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System

Equation

ut + (uv)x = 0

vt − ux = 0
(1)

where t > 0, x ∈ R with initial data:

Riemann Problem

(u(x , 0), v(x , 0)) =

{
(u−, v−) for x < 0

(u+, v+) for x > 0,
(2)

where (u−, v−) and (u+, v+) are constant states.
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Features

1 The system is physically motivated in chemotaxis, which is
the movement of organisms due to chemical response.

2 u - represents the concentration of bacteria, v - function of
chemical concentration.

3 The system has a strictly hyperbolic and an elliptic region,
with a nonstrictly hyperbolic boundary (parabola shaped).

4 We solved the Riemann problem up to the non-strictly
hyperbolic boundary as well as a linearly degenerate region
for u ≥ 0 (physically relevant).

5 We will see shock waves, rarefaction waves, and contact
discontinuities in our solution.

Nitesh Mathur Under the kind supervision of Dr. Tong Li
Riemann Problem For A Non-Strictly Hyperbolic System In Chemotaxis



Introduction
Crash Lesson

Set Up
Shock Waves, Rarefaction Curves, and Contact Discontinuities

Theorem and Showcase
Conclusion

History

1 Rascle (1985): Solved problem that was reflected along the y
axis.

2 Hillen and Wang (2008): Describe shock wave solutions in
parameterized form for our equation.

3 Tong Li, L. Wang, and Liu, H. (2016): Derived (1) from the
physical point of view via the Keller-Segel model.
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Riemann Problem

We want to solve the Riemann Problem with n equations.

Consider U ∈ Rn.

U = (u1, u2, ..., un),F (U) = (f1(u), f2(u), ..., fn(u))

The system
Ut + F (U)x = 0

with initial data

U(x , 0) = U0(x) =

{
U−, x < 0
U+, x > 0

(3)

is the Riemann problem with ul , ur constant vectors.
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System: Shock Waves

By Rankine-Hugoniot conditions, if U has a discontinuity
across x = st, the jump conditions need to be satisfied:

s[U] = [F (U)],

where [U] = U− − U+ and F (U) = F (U−)− F (U+)

For systems, the entropy inequalities are as follows:

λk(U+) < s < λk+1(U+)

λk−1(U−) < s < λk(U−)

for 1 ≤ k ≤ n.

Such a discontinuity is called a k-shock wave.
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Contact Discontinuities

They occur when ∇λi · ri = 0 (in linearly degenerate regions).

If two nearby states U− and U+ have the same k− Riemann
invariants with respect to a linearly degenerate field, then they
are connected to each other by a contact discontinuity of
speed s = λk(U−) = λk(U+).
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Theory - Rarefaction Waves

A rarefaction wave is a continuous solution of the above
system in the form U = U(x/t).

The kth family is genuinely nonlinear, ∇λk · rk 6= 0, where rk
is the right eigenvalue.
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Rarefaction - Continued

Let ξ = x/t

−ξUξ + F (U)ξ = 0

or
(dF − ξI )Uξ = 0

.
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Jacobian

Initial Setup

Ut + (F (U))x = 0 (4)

Jacobian

U = (u, v) and F (U) = (uv ,−u), The Jacobian of F is as follows:

A(U) =

(
v u
−1 0

)

Nitesh Mathur Under the kind supervision of Dr. Tong Li
Riemann Problem For A Non-Strictly Hyperbolic System In Chemotaxis



Introduction
Crash Lesson

Set Up
Shock Waves, Rarefaction Curves, and Contact Discontinuities

Theorem and Showcase
Conclusion

Characteristic Equations

Characteristic

The characteristic equation in H ∪ Σ is

λ2 − vλ+ u = 0 (5)

⇒ λ1 =
v −
√
v2 − 4u

2
≤ v +

√
v2 − 4u

2
= λ2

Eigenvectors

r1,2 =
1

2
(−v ∓

√
v2 − 4u, 1)T (6)
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Notation

Regions

H = {(u, v) ∈ R2|v2 − 4u > 0}
E = {(u, v) ∈ R2|v2 − 4u < 0}
Σ = {(u, v) ∈ R2|v2 − 4u = 0}

(7)

D− = {u = 0, v ≤ 0}
D+ = {u = 0, v ≥ 0}
GNL ⇐⇒ genuinely nonlinear

LD ⇐⇒ linearly degenerate

Nitesh Mathur Under the kind supervision of Dr. Tong Li
Riemann Problem For A Non-Strictly Hyperbolic System In Chemotaxis



Introduction
Crash Lesson

Set Up
Shock Waves, Rarefaction Curves, and Contact Discontinuities

Theorem and Showcase
Conclusion

Nonstrictly Hyperbolic

Feature of System

(i) (1) is strictly hyperbolic in H when v2 − 4u > 0.
(ii) (1) is non-strictly hyperbolic on Σ, v2 − 4u = 0, i.e. λ1 = λ2.

Lemma

(i) On D+, we have λ2 = v is GNL, λ1 = 0 is LD.
(ii) On D−, we have λ1 = v is GNL, λ2 = 0 is LD.
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Regions
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Hugoniot Locus

We now study shock waves.

The Rankine-Hugoniot conditions applied to (1) yields:

s(u − u−) = uv − u−v−

s(v − v−) = −(u − u−)
(8)

Hugionot Locus

S1(U−) : u − u− = −(v − v−)
v −

√
v2 − 4u−
2

, v > v−

S2(U−) : u − u− = −(v − v−)
v +

√
v2 − 4u−
2

, v < v−.

(9)
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Rarefaction Waves

We now study rarefaction waves.

Rarefaction waves can be derived by finding the integral
curves of the right eigenvectors. For (1), we have:(

v − λ u
−1 −λ

)(
uξ
vξ

)
=

(
0
0

)

Rarefaction

R1(U−) :
du

dv
=
−v +

√
v2 − 4u

2
, v < v−

R2(U−) :
du

dv
=
−v −

√
v2 − 4u

2
, v > v−.

(10)
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Riemann Invariants I

Riemann invariants are functions wi such that ∇wi · ri = 0.

Across rarefaction waves, Riemann invariant does not change.

Ri (U−) = {U ∈ R2|wi (U) = wi (U−)}, i = 1, 2

w1(U) =

{√
λ1(λ1 + 3λ2), v > 0
√
−λ1(λ1 + 3λ2), v < 0.

w2(U) =

{√
λ2(3λ1 + λ2), v > 0
√
−λ2(3λ1 + λ2), v < 0.

(11)
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Riemann Invariants - II

Computationally, it was easier to write the Riemann invariants
in terms of u and v .

w1(U) =


√

v −
√
v2 − 4u(12(v −

√
v2 − 4u) + 3

2(v +
√
v2 − 4u))

√
2

, v > 0√
−v +

√
v2 − 4u(12(v −

√
v2 − 4u) + 3

2(v +
√
v2 − 4u))

√
2

, v < 0.

w2(U) =


√
v +
√
v2 − 4u(32(v −

√
v2 − 4u) + 1

2(v +
√
v2 − 4u))

√
2

, v > 0√
−v −

√
v2 − 4u(32(v −

√
v2 − 4u) + 1

2(v +
√
v2 − 4u))

√
2

, v < 0.

(12)
Nitesh Mathur Under the kind supervision of Dr. Tong Li

Riemann Problem For A Non-Strictly Hyperbolic System In Chemotaxis



Introduction
Crash Lesson

Set Up
Shock Waves, Rarefaction Curves, and Contact Discontinuities

Theorem and Showcase
Conclusion

Shock and Rarefaction Curves
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Contact Discontinuity

Let U−,U+ ∈ D− ∪ D+. Then,
U− and U+ can be connected a contact discontinuity of speed
s = 0.
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Theorem

Theorem 4

Suppose U− and U+ ∈ (H ∪ Σ) ∩ {u ≥ 0}. Then the Riemann
solutions can be constructed if an intermediate state U, which
connects U− and U+, exists in the same region.

We will show this via showcases.
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Regions
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U− = (0.5, 2),U+ = (4, 4) ∈ Σ+ and U ≈ (0.194, 4.99).
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U− = (4,−4) ∈ Σ−,U+ = (0.5,−2) and U ≈ (0.19,−5).
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U− = (0, 2),U+ = (1, 2) ∈ Σ+ and U ≈ (0,−2.52).
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U− = (1,−2),U+ = (0,−4) ∈ Σ+ and U ≈ (0,−2.52).
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U− = (0, 2),U+ = (0,−2) ∈ Σ+ and U ≈ (0, 0).
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Conclusion

Graphing capabilities of Matlab were utilized to present the
plots.

We are currently looking at nonclassical transitional waves .

In the future, we may look at solving other Riemann Problems
for 2× 2 up to the boundary.
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The End

Thank You!

Questions?
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