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Introduction to the Riemann Problem - Scalar Case

For u ∈ R1

ut + f (u)x = 0, (1)

u(x , 0) = u0(x) =

{
ul , x < 0
ur , x > 0

where ul and ur are constants.

This is in the scalar case of the Riemann problem.

f must be genuinely nonlinear so WLOG, let f ′′ > 0.
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Weak Solutions of Conservation Laws

A bounded measurable function u(x , t) is called a weak
solution of this IVP for any φ ∈ C 1

0 (R1 × [0,∞))∫ ∫
t≥0

(uφt + f (u)φx) dxdt +

∫
t=0

u0φ dx = 0 (2)

φ is called a test function.

φ has compact support in R1 × [0,∞) .
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Solution to the Riemann Problem - Shock Wave

The shock wave solution is:

u(x , t) =

{
ul , x < st
ur , x > st,

(3)

where

s =
f (ul)− f (ur )

ul − ur
(4)

This is known as the jump condition (Rankine-Hugoniot
condition)
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Solution to the Riemann Problem - Rarefaction Wave

The rarefaction wave solution is:

u(x , t) =


ul , x < f ′(ul)t

(f ′)−1(
x

t
) f ′(ul)t < t < f ′(ur )t

ur , x > f ′(ur )t,

(5)

Since we assumed f ′′ > 0 for all u, ul < ur ⇒ f ′(ul) < f ′(ur ).
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Entropy Condition

If f ′(ul) > s > f ′(ur ), then we say that the entropy conditions
are satisfied.

If not, f ′(ul) 6> s 6> f ′(ur ), we have a rarefaction wave.

Entropy condition guarantees uniqueness of weak solution.
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Motivation and Goal

We want to solve the Riemann Problem with n equations.

Consider u ∈ Rn.

u = (u1, u2, ..., un), f(u) = (f1(u), f2(u), ..., fn(u))

The system
ut + f(u)x = 0

with initial data

u(x,0) = u0(x) =

{
ul , x < 0
ur , x > 0

(6)

is the Riemann problem with ul ,ur constant vectors.
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System: Shock Waves

By (4), if u has a discontinuity across x = st, the jump
conditions need to be satisfied:

s[u] = [f(u)],

where [u] = ul − ur and f(u) = f(ul)− f(ur )

For systems, the entropy inequalities are as follows:

λk(ur ) < s < λk+1(ur )

λk−1(ul) < s < λk(ul)

for 1 ≤ k ≤ n.

Such a discontinuity is called a k-shock wave.
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p-System

p−system is an example of conservation law.

In general, these class of equations have the following form:{
vt − ux = 0
ut + p(v)x = 0, t > 0, x ∈ R (7)

where p′ < 0, p′′ > 0.

Rewrite the p-system as follows:

ut + f(u)x = 0

where u = (v , u) and f(u) = (−u, p(v))
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Example

Compute Jacobian:

df =

(
0 −1

p′(v) 0

)

⇒ (df− λI ) =

(
−λ −1
p′(v) −λ

)

det : λ2 + p′(v) = 0⇒ λ1 = −
√
−p′(v), λ2 =

√
−p′(v)

p′ < 0⇒ we have real and distinct eigenvalues ⇒ strict
hyperbolic system.
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Example (Continued)

Now, we can write the Riemann problem for the following
initial conditions:

u(x,0) = u0(x) =

{
ul = (vl , ul), x < 0
ur = (vr , ur ), x > 0

(8)

Entropy condition is satisfied.

Given left state, what kind of right state can be connected to
it?
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Shock Waves

We have two distinct types of shockwaves - 1−shocks and
2−shocks.
1−shocks (back-shocks) satisfy

s < λ1(ul), λ1(ur ) < s < λ2(ur )

2− shocks (front-shocks) satisfy

λ1(ul) < s < λ2(ul), λ2(ur ) < s

Hence, we have

−
√
−p′(vr ) < s < −

√
−p′(vl)

and √
−p′(vr ) < s <

√
−p′(vl)
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We apply the jump condition to (8).

⇒ s(v − vl) = −(u − ul) and s(u − ul) = p(v)− p(vl)

s =
−(u − ul)

(v − vl)
and s =

p(v)− p(vl)

u − ul

−(u − ul)

(v − vl)
=

p(v)− p(vl)

u − ul

u − ul = ±
√

(p(vl)− p(v))(v − vl)
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Continued

In order to form 1-shock, we need −
√
−p′(v) < −

√
p′(vl),

which means p′(vl) > p′(v) and since p′′ > 0, vl > v

S1 : u − ul = −
√

(v − vl)(p(vl)− p(v)) ≡ s1(v ;ul), vl > v

Similarly,
S2 : u − ul = −

√
(v − vl)(p(vl)− p(v) ≡ s2(v ;ul), vl < v
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Theory - Rarefaction Waves

A rarefaction wave is a continuous solution of the above
system in the form u = U(x/t).

We have 2 families of rarefaction waves, corresponding to
either λ1 or λ2.

The kth family is genuinely nonlinear, ∇λk · rk 6= 0, where rk
is the right eigenvalue.
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Rarefaction - Continued

Let ξ = x/t

−ξuξ + f(u)ξ = 0

or
(df− ξI )uξ = 0

.

Hence,uξ is an eigenvector and λ1, λ2 are distinct eigenvalues.

We have 2 families of rarefaction waves.
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Rarefaction

(
−λ1 −1
p′(v) −λ1

)(
vξ
uξ

)
=

(
0
0

)
Eigenvector uξ = (vξ, uξ)t satisfies this.

λ1vξ + uξ = 0,⇒ vξ, uξ 6= 0

Since vξ 6= 0, uξ/vξ = −λ1
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Rarefaction - Continued

Hence, we have
du

dv
= −λ1(v , u) =

√
−p′(v)

Integrate both sides:
R1 : u − ul =

∫ v
vl

√
−p′(y) dy ≡ r1(v ;ul), vl < v

Similarly 2− rarefaction wave curve is given by
R2 : u − ul = −

∫ v
vl

√
−p′(y) dy ≡ r2(v ;ul), vl > v
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Conclude/ Describe Solution/ What It means

S1 : u − ul = −
√

(v − vl)(p(vl)− p(v), vl > v

S2 : u − ul = −
√

(v − vl)(p(vl)− p(v), vl < v

R1 : u − ul =
∫ v
vl

√
−p′(y) dy , vl < v

R2 : u − ul = −
∫ v
vl

√
−p′(y) dy , vl > v
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Application: Isentropic gas dynamics model

{
vt − ux = 0

ut + (
k

vγ
)x = 0, t > 0, x ∈ R

Note: k > 0, γ ≥ 1 are constants.

Represents the conservation of mass and momentum

v denotes the specific volume, i.e. v = ρ−1, where ρ is the
density, u denotes the velocity, and γ is the adiabatic gas
constant.

Note, in the p-system, if we choose p(v) = kv−γ , we retrieve
this isentropic gas dynamics equations.
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Definition

A centered simple wave, centered at (x0, t0) is a simple wave

depending on
(x − x0)

(t − t0)

Definition

The kth characteristic family is said to be genuinely nonlinear in a
region D ⊂ Rn provided that ∇λk · rk 6= 0 in D. If this is the case,
normalize rk by ∇λk · rk = 1.
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Solution of Riemann Problem for general hyperbolic
systems

Theorem (Lax (1957))

Let ul ∈ N ⊂ Rn.
Consider the system of n equations

ut + f(u)x = 0, x ∈ R, t > 0,

where u = (u1, ..., un), f(u) = (f1(u), f2(u), ...fn(u)), the system is
hyperbolic., and each characteristic field is either genuinely
nonlinear or linear degenerate in N.
Then, there is a neighborhood N̂ ⊂ N of ul such that if ur ∈ N̂,
the Riemann problem has precisely one solution, consisting of at
most (n + 1) constant states.
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Application To Gas Dynamics

vt − ux = 0

ut + px = 0

(e + 1/2u2)t + (pu)x = 0

 0 −1 0
pv 0 ps
0 0 0


The eigenvalues are λ1 = −

√
−pv , λ2 = 0, λ3 =

√
−pv

We have two genuinely nonlinear characteristic families, and
one linearly degenerate. So, we only have 2 families of shock
waves and rarefaction waves.

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem



Introduction to the Riemann Problem
Set Up

Introduction to 2-System
Solution to the general problem

References

Application To Gas Dynamics

vt − ux = 0

ut + px = 0

(e + 1/2u2)t + (pu)x = 0

 0 −1 0
pv 0 ps
0 0 0


The eigenvalues are λ1 = −

√
−pv , λ2 = 0, λ3 =

√
−pv

We have two genuinely nonlinear characteristic families, and
one linearly degenerate. So, we only have 2 families of shock
waves and rarefaction waves.

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem



Introduction to the Riemann Problem
Set Up

Introduction to 2-System
Solution to the general problem

References

Application To Gas Dynamics

vt − ux = 0

ut + px = 0

(e + 1/2u2)t + (pu)x = 0

 0 −1 0
pv 0 ps
0 0 0



The eigenvalues are λ1 = −
√
−pv , λ2 = 0, λ3 =

√
−pv

We have two genuinely nonlinear characteristic families, and
one linearly degenerate. So, we only have 2 families of shock
waves and rarefaction waves.

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem



Introduction to the Riemann Problem
Set Up

Introduction to 2-System
Solution to the general problem

References

Application To Gas Dynamics

vt − ux = 0

ut + px = 0

(e + 1/2u2)t + (pu)x = 0

 0 −1 0
pv 0 ps
0 0 0


The eigenvalues are λ1 = −

√
−pv , λ2 = 0, λ3 =

√
−pv

We have two genuinely nonlinear characteristic families, and
one linearly degenerate. So, we only have 2 families of shock
waves and rarefaction waves.

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem



Introduction to the Riemann Problem
Set Up

Introduction to 2-System
Solution to the general problem

References

Application To Gas Dynamics

vt − ux = 0

ut + px = 0

(e + 1/2u2)t + (pu)x = 0

 0 −1 0
pv 0 ps
0 0 0


The eigenvalues are λ1 = −

√
−pv , λ2 = 0, λ3 =

√
−pv

We have two genuinely nonlinear characteristic families, and
one linearly degenerate. So, we only have 2 families of shock
waves and rarefaction waves.

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem



Introduction to the Riemann Problem
Set Up

Introduction to 2-System
Solution to the general problem

References

Table of Contents

1 Introduction to the Riemann Problem
Shock Waves
Rarefaction Waves

2 Set Up

3 Introduction to 2-System
Example
Graphics
Description of Solutions

4 Solution to the general problem

5 References

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem



Introduction to the Riemann Problem
Set Up

Introduction to 2-System
Solution to the general problem

References

References

1. Borovikov, V. On the problem of discontinuity decay for a
system of two quasilinear equations. Dokl. Akad. , SSSR,
185 (1969), 250-252; English transl. in Sov. Math., Dokl., 10
(1969), 321-323.

2. Cooper, Jeffrey. Introduction to Partial Differential Equations
with MATLAB. New York. Springer Science. 1998.

3. Lax, P. Hyperbolic systems of conservation laws, II. Comm.
Pure Appl. Math., 10 (1957), 537-566.

4. Smoller, J. 1994. Shock Waves and Reaction–Diffusion
Equations. New York. Springer-Verlag.

5. Smoller, J. On the solution of Riemann problem with general
step data for an extended class of hyperbolic systems. Mich.
Math. J., 16 (1969), 201-210.

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem



Introduction to the Riemann Problem
Set Up

Introduction to 2-System
Solution to the general problem

References

The End

Thank You!

Questions?
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