 20/858 = 2.3%

The probability of low birth weight or early labor is
(20 + 31 + 111)/1000 = 16.2%
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Introduction

Conditional probabilities are often easier to reason through (or
collect data for) in one direction than the other

For example, suppose a woman is having twins

Obviously, if she were having identical twins, the probability
that the twins would be the same sex would be 1, and if her
twins were fraternal, the probability would be 1/2

But what if the woman goes to the doctor, has an ultrasound
performed, learns that her twins are the same sex, and wants
to know the probability that her twins are identical?
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Introduction (cont’d)

So, we know P (Same sex|Identical), but we want to know
P (Identical|Same sex)

To flip these probabilities around, we can use something called
Bayes’ rule:

P (A|B) =
P (A)P (B|A)

P (A)P (B|A) + P (AC)P (B|AC)
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Introduction (cont’d)

To apply Bayes’ rule, we need to know one other piece of
information: the (unconditional) probability that a pair of
twins will be identical
The proportion of all twins that are identical is roughly 1/3
Now, letting A represent the event that the twins are identical
and B denote the event that they are the same sex,
P (A) = 1/3, P (B|A) = 1, and P (B|AC) = 1/2
Therefore,

P (A|B) =
P (A)P (B|A)

P (A)P (B|A) + P (AC)P (B|AC)

=
1
3(1)

1
3(1) +

2
3(

1
2)

=
1

2
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Meaning behind Bayes’ rule

Let’s think about what happened

Before the ultrasound, P (Identical) = 1
3

This is called the prior probability

After we learned the results of the ultrasound,
P (Identical) = 1

2

This is called the posterior probability
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Bayesian statistics

In fact, this prior/posterior way of thinking can be used to
establish an entire statistical framework rather different in
philosophy than the one we have presented so far in this
course

In this way of thinking, we start out with an idea of the
possible values of some quantity θ

This distribution of possibilities P (θ) is our prior belief about
the unknown; we then observe data D and update those
beliefs, arriving at our posterior beliefs about the unknown,
P (θ|D)

Mathematically, this updating is derived from Bayes’ rule,
hence the name for this line of inferential reasoning: Bayesian
statistics

Patrick Breheny Introduction to Biostatistics (171:161) 34/48



Basic rules (cont’d)
“Advanced” rules

The law of total probability
Bayes’ rule
Diagnostic testing

Bayesian statistics (cont’d)

One clear advantage of Bayesian statistics is that it is a much
more natural representation of human thought

For example, with confidence intervals, we can’t say that
there is a 95% probability that the effect of the polio vaccine
is between 1.9 and 3.5; with Bayesian statistics, we can make
statements like this, because the statement reflects our
knowledge and beliefs about the polio vaccine

The scientific community has not, however, widely embraced
the notion of subjective beliefs as the basis for science; the
long-run frequency guarantees of p-values and confidence
intervals have generally proved more marketable

Bayesian statistics is certainly worth being aware of and is
widely used and accepted in many fields – it will not, however,
be the focus of this course
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Testing and screening

A common application of Bayes’ rule in biostatistics is in the
area of diagnostic testing

For example, older women in the United States are
recommended to undergo routine X-rays of breast tissue
(mammograms) to look for cancer

Even though the vast majority of women will not have
developed breast cancer in the year or two since their last
mammogram, this routine screening is believed to save lives
by catching the cancer while it is relatively treatable

The application of a diagnostic test to asymptomatic
individuals in the hopes of catching a disease in its early
stages is called screening
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Terms involved in screening

Let D denote the event that an individual has the disease that
we are screening for

Let + denote the event that their screening test is positive,
and − denote the event that the test comes back negative

Ideally, both P (+|D) and P (−|DC) would equal 1

However, diagnostic tests are not perfect
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Terms involved in screening (cont’d)

Instead, there are always false positives, patients for whom the
test comes back positive even though they do not have the
disease

Likewise, there are false negatives, patients for whom the test
comes back negative even though they really do have the
disease

Suppose we test a person who truly does have the disease:

P (+|D) is the probability that we will get the test right
This probability is called the sensitivity of the test
P (−|D) is the probability that the test will be wrong (that it
will produce a false negative)
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Terms involved in screening (cont’d)

Alternatively, suppose we test a person who does not have the
disease:

P (−|DC) is the probability that we will get the test right
This probability is called the specificity of the test
P (+|DC) is the probability that the test will be wrong (that
the test will produce a false positive)
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Terms involved in screening (cont’d)

The accuracy of a test is determined by these two factors:

Sensitivity: P (+|D)
Specificity: P (−|DC)

One final important term is the probability that a person has
the disease, regardless of testing: P (D)

This is called the prevalence of the disease
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Values for mammography

According to an article in Cancer (more about this later),

The sensitivity of a mammogram is 0.85
The specificity of a mammogram is 0.80
The prevalence of breast cancer is 0.003

With these numbers, we can calculate what we really want to
know: if a woman has a positive mammogram, what is the
probability that she has breast cancer?
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Using Bayes’ rule for diagnostic testing

Applying Bayes’ rule to this problem,

P (D|+) =
P (D)P (+|D)

P (D)P (+|D) + P (DC)P (+|DC)

=
.003(.85)

.003(.85) + (1− .003)(1− .8)
= 0.013

In the terminology of Bayes’ rule, the prior probability that a
woman had breast cancer was 0.3%

After the new piece of information (the positive
mammogram), that probability jumps to 1.3%
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Why is the probability so low?

So according to our calculations, for every 100 positive
mammograms, only one represents an actual case of breast
cancer

Why is this so low?

BC Healthy

+ 2.5 199.4
− 0.5 797.6
Total 3 997

Way more false positives than true positives because the
disease is so rare
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Controversy (Part 1)

Because P (D|+) is so low, screening procedures like
mammograms are controversial

We are delivering scary news to 99 women who are free from
breast cancer

On the other hand, we may be saving that one other woman’s
life

These are tough choices for public health organizations
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Two studies of mammogram accuracy

In our example, we calculated that the probability that a
woman has breast cancer, given that she has a positive
mammogram, is 1.3%

The numbers we used (sensitivity, specificity, and prevalence)
came from the article

Hulka, B. (1988). Cancer screening: degrees of proof and
practical application. Cancer, 62 1776–1780.

A more recent study is

Carney, P., Miglioretti, D., Yankaskas, B.,
Kerlikowske, K., Rosenberg, R., Rutter, C.,
Geller, B., Abraham, L., Taplin, S., Dignan, M.
et al. (2003). Individual and combined effects of age, breast
density, and hormone replacement therapy use on the accuracy
of screening mammography. Annals of Internal Medicine, 138
168–175.
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Comparing the two studies

Hulka (1988) Carney (2003)
Sensitivity .85 .750
Specificity .80 .923
Prevalence .003 .005
P (D|+) 1.3% 4.7%

It would seem, then, that radiologists have gotten more
conservative in calling a mammogram positive, and this has
increased P (D|+)

However, the main point remains the same: a woman with a
positive mammogram is much more likely not to have breast
cancer than to have it
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Controversy (Part 2)

Based on these kinds of calculations, in 2009 the US
Preventive Services Task Force changed its recommendations:

It is no longer recommended for women under 50 to get
routine mammograms
Women over 50 are recommended to get mammograms every
other year, as opposed to every year

Of course, not everyone agreed with this change, and much
debate ensued (my Google search for USPSTF “breast cancer
screening” controversy returned over 20,000 hits)
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Summary

To determine P (A ∩B), use the multiplication rule:

P (A ∩B) = P (A)P (B|A)

If (and only if!) two events are independent, you can ignore
conditioning on A and directly multiply the probabilities

To determine conditional probabilities,

P (A|B) =
P (A ∩B)

P (B)

To “flip” a conditional probability around, use Bayes’ rule:

P (A|B) =
P (A)P (B|A)

P (A)P (B|A) + P (AC)P (B|AC)

Know the terms: sensitivity, specificity, prevalence
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