
Introduction to Biostatistics (171:161)
Breheny

Lab #8

Lab #8 concentrates largely on understanding sampling distributions and the central limit theorem.
You will each analyze your own personal data set (which was drawn at random from a larger data
set) and enter your results into a spreadsheet on your TA’s computer. We will then see sampling
distributions in action when we look at the class’s results. If we have time, we will practice
simulating random samples from the binomial distribution and see how the central limit theorem
applies for it.

1 Sampling distributions and the central limit theorem

As part of the NHANES study, the triglyceride levels of 3026 adult women were measured. Triglyc-
eride, the main constituent of both vegetable oil and animal fat, has been linked to atherosclerosis,
heart disease, and stroke.

Download the data set trg-adultwomen.txt. One can get a visual idea of whether or not a variable
follows a normal distribution by typing:

SAS: R:

PROC SGPLOT DATA=nhanes;

HISTOGRAM trg;

DENSITY trg;

RUN;

attach(nhanes)

hist(TRG,freq=FALSE)

## To draw a normal curve:

x <- seq(min(TRG),max(TRG),len=101)

lines(x,dnorm(x,mean(TRG),sd(TRG)))

This creates a histogram of the triglyceride levels trg, and draws the normal curve which best fits
the data over the top (don’t worry about the details of drawing the normal curve in R). One can
see from this picture that triglyceride levels do not follow a normal distribution very closely – they
are highly skewed to the right.

Furthermore, using procedures and techniques that we have talked about in earlier labs, one can
determine that the mean triglyceride level is 116.9 mg/dl, that the standard deviation is 67.9 mg/dl,
and that 12.7% of individuals have triglyceride levels over 200 mg/dl, which the American Heart
Association defines as having high levels of triglycerides.

However, suppose that you lack the resources to sample 3026 women, and instead obtain only a
25-woman sample. Each student in this class is given just such a 25-woman sample, taken randomly
from the NHANES sample and available from the course webpage under Data → Individual.

Calculate the mean and standard deviation of triglyceride levels, along with the proportion of your
sample with high levels of triglycerides and the 95% confidence interval for that proportion. Then
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enter that information into your TA’s spreadsheet. The TA will use everyone’s calculations to look
at the sampling distribution of these statistics.

Using your knowledge of the central limit theorem, predict the mean, standard deviation, and the
shape of the class’s distribution of sample means and sample percentages of high-triglyceride indi-
viduals. When everyone has entered their sample statistics into the spreadsheet, we can calculate
the actual values from our class’s sampling distribution and compare.

2 Binomial simulation: Making the computer flip coins for you

R has a function called rbinom for generating random variables from the binomial distribution – in
other words, flipping a coin for you. You can even change the probability of heads to something
other than 50%, which doesn’t necessarily make sense if you’re interested in coins, but makes a lot
of sense if you’re studying the survival of babies or the success of a therapy. So, for example:

> rbinom(1,size=10,prob=.5)

[1] 3

R just flipped a coin for me 10 times, and got 3 heads. Some of you (specifically, about 12% of
you) will also get 3 heads, but the rest of you will get some other number when you submit the
above code. Another example: let’s say we’re at a hospital in which 80% of babies born at 25 weeks
gestation survive.

> rbinom(1,size=50,prob=.8)

[1] 42

R has just simulated the birth of 50 premature babies at our hospital – in my hospital, 42 survived.
In most of your hospitals (specifically, about 69%), your babies won’t do as well as the ones in my
hospital did.

3 Repeating the experiment

As you may have guessed, R can do this over and over again – this is what that first number in
rbinom is for. So, for example:

> rbinom(100,10,.5)

[1] 4 5 3 5 4 5 3 4 7 7 3 6 6 7 7 2 5 3 7 4 5 4 3 6 5 8 5 4 8 5 7 3 6 6 8 6 5

[38] 6 5 7 6 5 5 3 5 6 5 8 5 4 5 6 6 4 6 6 4 4 6 4 4 4 4 6 3 5 9 6 5 5 5 8 5 7

[75] 6 4 3 6 4 6 5 5 7 7 6 4 4 3 9 6 7 5 7 3 6 6 6 4 6 3

As the binomial distribution would predict, we get lots of 4s, 5s, and 6s – very few 8s, 9s, and 2s.
We can save the results of our random experiments:

> counts <- rbinom(100,10,.5)

> avgs <- counts/10

As we see, this gives us the ability to calculate things like the average number of heads in each
“experiment” (each time we flipped a coin 10 times). Try typing counts and avgs to see what they
look like. We can see the results that we alluded to during lecture:
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> mean(counts)

[1] 5.1

> mean(avgs)

[1] 0.51

The average number of heads was right around np = 10(.5) = 5, while the average of the averages
was right around p = .5. Let’s look at standard deviation and standard error:

> sd(counts)

[1] 1.283146

> sd(avgs)

[1] 0.1283146

> sqrt(10*.5*.5)

[1] 1.581139

> sqrt(.5*.5/10)

[1] 0.1581139

Of course, your actual numbers for the first two will vary because they depend on random flips
of the coin. Some of you will have numbers will be smaller than

√
np(1− p) or

√
p(1− p)/n,

for others, your numbers will be bigger. But they should be fairly close to what the binomial
distribution predicts. Finally, let’s look at a histogram of our results:

> hist(counts)

> hist(avgs)

My histogram looked vaguely normal, although there were certainly differences.

We can now see how the central limit theorem applies to the binomial distribution in a very hands-
on way. For each of the following, what would you expect to happen? What happens when you
try it out?

• As you increase the number of experiments (the number of times that you flip 10 coins), what
happens to the mean of the counts? The standard error? The histogram?

• As you increase the number of times you flip the coin in each experiment, what happens to
the mean of the counts? The standard error? The histogram?

• As you increase p to, say, .9, what happens to the averages? To the standard error? To the
histogram?
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