The Riemann Problem Systems of Conservation Laws

Nitesh Mathur Under the kind supervision of Dr. Tong Li

November 23, 2019

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Table of Contents

Introduction to the Riemann Problem

- Shock Waves
- Rarefaction Waves

2 Set Up

- Introduction to 2-System
 - Example
 - Graphics
 - Description of Solutions
- ④ Solution to the general problem

5 References

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

• • = • • = •

Introduction to the Riemann Problem - Scalar Case

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Introduction to the Riemann Problem - Scalar Case

• For $u \in \mathbb{R}^1$

$$u_t + f(u)_x = 0, \qquad (1)$$

$$u(x,0) = u_0(x) = \begin{cases} u_l, & x < 0 \\ u_r, & x > 0 \end{cases}$$

where u_l and u_r are constants.

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Introduction to the Riemann Problem - Scalar Case

• For $u \in \mathbb{R}^1$

$$u_t + f(u)_x = 0, \qquad (1)$$

$$u(x,0) = u_0(x) = \begin{cases} u_l, & x < 0 \\ u_r, & x > 0 \end{cases}$$

where u_l and u_r are constants.

• This is in the scalar case of the Riemann problem.

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Introduction to the Riemann Problem - Scalar Case

• For $u \in \mathbb{R}^1$

$$u_t + f(u)_x = 0, \qquad (1)$$

$$u(x,0) = u_0(x) = \begin{cases} u_l, & x < 0 \\ u_r, & x > 0 \end{cases}$$

where u_l and u_r are constants.

- This is in the scalar case of the Riemann problem.
- f must be genuinely nonlinear so WLOG, let f'' > 0.

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Weak Solutions of Conservation Laws

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Weak Solutions of Conservation Laws

A bounded measurable function u(x, t) is called a weak solution of this IVP for any φ ∈ C₀¹(ℝ¹ × [0,∞))

$$\int \int_{t\geq 0} (u\phi_t + f(u)\phi_x) \, dxdt + \int_{t=0} u_0\phi \, dx = 0 \qquad (2)$$

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Weak Solutions of Conservation Laws

A bounded measurable function u(x, t) is called a weak solution of this IVP for any φ ∈ C₀¹(ℝ¹ × [0,∞))

$$\int \int_{t\geq 0} (u\phi_t + f(u)\phi_x) \, dxdt + \int_{t=0} u_0\phi \, dx = 0 \qquad (2)$$

• ϕ is called a test function.

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Weak Solutions of Conservation Laws

A bounded measurable function u(x, t) is called a weak solution of this IVP for any φ ∈ C₀¹(ℝ¹ × [0,∞))

$$\int \int_{t\geq 0} (u\phi_t + f(u)\phi_x) \, dxdt + \int_{t=0} u_0\phi \, dx = 0 \qquad (2)$$

- ϕ is called a test function.
- ϕ has compact support in $\mathbb{R}^1\times [0,\infty)$.

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Solution to the Riemann Problem - Shock Wave

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Solution to the Riemann Problem - Shock Wave

• The shock wave solution is:

$$u(x,t) = \begin{cases} u_l, & x < st \\ u_r, & x > st, \end{cases}$$
(3)

where

$$s = \frac{f(u_l) - f(u_r)}{u_l - u_r}$$
 (4)

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Solution to the Riemann Problem - Shock Wave

• The shock wave solution is:

$$u(x,t) = \begin{cases} u_l, & x < st \\ u_r, & x > st, \end{cases}$$
(3)

where

$$s = \frac{f(u_l) - f(u_r)}{u_l - u_r}$$
 (4)

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Solution to the Riemann Problem - Shock Wave

• The shock wave solution is:

$$u(x,t) = \begin{cases} u_l, & x < st \\ u_r, & x > st, \end{cases}$$
(3)

where

$$s = \frac{f(u_l) - f(u_r)}{u_l - u_r}$$
 (4)

This is known as the jump condition (Rankine-Hugoniot condition)

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

伺 ト イヨト イヨト

Solution to the Riemann Problem - Rarefaction Wave

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Solution to the Riemann Problem - Rarefaction Wave

• The rarefaction wave solution is:

$$u(x,t) = \begin{cases} u_{l}, & x < f'(u_{l})t \\ (f')^{-1}(\frac{x}{t}) & f'(u_{l})t < t < f'(u_{r})t \\ u_{r}, & x > f'(u_{r})t, \end{cases}$$
(5)

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Solution to the Riemann Problem - Rarefaction Wave

• The rarefaction wave solution is:

$$u(x,t) = \begin{cases} u_{l}, & x < f'(u_{l})t \\ (f')^{-1}(\frac{x}{t}) & f'(u_{l})t < t < f'(u_{r})t \\ u_{r}, & x > f'(u_{r})t, \end{cases}$$
(5)

• Since we assumed f'' > 0 for all $u, u_l < u_r \Rightarrow f'(u_l) < f'(u_r)$.

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

э

(日)

Entropy Condition

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

・ 一 マ ト ・ 日 ト ・

Entropy Condition

If f'(u_I) > s > f'(u_r), then we say that the entropy conditions are satisfied.

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Entropy Condition

- If f'(u_I) > s > f'(u_r), then we say that the entropy conditions are satisfied.
- If not, $f'(u_l) \neq s \neq f'(u_r)$, we have a rarefaction wave.

Set Up Introduction to 2-System Solution to the general problem References

Shock Waves Rarefaction Waves

Entropy Condition

- If f'(u_I) > s > f'(u_r), then we say that the entropy conditions are satisfied.
- If not, $f'(u_l) \neq s \neq f'(u_r)$, we have a rarefaction wave.
- Entropy condition guarantees uniqueness of weak solution.

Table of Contents

Introduction to the Riemann Problem

- Shock Waves
- Rarefaction Waves

2 Set Up

- Introduction to 2-System
 - Example
 - Graphics
 - Description of Solutions
- ④ Solution to the general problem

5 References

Motivation and Goal

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation and Goal

• We want to solve the Riemann Problem with *n* equations.

Motivation and Goal

• We want to solve the Riemann Problem with *n* equations.

A ≥ ►

• Consider $\mathbf{u} \in \mathbb{R}^n$.

Motivation and Goal

• We want to solve the Riemann Problem with *n* equations.

- Consider $\mathbf{u} \in \mathbb{R}^n$.
- $\mathbf{u} = (u_1, u_2, ..., u_n), \mathbf{f}(\mathbf{u}) = (f_1(\mathbf{u}), f_2(\mathbf{u}), ..., f_n(\mathbf{u}))$

Motivation and Goal

- We want to solve the Riemann Problem with *n* equations.
- Consider $\mathbf{u} \in \mathbb{R}^n$.
- $\mathbf{u} = (u_1, u_2, ..., u_n), \mathbf{f}(\mathbf{u}) = (f_1(\mathbf{u}), f_2(\mathbf{u}), ..., f_n(\mathbf{u}))$
- The system

$$\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x = \mathbf{0}$$

with initial data

$$\mathbf{u}(\mathbf{x},\mathbf{0}) = \mathbf{u}_{\mathbf{0}}(\mathbf{x}) = \begin{cases} \mathbf{u}_{l}, & x < 0\\ \mathbf{u}_{r}, & x > 0 \end{cases}$$
(6)

is the Riemann problem with $\mathbf{u}_I, \mathbf{u}_r$ constant vectors.

System: Shock Waves

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

System: Shock Waves

• By (4), if **u** has a discontinuity across x = st, the jump conditions need to be satisfied:

 $s[\mathbf{u}] = [\mathbf{f}(\mathbf{u})],$

/⊒ ▶ ◀ ⊒ ▶ ◀

where $[\mathbf{u}] = \mathbf{u}_l - \mathbf{u}_r$ and $\mathbf{f}(\mathbf{u}) = \mathbf{f}(\mathbf{u}_l) - \mathbf{f}(\mathbf{u}_r)$

System: Shock Waves

• By (4), if **u** has a discontinuity across x = st, the jump conditions need to be satisfied:

s[u] = [f(u)],

where $[\mathbf{u}] = \mathbf{u}_l - \mathbf{u}_r$ and $\mathbf{f}(\mathbf{u}) = \mathbf{f}(\mathbf{u}_l) - \mathbf{f}(\mathbf{u}_r)$

• For systems, the *entropy inequalities* are as follows:

$$\lambda_k(\mathbf{u}_r) < s < \lambda_{k+1}(\mathbf{u}_r)$$

$$\lambda_{k-1}(\mathbf{u}_l) < s < \lambda_k(\mathbf{u}_l)$$

for $1 \leq k \leq n$.

System: Shock Waves

• By (4), if **u** has a discontinuity across x = st, the jump conditions need to be satisfied:

s[u] = [f(u)],

where $[\mathbf{u}] = \mathbf{u}_l - \mathbf{u}_r$ and $\mathbf{f}(\mathbf{u}) = \mathbf{f}(\mathbf{u}_l) - \mathbf{f}(\mathbf{u}_r)$

• For systems, the *entropy inequalities* are as follows:

$$\lambda_k(\mathbf{u}_r) < s < \lambda_{k+1}(\mathbf{u}_r)$$

$$\lambda_{k-1}(\mathbf{u}_l) < s < \lambda_k(\mathbf{u}_l)$$

for $1 \leq k \leq n$.

• Such a discontinuity is called a k-shock wave.

Example Graphics Description of Solutions

Table of Contents

Introduction to the Riemann Problem

- Shock Waves
- Rarefaction Waves
- 2 Set Up
- Introduction to 2-System
 - Example
 - Graphics
 - Description of Solutions
- ④ Solution to the general problem

5 References

Example Graphics Description of Solutions

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Example Graphics Description of Solutions

▲ □ ▶ ▲ □ ▶ ▲

• *p*-system is an example of conservation law.

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

Example Graphics Description of Solutions

- *p*-system is an example of conservation law.
- In general, these class of equations have the following form:

$$\begin{cases} v_t - u_x = 0\\ u_t + p(v)_x = 0, \quad t > 0, x \in \mathbb{R} \end{cases}$$
(7)

< A > <

where p' < 0, p'' > 0.

Example Graphics Description of Solutions

p-System

- *p*-system is an example of conservation law.
- In general, these class of equations have the following form:

$$\begin{cases} v_t - u_x = 0\\ u_t + p(v)_x = 0, \quad t > 0, x \in \mathbb{R} \end{cases}$$
(7)

where p' < 0, p'' > 0.

• Rewrite the *p*-system as follows:

 $\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x = \mathbf{0}$

where
$$\mathbf{u} = (v, u)$$
 and $\mathbf{f}(\mathbf{u}) = (-u, p(v))$
Introduction to 2-System Solution to the general problem References

Example

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Example

Example Graphics Description of Solutions

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

• Compute Jacobian:

$$d\mathbf{f} = \begin{pmatrix} 0 & -1 \\ p'(v) & 0 \end{pmatrix}$$

Example Graphics Description of Solutions

æ

• (1) • (1) • (1)

Example

• Compute Jacobian:

$$d\mathbf{f} = \begin{pmatrix} 0 & -1 \\ p'(v) & 0 \end{pmatrix}$$

$$\Rightarrow (d\mathbf{f} - \lambda I) = \begin{pmatrix} -\lambda & -1 \\ p'(v) & -\lambda \end{pmatrix}$$

Example Graphics Description of Solutions

Example

۲

• Compute Jacobian:

$$d\mathbf{f} = egin{pmatrix} 0 & -1 \ p'(v) & 0 \end{pmatrix}$$

$$\Rightarrow (d\mathbf{f} - \lambda I) = egin{pmatrix} -\lambda & -1 \ p'(v) & -\lambda \end{pmatrix}$$

$$\mathsf{det}:\lambda^2+p'(\nu)=0\Rightarrow\lambda_1=-\sqrt{-p'(\nu)},\lambda_2=\sqrt{-p'(\nu)}$$

æ

• (1) • (1) • (1)

Example Graphics Description of Solutions

Example

• Compute Jacobian:

$$d\mathbf{f} = \begin{pmatrix} 0 & -1 \\ p'(v) & 0 \end{pmatrix}$$

$$\Rightarrow (d\mathbf{f} - \lambda I) = \begin{pmatrix} -\lambda & -1 \\ p'(v) & -\lambda \end{pmatrix}$$

$$\mathsf{det}:\lambda^2+p'(\nu)=0\Rightarrow\lambda_1=-\sqrt{-p'(\nu)},\lambda_2=\sqrt{-p'(\nu)}$$

▲ 同 ▶ → 三 ▶

 p' < 0 ⇒ we have real and distinct eigenvalues ⇒ strict hyperbolic system.

Example Graphics Description of Solutions

э

(日)

Example (Continued)

Example Graphics Description of Solutions

Example (Continued)

 Now, we can write the Riemann problem for the following initial conditions:

$$\mathbf{u}(\mathbf{x},\mathbf{0}) = \mathbf{u}_{\mathbf{0}}(\mathbf{x}) = \begin{cases} \mathbf{u}_{l} = (v_{l}, u_{l}), & x < 0 \\ \mathbf{u}_{r} = (v_{r}, u_{r}), & x > 0 \end{cases}$$
(8)

< A > <

Example Graphics Description of Solutions

Example (Continued)

• Now, we can write the Riemann problem for the following initial conditions:

$$\mathbf{u}(\mathbf{x},\mathbf{0}) = \mathbf{u}_{\mathbf{0}}(\mathbf{x}) = \begin{cases} \mathbf{u}_{l} = (v_{l}, u_{l}), & x < 0 \\ \mathbf{u}_{r} = (v_{r}, u_{r}), & x > 0 \end{cases}$$
(8)

• Entropy condition is satisfied.

Example Graphics Description of Solutions

Example (Continued)

• Now, we can write the Riemann problem for the following initial conditions:

$$\mathbf{u}(\mathbf{x},\mathbf{0}) = \mathbf{u}_{\mathbf{0}}(\mathbf{x}) = \begin{cases} \mathbf{u}_{l} = (v_{l}, u_{l}), & x < 0 \\ \mathbf{u}_{r} = (v_{r}, u_{r}), & x > 0 \end{cases}$$
(8)

- Entropy condition is satisfied.
- Given left state, what kind of right state can be connected to it?

Example Graphics Description of Solutions

イロト イヨト イヨト

æ

Graphics

Example Graphics Description of Solutions

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Shock Waves

Example Graphics Description of Solutions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Shock Waves

• We have two distinct types of shockwaves - 1-shocks and 2-shocks.

Example Graphics Description of Solutions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Shock Waves

- We have two distinct types of shockwaves 1-shocks and 2-shocks.
- 1-shocks (back-shocks) satisfy

 $s < \lambda_1(\mathbf{u}_l), \quad \lambda_1(\mathbf{u}_r) < s < \lambda_2(\mathbf{u}_r)$

Example Graphics Description of Solutions

Shock Waves

- We have two distinct types of shockwaves 1-shocks and 2-shocks.
- 1-shocks (back-shocks) satisfy

 $s < \lambda_1(\mathbf{u}_l), \quad \lambda_1(\mathbf{u}_r) < s < \lambda_2(\mathbf{u}_r)$

• 2- shocks (front-shocks) satisfy

$$\lambda_1(\mathbf{u}_l) < s < \lambda_2(\mathbf{u}_l), \quad \lambda_2(\mathbf{u}_r) < s$$

Example Graphics Description of Solutions

Shock Waves

- We have two distinct types of shockwaves 1-shocks and 2-shocks.
- 1-shocks (back-shocks) satisfy

$$s < \lambda_1(\mathbf{u}_l), \quad \lambda_1(\mathbf{u}_r) < s < \lambda_2(\mathbf{u}_r)$$

• 2- shocks (front-shocks) satisfy

$$\lambda_1(\mathbf{u}_l) < s < \lambda_2(\mathbf{u}_l), \quad \lambda_2(\mathbf{u}_r) < s$$

Hence, we have

$$-\sqrt{-p'(v_r)} < s < -\sqrt{-p'(v_l)}$$

and

$$\sqrt{-p'(v_r)} < s < \sqrt{-p'(v_l)}$$

Example Graphics Description of Solutions

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Shock Waves (Continued)

Example Graphics Description of Solutions

・ 一 マ ト ・ 日 ト ・

Shock Waves (Continued)

• We apply the jump condition to (8).

Example Graphics Description of Solutions

< /₽ > < E >

э

Shock Waves (Continued)

۲

• We apply the jump condition to (8).

$$\Rightarrow$$
 $s(v - v_l) = -(u - u_l)$ and $s(u - u_l) = p(v) - p(v_l)$

Example Graphics Description of Solutions

< 🗇 🕨 < 🖃 🕨

э

Shock Waves (Continued)

۲

۲

• We apply the jump condition to (8).

$$\Rightarrow s(v - v_l) = -(u - u_l)$$
 and $s(u - u_l) = p(v) - p(v_l)$

$$s = rac{-(u-u_l)}{(v-v_l)}$$
 and $s = rac{p(v)-p(v_l)}{u-u_l}$

Example Graphics Description of Solutions

Shock Waves (Continued)

۲

۲

۲

• We apply the jump condition to (8).

$$\Rightarrow s(v - v_l) = -(u - u_l)$$
 and $s(u - u_l) = p(v) - p(v_l)$

$$s = rac{-(u-u_l)}{(v-v_l)}$$
 and $s = rac{p(v)-p(v_l)}{u-u_l}$

$$-\frac{(u-u_l)}{(v-v_l)} = \frac{p(v) - p(v_l)}{u-u_l}$$
$$u-u_l = \pm \sqrt{(p(v_l) - p(v))(v-v_l)}$$

▲ □ ▶ ▲ □ ▶ ▲

B> B

Example Graphics Description of Solutions

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Continued

Example Graphics Description of Solutions

・ 一 マ ト ・ 日 ト ・

Continued

• In order to form 1-shock, we need $-\sqrt{-p'(v)} < -\sqrt{p'(v_l)}$, which means $p'(v_l) > p'(v)$ and since p'' > 0, $v_l > v$

Example Graphics Description of Solutions

・ 一 マ ト ・ 日 ト ・

Continued

• In order to form 1-shock, we need $-\sqrt{-p'(v)} < -\sqrt{p'(v_l)}$, which means $p'(v_l) > p'(v)$ and since p'' > 0, $v_l > v$

•
$$S_1: u - u_l = -\sqrt{(v - v_l)(p(v_l) - p(v))} \equiv s_1(v; \mathbf{u}_l), \ v_l > v$$

Example Graphics Description of Solutions

< 同 ト < 三 ト < 三 ト

Continued

• In order to form 1-shock, we need $-\sqrt{-p'(v)} < -\sqrt{p'(v_l)}$, which means $p'(v_l) > p'(v)$ and since p'' > 0, $v_l > v$

•
$$S_1: u - u_l = -\sqrt{(v - v_l)(p(v_l) - p(v))} \equiv s_1(v; \mathbf{u}_l), \ v_l > v$$

 $S_2: u - u_l = -\sqrt{(v - v_l)(p(v_l) - p(v))} \equiv s_2(v; \mathbf{u}_l), \ v_l < v_l$

Example Graphics Description of Solutions

э

(日)

Theory - Rarefaction Waves

Example Graphics Description of Solutions

→ < ∃ →

Theory - Rarefaction Waves

• A rarefaction wave is a continuous solution of the above system in the form $\mathbf{u} = U(x/t)$.

Example Graphics Description of Solutions

Theory - Rarefaction Waves

- A rarefaction wave is a continuous solution of the above system in the form $\mathbf{u} = U(x/t)$.
- We have 2 families of rarefaction waves, corresponding to either λ₁ or λ₂.

Example Graphics Description of Solutions

Theory - Rarefaction Waves

- A rarefaction wave is a continuous solution of the above system in the form $\mathbf{u} = U(x/t)$.
- We have 2 families of rarefaction waves, corresponding to either λ₁ or λ₂.
- The kth family is genuinely nonlinear, ∇λ_k · r_k ≠ 0, where r_k is the right eigenvalue.

Example Graphics Description of Solutions

э

(日)

Rarefaction - Continued

Example Graphics Description of Solutions

э

(日)

Rarefaction - Continued

• Let
$$\xi = x/t$$

Example Graphics Description of Solutions

э

- 4 同 ト 4 ヨ ト 4 ヨ ト

Rarefaction - Continued

• Let
$$\xi = x/t$$

• $-\xi \mathbf{u}_{\xi} + \mathbf{f}(\mathbf{u})_{\xi} = \mathbf{0}$
or $(d\mathbf{f} - \xi I)\mathbf{u}_{\xi} = \mathbf{0}$

Example Graphics Description of Solutions

Rarefaction - Continued

.

• Let
$$\xi = x/t$$

• $-\xi \mathbf{u}_{\xi} + \mathbf{f}(\mathbf{u})_{\xi} = \mathbf{0}$
or $(d\mathbf{f} - \xi I)\mathbf{u}_{\xi} = \mathbf{0}$

• Hence, \mathbf{u}_{ξ} is an eigenvector and λ_1, λ_2 are distinct eigenvalues.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example Graphics Description of Solutions

Rarefaction - Continued

.

• Let
$$\xi = x/t$$

• $-\xi \mathbf{u}_{\xi} + \mathbf{f}(\mathbf{u})_{\xi} = \mathbf{0}$ or

$$(d\mathbf{f}-\xi I)\mathbf{u}_{\xi}=\mathbf{0}$$

- Hence, \mathbf{u}_{ξ} is an eigenvector and λ_1, λ_2 are distinct eigenvalues.
- We have 2 families of rarefaction waves.

Example Graphics Description of Solutions

イロト イヨト イヨト

æ

Rarefaction

Example Graphics Description of Solutions

(日)

э

Rarefaction

۲

 $\begin{pmatrix} -\lambda_1 & -1 \\ p'(v) & -\lambda_1 \end{pmatrix} \begin{pmatrix} v_{\xi} \\ u_{\xi} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Example Graphics Description of Solutions

・ 一 マ ト ・ 日 ト ・

Rarefaction

۲

 $\begin{pmatrix} -\lambda_1 & -1 \\ p'(\mathbf{v}) & -\lambda_1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{\xi} \\ \mathbf{u}_{\xi} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$

• Eigenvector $\mathbf{u}_{\xi} = (v_{\xi}, u_{\xi})^t$ satisfies this.
Example Graphics Description of Solutions

< 🗇 🕨 < 🖃 🕨

Rarefaction

۲

$$egin{pmatrix} -\lambda_1 & -1 \ p'(v) & -\lambda_1 \end{pmatrix} egin{pmatrix} v_\xi \ u_\xi \end{pmatrix} = egin{pmatrix} 0 \ 0 \end{pmatrix}$$

• Eigenvector $\mathbf{u}_{\xi} = (v_{\xi}, u_{\xi})^t$ satisfies this.

•
$$\lambda_1 v_{\xi} + u_{\xi} = 0, \Rightarrow v_{\xi}, u_{\xi} \neq 0$$

Example Graphics Description of Solutions

▲ 同 ▶ → 三 ▶

Rarefaction

۲

$$egin{pmatrix} -\lambda_1 & -1 \ p'(v) & -\lambda_1 \end{pmatrix} egin{pmatrix} v_\xi \ u_\xi \end{pmatrix} = egin{pmatrix} 0 \ 0 \end{pmatrix}$$

• Eigenvector $\mathbf{u}_{\xi} = (v_{\xi}, u_{\xi})^t$ satisfies this.

•
$$\lambda_1 v_{\xi} + u_{\xi} = 0, \Rightarrow v_{\xi}, u_{\xi} \neq 0$$

• Since
$$v_{\xi} \neq 0$$
, $u_{\xi}/v_{\xi} = -\lambda_1$

Example Graphics Description of Solutions

э

(日)

Rarefaction - Continued

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

Example Graphics Description of Solutions

э

(日)

Rarefaction - Continued

• Hence, we have
$$rac{du}{dv} = -\lambda_1(v,u) = \sqrt{-p'(v)}$$

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

Example Graphics Description of Solutions

э

(日)

Rarefaction - Continued

• Hence, we have
$$\displaystyle rac{du}{dv} = -\lambda_1(v,u) = \sqrt{-p'(v)}$$

• Integrate both sides:

$$R_1 : u - u_l = \int_{v_l}^v \sqrt{-p'(y)} \, dy \equiv r_1(v; \mathbf{u}_l), v_l < v$$

Example Graphics Description of Solutions

Rarefaction - Continued

• Hence, we have
$$rac{du}{dv} = -\lambda_1(v,u) = \sqrt{-p'(v)}$$

- Integrate both sides: $R_1 : u - u_l = \int_{v_l}^v \sqrt{-p'(y)} \, dy \equiv r_1(v; \mathbf{u}_l), v_l < v$
- Similarly 2- rarefaction wave curve is given by $R_2: u - u_l = -\int_{v_l}^v \sqrt{-p'(y)} dy \equiv r_2(v; \mathbf{u}_l), v_l > v$

Example Graphics Description of Solutions

▲ □ ▶ ▲ □ ▶ ▲

Conclude/ Describe Solution/ What It means

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

Example Graphics Description of Solutions

▲ □ ▶ ▲ □ ▶ ▲

•
$$S_1: u - u_l = -\sqrt{(v - v_l)(p(v_l) - p(v))}, v_l > v$$

Example Graphics Description of Solutions

▲ □ ▶ ▲ □ ▶ ▲

•
$$S_1: u - u_l = -\sqrt{(v - v_l)(p(v_l) - p(v))}, v_l > v$$

• $S_2: u - u_l = -\sqrt{(v - v_l)(p(v_l) - p(v))}, v_l < v$

Example Graphics Description of Solutions

▲ □ ▶ ▲ □ ▶ ▲

•
$$S_1: u - u_l = -\sqrt{(v - v_l)(p(v_l) - p(v))}, v_l > v$$

•
$$S_2: u - u_l = -\sqrt{(v - v_l)(p(v_l) - p(v), v_l < v)}$$

•
$$R_1: u - u_l = \int_{v_l}^v \sqrt{-p'(y)} \, dy, v_l < v$$

Example Graphics Description of Solutions

▲ □ ▶ ▲ □ ▶ ▲

э

•
$$S_1: u - u_l = -\sqrt{(v - v_l)(p(v_l) - p(v))}, v_l > v$$

• $S_2: u - u_l = -\sqrt{(v - v_l)(p(v_l) - p(v))}, v_l < v$

•
$$R_1: u - u_l = \int_{v_l}^v \sqrt{-p'(y)} \, dy, v_l < v$$

•
$$R_2: u - u_l = -\int_{v_l}^v \sqrt{-p'(y)} \, dy, v_l > v$$

Example Graphics Description of Solutions

→ < Ξ → <</p>

Application: Isentropic gas dynamics model

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

Example Graphics Description of Solutions

Application: Isentropic gas dynamics model

۲

$$\left\{ egin{array}{l} v_t-u_x=0\ u_t+(rac{k}{v^\gamma})_x=0, \ t>0, x\in \mathbb{R} \end{array}
ight.$$

Example Graphics Description of Solutions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Application: Isentropic gas dynamics model

۹

$$\left\{ egin{array}{ll} v_t-u_x=0\ u_t+(rac{k}{v^\gamma})_x=0, & t>0, x\in \mathbb{R} \end{array}
ight.$$

• Note: $k > 0, \gamma \ge 1$ are constants.

Example Graphics Description of Solutions

▲ □ ▶ ▲ □ ▶ ▲

Application: Isentropic gas dynamics model

۲

$$\left\{ egin{array}{l} v_t-u_x=0\ u_t+(rac{k}{v^\gamma})_x=0, \ t>0, x\in \mathbb{R} \end{array}
ight.$$

- Note: $k > 0, \gamma \ge 1$ are constants.
- Represents the conservation of mass and momentum

Example Graphics Description of Solutions

Application: Isentropic gas dynamics model

۲

$$\left\{ egin{array}{l} v_t-u_x=0\ u_t+(rac{k}{v^\gamma})_x=0, \ t>0, x\in \mathbb{R} \end{array}
ight.$$

• Note: $k > 0, \gamma \ge 1$ are constants.

4

- Represents the conservation of mass and momentum
- v denotes the specific volume, i.e. v = ρ⁻¹, where ρ is the density, u denotes the velocity, and γ is the adiabatic gas constant.

Example Graphics Description of Solutions

Application: Isentropic gas dynamics model

۲

$$\left\{ egin{array}{l} v_t-u_x=0\ u_t+(rac{k}{v^\gamma})_x=0, \ t>0, x\in \mathbb{R} \end{array}
ight.$$

- Note: $k > 0, \gamma \ge 1$ are constants.
- Represents the conservation of mass and momentum
- v denotes the specific volume, i.e. v = ρ⁻¹, where ρ is the density, u denotes the velocity, and γ is the adiabatic gas constant.
- Note, in the *p*-system, if we choose $p(v) = kv^{-\gamma}$, we retrieve this isentropic gas dynamics equations.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Table of Contents

Introduction to the Riemann Problem

- Shock Waves
- Rarefaction Waves

2 Set Up

- Introduction to 2-System
 - Example
 - Graphics
 - Description of Solutions
- 4 Solution to the general problem
 - 5 References

Definition

A centered simple wave, centered at (x_0, t_0) is a simple wave depending on $\frac{(x - x_0)}{(t - t_0)}$

Definition

The kth characteristic family is said to be genuinely nonlinear in a region $D \subset \mathbb{R}^n$ provided that $\nabla \lambda_k \cdot r_k \neq 0$ in D. If this is the case, normalize r_k by $\nabla \lambda_k \cdot r_k = 1$.

A ≥ ►

Solution of Riemann Problem for general hyperbolic systems

Theorem (Lax (1957))

Let $\mathbf{u}_{l} \in N \subset \mathbb{R}^{n}$. Consider the system of n equations

$$\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x = 0, x \in \mathbb{R}, t > 0,$$

where $\mathbf{u} = (u_1, ..., u_n)$, $\mathbf{f}(\mathbf{u}) = (f_1(\mathbf{u}), f_2(\mathbf{u}), ..., f_n(\mathbf{u}))$, the system is hyperbolic., and each characteristic field is either genuinely nonlinear or linear degenerate in N. Then, there is a neighborhood $\hat{N} \subset N$ of \mathbf{u}_l such that if $\mathbf{u}_r \in \hat{N}$, the Riemann problem has precisely one solution, consisting of at most (n + 1) constant states.

Application To Gas Dynamics

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

▲ □ ▶ ▲ □ ▶ ▲

э

э

Application To Gas Dynamics

۲

$$v_t - u_x = 0$$

 $u_t + p_x = 0$
 $(e + 1/2u^2)_t + (pu)_x = 0$

э

э

▲ □ ▶ ▲ □ ▶ ▲

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

Application To Gas Dynamics

۲

۲

 $v_t - u_x = 0$ $u_t + p_x = 0$ $(e + 1/2u^2)_t + (pu)_x = 0$ $\begin{pmatrix} 0 & -1 & 0\\ p_v & 0 & p_s\\ 0 & 0 & 0 \end{pmatrix}$

< 同 > < 三 > < 三 >

э

Application To Gas Dynamics

٢

 $v_t - u_x = 0$ $u_t + p_x = 0$ $(e + 1/2u^2)_t + (pu)_x = 0$ $\begin{pmatrix} 0 & -1 & 0\\ p_v & 0 & p_s\\ 0 & 0 & 0 \end{pmatrix}$ $\bullet \text{ The eigenvalues are } \lambda_1 = -\sqrt{-p_v}, \lambda_2 = 0, \lambda_3 = \sqrt{-p_v}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Application To Gas Dynamics

۲

 $v_t - u_x = 0$ $u_t + p_x = 0$ $(e + 1/2u^2)_t + (pu)_x = 0$ $\begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$

$$\begin{pmatrix} 0 & -1 & 0 \\ p_v & 0 & p_s \\ 0 & 0 & 0 \end{pmatrix}$$

• The eigenvalues are $\lambda_1 = -\sqrt{-p_v}, \lambda_2 = 0, \lambda_3 = \sqrt{-p_v}$

 We have two genuinely nonlinear characteristic families, and one linearly degenerate. So, we only have 2 families of shock waves and rarefaction waves.

Table of Contents

Introduction to the Riemann Problem

- Shock Waves
- Rarefaction Waves

2 Set Up

- Introduction to 2-System
 - Example
 - Graphics
 - Description of Solutions
- 4 Solution to the general problem

5 References

References

- Borovikov, V. On the problem of discontinuity decay for a system of two quasilinear equations. *Dokl. Akad.*, *SSSR*, **185** (1969), 250-252; English transl. in *Sov. Math.*, *Dokl.*, **10** (1969), 321-323.
- 2. Cooper, Jeffrey. Introduction to Partial Differential Equations with MATLAB. New York. Springer Science. 1998.
- 3. Lax, P. Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math., **10** (1957), 537-566.
- 4. Smoller, J. 1994. Shock Waves and Reaction–Diffusion Equations. New York. Springer-Verlag.
- Smoller, J. On the solution of Riemann problem with general step data for an extended class of hyperbolic systems. *Mich. Math. J.*, **16** (1969), 201-210.

- Thank You!
- Questions?

Nitesh Mathur Under the kind supervision of Dr. Tong Li The Riemann Problem

æ

-

• (1) • (1) • (1)