The Riemann Problem

Systems of Conservation Laws

Nitesh Mathur
Under the kind supervision of Dr. Tong Li

November 23, 2019

Introduction to the Riemann Problem

Table of Contents

(1) Introduction to the Riemann Problem

- Shock Waves
- Rarefaction Waves
(2) Set Up
(3) Introduction to 2-System
- Example
- Graphics
- Description of Solutions
(7) Solution to the general problem
(5) References

Introduction to the Riemann Problem
Set Up
Introduction to 2-System Solution to the general problem References

Introduction to the Riemann Problem - Scalar Case

Introduction to the Riemann Problem - Scalar Case

- For $u \in \mathbb{R}^{1}$

$$
\begin{gathered}
u_{t}+f(u)_{x}=0, \\
u(x, 0)=u_{0}(x)= \begin{cases}u_{l}, & x<0 \\
u_{r}, & x>0\end{cases}
\end{gathered}
$$

where u_{l} and u_{r} are constants.

Introduction to the Riemann Problem - Scalar Case

- For $u \in \mathbb{R}^{1}$

$$
\begin{gather*}
u_{t}+f(u)_{x}=0, \tag{1}\\
u(x, 0)=u_{0}(x)= \begin{cases}u_{l}, & x<0 \\
u_{r}, & x>0\end{cases}
\end{gather*}
$$

where u_{l} and u_{r} are constants.

- This is in the scalar case of the Riemann problem.

Introduction to the Riemann Problem - Scalar Case

- For $u \in \mathbb{R}^{1}$

$$
\begin{gather*}
u_{t}+f(u)_{x}=0, \tag{1}\\
u(x, 0)=u_{0}(x)= \begin{cases}u_{l}, & x<0 \\
u_{r}, & x>0\end{cases}
\end{gather*}
$$

where u_{l} and u_{r} are constants.

- This is in the scalar case of the Riemann problem.
- f must be genuinely nonlinear so WLOG, let $f^{\prime \prime}>0$.

Introduction to the Riemann Problem

Weak Solutions of Conservation Laws

Weak Solutions of Conservation Laws

- A bounded measurable function $u(x, t)$ is called a weak solution of this IVP for any $\phi \in C_{0}^{1}\left(\mathbb{R}^{1} \times[0, \infty)\right)$

$$
\begin{equation*}
\iint_{t \geq 0}\left(u \phi_{t}+f(u) \phi_{x}\right) d x d t+\int_{t=0} u_{0} \phi d x=0 \tag{2}
\end{equation*}
$$

Weak Solutions of Conservation Laws

- A bounded measurable function $u(x, t)$ is called a weak solution of this IVP for any $\phi \in C_{0}^{1}\left(\mathbb{R}^{1} \times[0, \infty)\right)$

$$
\begin{equation*}
\iint_{t \geq 0}\left(u \phi_{t}+f(u) \phi_{x}\right) d x d t+\int_{t=0} u_{0} \phi d x=0 \tag{2}
\end{equation*}
$$

- ϕ is called a test function.

Weak Solutions of Conservation Laws

- A bounded measurable function $u(x, t)$ is called a weak solution of this IVP for any $\phi \in C_{0}^{1}\left(\mathbb{R}^{1} \times[0, \infty)\right)$

$$
\begin{equation*}
\iint_{t \geq 0}\left(u \phi_{t}+f(u) \phi_{x}\right) d x d t+\int_{t=0} u_{0} \phi d x=0 \tag{2}
\end{equation*}
$$

- ϕ is called a test function.
- ϕ has compact support in $\mathbb{R}^{1} \times[0, \infty)$.

Introduction to the Riemann Problem

Solution to the Riemann Problem - Shock Wave

Solution to the Riemann Problem - Shock Wave

- The shock wave solution is:

$$
u(x, t)= \begin{cases}u_{I}, & x<s t \tag{3}\\ u_{r}, & x>s t\end{cases}
$$

where

$$
\begin{equation*}
s=\frac{f\left(u_{l}\right)-f\left(u_{r}\right)}{u_{l}-u_{r}} \tag{4}
\end{equation*}
$$

Solution to the Riemann Problem - Shock Wave

- The shock wave solution is:

$$
u(x, t)= \begin{cases}u_{I}, & x<s t \tag{3}\\ u_{r}, & x>s t\end{cases}
$$

where

$$
\begin{equation*}
s=\frac{f\left(u_{l}\right)-f\left(u_{r}\right)}{u_{l}-u_{r}} \tag{4}
\end{equation*}
$$

Solution to the Riemann Problem - Shock Wave

- The shock wave solution is:

$$
u(x, t)= \begin{cases}u_{I}, & x<s t \tag{3}\\ u_{r}, & x>s t\end{cases}
$$

where

$$
\begin{equation*}
s=\frac{f\left(u_{l}\right)-f\left(u_{r}\right)}{u_{I}-u_{r}} \tag{4}
\end{equation*}
$$

- This is known as the jump condition (Rankine-Hugoniot condition)

Introduction to the Riemann Problem

Solution to the Riemann Problem - Rarefaction Wave

Solution to the Riemann Problem - Rarefaction Wave

- The rarefaction wave solution is:

$$
u(x, t)= \begin{cases}u_{l}, & x<f^{\prime}\left(u_{l}\right) t \tag{5}\\ \left(f^{\prime}\right)^{-1}\left(\frac{x}{t}\right) & f^{\prime}\left(u_{l}\right) t<t<f^{\prime}\left(u_{r}\right) t \\ u_{r}, & x>f^{\prime}\left(u_{r}\right) t\end{cases}
$$

Solution to the Riemann Problem - Rarefaction Wave

- The rarefaction wave solution is:

$$
u(x, t)= \begin{cases}u_{l}, & x<f^{\prime}\left(u_{l}\right) t \tag{5}\\ \left(f^{\prime}\right)^{-1}\left(\frac{x}{t}\right) & f^{\prime}\left(u_{l}\right) t<t<f^{\prime}\left(u_{r}\right) t \\ u_{r}, & x>f^{\prime}\left(u_{r}\right) t\end{cases}
$$

- Since we assumed $f^{\prime \prime}>0$ for all $u, u_{l}<u_{r} \Rightarrow f^{\prime}\left(u_{l}\right)<f^{\prime}\left(u_{r}\right)$.

Introduction to the Riemann Problem

Entropy Condition

Entropy Condition

- If $f^{\prime}\left(u_{l}\right)>s>f^{\prime}\left(u_{r}\right)$, then we say that the entropy conditions are satisfied.

Entropy Condition

- If $f^{\prime}\left(u_{l}\right)>s>f^{\prime}\left(u_{r}\right)$, then we say that the entropy conditions are satisfied.
- If not, $f^{\prime}\left(u_{l}\right) \ngtr s \ngtr f^{\prime}\left(u_{r}\right)$, we have a rarefaction wave.

Entropy Condition

- If $f^{\prime}\left(u_{l}\right)>s>f^{\prime}\left(u_{r}\right)$, then we say that the entropy conditions are satisfied.
- If not, $f^{\prime}\left(u_{l}\right) \ngtr s \ngtr f^{\prime}\left(u_{r}\right)$, we have a rarefaction wave.
- Entropy condition guarantees uniqueness of weak solution.

Table of Contents

(1) Introduction to the Riemann Problem

- Shock Waves
- Rarefaction Waves
(2) Set Up
(3) Introduction to 2-System
- Example
- Graphics
- Description of Solutions

4 Solution to the general problem
(5) References

Introduction to the Riemann Problem

Motivation and Goal

Motivation and Goal

- We want to solve the Riemann Problem with n equations.

Motivation and Goal

- We want to solve the Riemann Problem with n equations.
- Consider $\mathbf{u} \in \mathbb{R}^{n}$.

Motivation and Goal

- We want to solve the Riemann Problem with n equations.
- Consider $\mathbf{u} \in \mathbb{R}^{n}$.
- $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right), \mathbf{f}(\mathbf{u})=\left(f_{1}(\mathbf{u}), f_{2}(\mathbf{u}), \ldots, f_{n}(\mathbf{u})\right)$

Motivation and Goal

- We want to solve the Riemann Problem with n equations.
- Consider $\mathbf{u} \in \mathbb{R}^{n}$.
- $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right), \mathbf{f}(\mathbf{u})=\left(f_{1}(\mathbf{u}), f_{2}(\mathbf{u}), \ldots, f_{n}(\mathbf{u})\right)$
- The system

$$
\mathbf{u}_{t}+\mathbf{f}(\mathbf{u})_{x}=\mathbf{0}
$$

with initial data

$$
\mathbf{u}(\mathbf{x}, \mathbf{0})=\mathbf{u}_{\mathbf{0}}(\mathbf{x})= \begin{cases}\mathbf{u}_{/}, & x<0 \tag{6}\\ \mathbf{u}_{r}, & x>0\end{cases}
$$

is the Riemann problem with $\mathbf{u}_{/}, \mathbf{u}_{r}$ constant vectors.

System: Shock Waves

System: Shock Waves

- By (4), if \mathbf{u} has a discontinuity across $x=s t$, the jump conditions need to be satisfied:

$$
\begin{gathered}
s[\mathbf{u}]=[\mathbf{f}(\mathbf{u})] \\
\text { where }[\mathbf{u}]=\mathbf{u}_{l}-\mathbf{u}_{r} \text { and } \mathbf{f}(\mathbf{u})=\mathbf{f}\left(\mathbf{u}_{l}\right)-\mathbf{f}\left(\mathbf{u}_{r}\right)
\end{gathered}
$$

System: Shock Waves

- By (4), if \mathbf{u} has a discontinuity across $x=s t$, the jump conditions need to be satisfied:

$$
s[\mathbf{u}]=[\mathbf{f}(\mathbf{u})],
$$

where $[\mathbf{u}]=\mathbf{u}_{l}-\mathbf{u}_{r}$ and $\mathbf{f}(\mathbf{u})=\mathbf{f}\left(\mathbf{u}_{l}\right)-\mathbf{f}\left(\mathbf{u}_{r}\right)$

- For systems, the entropy inequalities are as follows:

$$
\begin{aligned}
& \lambda_{k}\left(\mathbf{u}_{r}\right)<s<\lambda_{k+1}\left(\mathbf{u}_{r}\right) \\
& \lambda_{k-1}\left(\mathbf{u}_{l}\right)<s<\lambda_{k}\left(\mathbf{u}_{l}\right)
\end{aligned}
$$

for $1 \leq k \leq n$.

System: Shock Waves

- By (4), if \mathbf{u} has a discontinuity across $x=s t$, the jump conditions need to be satisfied:

$$
s[\mathbf{u}]=[\mathbf{f}(\mathbf{u})],
$$

where $[\mathbf{u}]=\mathbf{u}_{/}-\mathbf{u}_{r}$ and $\mathbf{f}(\mathbf{u})=\mathbf{f}\left(\mathbf{u}_{I}\right)-\mathbf{f}\left(\mathbf{u}_{r}\right)$

- For systems, the entropy inequalities are as follows:

$$
\begin{aligned}
& \lambda_{k}\left(\mathbf{u}_{r}\right)<s<\lambda_{k+1}\left(\mathbf{u}_{r}\right) \\
& \lambda_{k-1}\left(\mathbf{u}_{l}\right)<s<\lambda_{k}\left(\mathbf{u}_{l}\right)
\end{aligned}
$$

for $1 \leq k \leq n$.

- Such a discontinuity is called a k-shock wave.

Table of Contents

(1) Introduction to the Riemann Problem

- Shock Waves
- Rarefaction Waves
(2) Set Up
(3) Introduction to 2-System
- Example
- Graphics
- Description of Solutions
(4) Solution to the general problem
(5) References

Example

Graphics
Description of Solutions

p-System

p-System

- p-system is an example of conservation law.

p-System

- p-system is an example of conservation law.
- In general, these class of equations have the following form:

$$
\left\{\begin{array}{l}
v_{t}-u_{x}=0 \tag{7}\\
u_{t}+p(v)_{x}=0, \quad t>0, x \in \mathbb{R}
\end{array}\right.
$$

where $p^{\prime}<0, p^{\prime \prime}>0$.

p-System

- p-system is an example of conservation law.
- In general, these class of equations have the following form:

$$
\left\{\begin{array}{l}
v_{t}-u_{x}=0 \tag{7}\\
u_{t}+p(v)_{x}=0, \quad t>0, x \in \mathbb{R}
\end{array}\right.
$$

where $p^{\prime}<0, p^{\prime \prime}>0$.

- Rewrite the p-system as follows:

$$
\begin{array}{r}
\mathbf{u}_{t}+\mathbf{f}(\mathbf{u})_{x}=\mathbf{0} \\
\text { where } \mathbf{u}=(v, u) \text { and } \mathbf{f}(\mathbf{u})=(-u, p(v))
\end{array}
$$

Example

Example

- Compute Jacobian:

$$
d \mathbf{f}=\left(\begin{array}{cc}
0 & -1 \\
p^{\prime}(v) & 0
\end{array}\right)
$$

Example

- Compute Jacobian:

$$
d \mathbf{f}=\left(\begin{array}{cc}
0 & -1 \\
p^{\prime}(v) & 0
\end{array}\right)
$$

$$
\Rightarrow(d \mathbf{f}-\lambda I)=\left(\begin{array}{cc}
-\lambda & -1 \\
p^{\prime}(v) & -\lambda
\end{array}\right)
$$

Example

- Compute Jacobian:

$$
d \mathbf{f}=\left(\begin{array}{cc}
0 & -1 \\
p^{\prime}(v) & 0
\end{array}\right)
$$

-

$$
\Rightarrow(d \mathbf{f}-\lambda I)=\left(\begin{array}{cc}
-\lambda & -1 \\
p^{\prime}(v) & -\lambda
\end{array}\right)
$$

$\operatorname{det}: \lambda^{2}+p^{\prime}(v)=0 \Rightarrow \lambda_{1}=-\sqrt{-p^{\prime}(v)}, \lambda_{2}=\sqrt{-p^{\prime}(v)}$

Example

- Compute Jacobian:

$$
d \mathbf{f}=\left(\begin{array}{cc}
0 & -1 \\
p^{\prime}(v) & 0
\end{array}\right)
$$

-

$$
\Rightarrow(d \mathbf{f}-\lambda I)=\left(\begin{array}{cc}
-\lambda & -1 \\
p^{\prime}(v) & -\lambda
\end{array}\right)
$$

-

$\operatorname{det}: \lambda^{2}+p^{\prime}(v)=0 \Rightarrow \lambda_{1}=-\sqrt{-p^{\prime}(v)}, \lambda_{2}=\sqrt{-p^{\prime}(v)}$

- $p^{\prime}<0 \Rightarrow$ we have real and distinct eigenvalues \Rightarrow strict hyperbolic system.

Example (Continued)

Example (Continued)

- Now, we can write the Riemann problem for the following initial conditions:

$$
\mathbf{u}(\mathbf{x}, \mathbf{0})=\mathbf{u}_{\mathbf{0}}(\mathbf{x})= \begin{cases}\mathbf{u}_{l}=\left(v_{l}, u_{l}\right), & x<0 \tag{8}\\ \mathbf{u}_{r}=\left(v_{r}, u_{r}\right), & x>0\end{cases}
$$

Example (Continued)

- Now, we can write the Riemann problem for the following initial conditions:

$$
\mathbf{u}(\mathbf{x}, \mathbf{0})=\mathbf{u}_{\mathbf{0}}(\mathbf{x})= \begin{cases}\mathbf{u}_{l}=\left(v_{l}, u_{l}\right), & x<0 \tag{8}\\ \mathbf{u}_{r}=\left(v_{r}, u_{r}\right), & x>0\end{cases}
$$

- Entropy condition is satisfied.

Example (Continued)

- Now, we can write the Riemann problem for the following initial conditions:

$$
\mathbf{u}(\mathbf{x}, \mathbf{0})=\mathbf{u}_{\mathbf{0}}(\mathbf{x})= \begin{cases}\mathbf{u}_{l}=\left(v_{l}, u_{l}\right), & x<0 \tag{8}\\ \mathbf{u}_{r}=\left(v_{r}, u_{r}\right), & x>0\end{cases}
$$

- Entropy condition is satisfied.
- Given left state, what kind of right state can be connected to it?

Graphics

Set Up
 Introduction to 2-System Solution to the general problem References

Example

Graphics
Description of Solutions

Shock Waves

Shock Waves

- We have two distinct types of shockwaves - 1 -shocks and 2-shocks.

Shock Waves

- We have two distinct types of shockwaves - 1 -shocks and 2-shocks.
- 1-shocks (back-shocks) satisfy

$$
s<\lambda_{1}\left(\mathbf{u}_{l}\right), \quad \lambda_{1}\left(\mathbf{u}_{r}\right)<s<\lambda_{2}\left(\mathbf{u}_{r}\right)
$$

Shock Waves

- We have two distinct types of shockwaves - 1 -shocks and 2-shocks.
- 1-shocks (back-shocks) satisfy

$$
s<\lambda_{1}\left(\mathbf{u}_{l}\right), \quad \lambda_{1}\left(\mathbf{u}_{r}\right)<s<\lambda_{2}\left(\mathbf{u}_{r}\right)
$$

- 2- shocks (front-shocks) satisfy

$$
\lambda_{1}\left(\mathbf{u}_{l}\right)<s<\lambda_{2}\left(\mathbf{u}_{l}\right), \quad \lambda_{2}\left(\mathbf{u}_{r}\right)<s
$$

Shock Waves

- We have two distinct types of shockwaves - 1 -shocks and 2-shocks.
- 1-shocks (back-shocks) satisfy

$$
s<\lambda_{1}\left(\mathbf{u}_{l}\right), \quad \lambda_{1}\left(\mathbf{u}_{r}\right)<s<\lambda_{2}\left(\mathbf{u}_{r}\right)
$$

- 2- shocks (front-shocks) satisfy

$$
\lambda_{1}\left(\mathbf{u}_{l}\right)<s<\lambda_{2}\left(\mathbf{u}_{l}\right), \quad \lambda_{2}\left(\mathbf{u}_{r}\right)<s
$$

- Hence, we have

$$
-\sqrt{-p^{\prime}\left(v_{r}\right)}<s<-\sqrt{-p^{\prime}\left(v_{l}\right)}
$$

and

$$
\sqrt{-p^{\prime}\left(v_{r}\right)}<s<\sqrt{-p^{\prime}\left(v_{l}\right)}
$$

Example

Graphics
Description of Solutions

Shock Waves (Continued)

Shock Waves (Continued)

- We apply the jump condition to (8).

Shock Waves (Continued)

- We apply the jump condition to (8).

$$
\Rightarrow s\left(v-v_{l}\right)=-\left(u-u_{l}\right) \text { and } s\left(u-u_{l}\right)=p(v)-p\left(v_{l}\right)
$$

Shock Waves (Continued)

- We apply the jump condition to (8).
-

$$
\Rightarrow s\left(v-v_{l}\right)=-\left(u-u_{l}\right) \text { and } s\left(u-u_{l}\right)=p(v)-p\left(v_{l}\right)
$$

$$
s=\frac{-\left(u-u_{l}\right)}{\left(v-v_{l}\right)} \text { and } s=\frac{p(v)-p\left(v_{l}\right)}{u-u_{l}}
$$

Shock Waves (Continued)

- We apply the jump condition to (8).
-

$$
\Rightarrow s\left(v-v_{l}\right)=-\left(u-u_{l}\right) \text { and } s\left(u-u_{l}\right)=p(v)-p\left(v_{l}\right)
$$

-

$$
s=\frac{-\left(u-u_{l}\right)}{\left(v-v_{l}\right)} \text { and } s=\frac{p(v)-p\left(v_{l}\right)}{u-u_{l}}
$$

$$
\begin{aligned}
-\frac{\left(u-u_{l}\right)}{\left(v-v_{l}\right)} & =\frac{p(v)-p\left(v_{l}\right)}{u-u_{l}} \\
u-u_{l} & = \pm \sqrt{\left(p\left(v_{l}\right)-p(v)\right)\left(v-v_{l}\right)}
\end{aligned}
$$

Set Up

Continued

Continued

- In order to form 1-shock, we need $-\sqrt{-p^{\prime}(v)}<-\sqrt{p^{\prime}\left(v_{l}\right)}$, which means $p^{\prime}\left(v_{l}\right)>p^{\prime}(v)$ and since $p^{\prime \prime}>0, v_{l}>v$

Continued

- In order to form 1-shock, we need $-\sqrt{-p^{\prime}(v)}<-\sqrt{p^{\prime}\left(v_{l}\right)}$, which means $p^{\prime}\left(v_{l}\right)>p^{\prime}(v)$ and since $p^{\prime \prime}>0, v_{l}>v$
- $S_{1}: u-u_{l}=-\sqrt{\left(v-v_{l}\right)\left(p\left(v_{l}\right)-p(v)\right)} \equiv s_{1}\left(v ; \mathbf{u}_{l}\right), v_{l}>v$

Continued

- In order to form 1-shock, we need $-\sqrt{-p^{\prime}(v)}<-\sqrt{p^{\prime}\left(v_{l}\right)}$, which means $p^{\prime}\left(v_{l}\right)>p^{\prime}(v)$ and since $p^{\prime \prime}>0, v_{l}>v$
- $S_{1}: u-u_{l}=-\sqrt{\left(v-v_{l}\right)\left(p\left(v_{l}\right)-p(v)\right)} \equiv s_{1}\left(v ; \mathbf{u}_{l}\right), v_{l}>v$
- Similarly,

$$
S_{2}: u-u_{l}=-\sqrt{\left(v-v_{l}\right)\left(p\left(v_{l}\right)-p(v)\right.} \equiv s_{2}\left(v ; \mathbf{u}_{l}\right), \quad v_{l}<v
$$

Example

Graphics
Description of Solutions

Theory - Rarefaction Waves

Theory - Rarefaction Waves

- A rarefaction wave is a continuous solution of the above system in the form $\mathbf{u}=U(x / t)$.

Theory - Rarefaction Waves

- A rarefaction wave is a continuous solution of the above system in the form $\mathbf{u}=U(x / t)$.
- We have 2 families of rarefaction waves, corresponding to either λ_{1} or λ_{2}.

Theory - Rarefaction Waves

- A rarefaction wave is a continuous solution of the above system in the form $\mathbf{u}=U(x / t)$.
- We have 2 families of rarefaction waves, corresponding to either λ_{1} or λ_{2}.
- The k th family is genuinely nonlinear, $\nabla \lambda_{k} \cdot \mathbf{r}_{\mathbf{k}} \neq 0$, where $\mathbf{r}_{\mathbf{k}}$ is the right eigenvalue.

Set Up
 Introduction to 2-System Solution to the general problem References

Rarefaction - Continued

Rarefaction - Continued

- Let $\xi=x / t$

Rarefaction - Continued

- Let $\xi=x / t$
-

$$
-\xi \mathbf{u}_{\xi}+\mathbf{f}(\mathbf{u})_{\xi}=\mathbf{0}
$$

or

$$
(d \mathbf{f}-\xi l) \mathbf{u}_{\xi}=\mathbf{0}
$$

Rarefaction - Continued

- Let $\xi=x / t$
-

$$
-\xi \mathbf{u}_{\xi}+\mathbf{f}(\mathbf{u})_{\xi}=\mathbf{0}
$$

or

$$
(d \mathbf{f}-\xi l) \mathbf{u}_{\xi}=\mathbf{0}
$$

- Hence, \mathbf{u}_{ξ} is an eigenvector and λ_{1}, λ_{2} are distinct eigenvalues.

Rarefaction - Continued

- Let $\xi=x / t$
-

$$
-\xi \mathbf{u}_{\xi}+\mathbf{f}(\mathbf{u})_{\xi}=\mathbf{0}
$$

or

$$
(d \mathbf{f}-\xi l) \mathbf{u}_{\xi}=\mathbf{0}
$$

- Hence, \mathbf{u}_{ξ} is an eigenvector and λ_{1}, λ_{2} are distinct eigenvalues.
- We have 2 families of rarefaction waves.

Set Up

Rarefaction

Rarefaction

0

$$
\left(\begin{array}{cc}
-\lambda_{1} & -1 \\
p^{\prime}(v) & -\lambda_{1}
\end{array}\right)\binom{v_{\xi}}{u_{\xi}}=\binom{0}{0}
$$

Rarefaction

-

$$
\left(\begin{array}{cc}
-\lambda_{1} & -1 \\
p^{\prime}(v) & -\lambda_{1}
\end{array}\right)\binom{v_{\xi}}{u_{\xi}}=\binom{0}{0}
$$

- Eigenvector $\mathbf{u}_{\xi}=\left(v_{\xi}, u_{\xi}\right)^{t}$ satisfies this.

Rarefaction

-

$$
\left(\begin{array}{cc}
-\lambda_{1} & -1 \\
p^{\prime}(v) & -\lambda_{1}
\end{array}\right)\binom{v_{\xi}}{u_{\xi}}=\binom{0}{0}
$$

- Eigenvector $\mathbf{u}_{\xi}=\left(v_{\xi}, u_{\xi}\right)^{t}$ satisfies this.
- $\lambda_{1} v_{\xi}+u_{\xi}=0, \Rightarrow v_{\xi}, u_{\xi} \neq 0$

Rarefaction

-

$$
\left(\begin{array}{cc}
-\lambda_{1} & -1 \\
p^{\prime}(v) & -\lambda_{1}
\end{array}\right)\binom{v_{\xi}}{u_{\xi}}=\binom{0}{0}
$$

- Eigenvector $\mathbf{u}_{\xi}=\left(v_{\xi}, u_{\xi}\right)^{t}$ satisfies this.
- $\lambda_{1} v_{\xi}+u_{\xi}=0, \Rightarrow v_{\xi}, u_{\xi} \neq 0$
- Since $v_{\xi} \neq 0, u_{\xi} / v_{\xi}=-\lambda_{1}$

Set Up
 Introduction to 2-System Solution to the general problem References

Rarefaction - Continued

Rarefaction - Continued

- Hence, we have $\frac{d u}{d v}=-\lambda_{1}(v, u)=\sqrt{-p^{\prime}(v)}$

Rarefaction - Continued

- Hence, we have $\frac{d u}{d v}=-\lambda_{1}(v, u)=\sqrt{-p^{\prime}(v)}$
- Integrate both sides:

$$
R_{1}: u-u_{l}=\int_{v_{l}}^{v} \sqrt{-p^{\prime}(y)} d y \equiv r_{1}\left(v ; \mathbf{u}_{l}\right), v_{l}<v
$$

Rarefaction - Continued

- Hence, we have $\frac{d u}{d v}=-\lambda_{1}(v, u)=\sqrt{-p^{\prime}(v)}$
- Integrate both sides:

$$
R_{1}: u-u_{l}=\int_{v_{l}}^{v} \sqrt{-p^{\prime}(y)} d y \equiv r_{1}\left(v ; \mathbf{u}_{l}\right), v_{l}<v
$$

- Similarly 2 - rarefaction wave curve is given by

$$
R_{2}: u-u_{l}=-\int_{v_{l}}^{v} \sqrt{-p^{\prime}(y)} d y \equiv r_{2}\left(v ; \mathbf{u}_{l}\right), v_{l}>v
$$

Conclude/ Describe Solution/ What It means

Conclude/ Describe Solution/ What It means

- $S_{1}: u-u_{l}=-\sqrt{\left(v-v_{l}\right)\left(p\left(v_{l}\right)-p(v)\right.}, v_{l}>v$

Conclude/ Describe Solution/ What It means

- $S_{1}: u-u_{l}=-\sqrt{\left(v-v_{l}\right)\left(p\left(v_{l}\right)-p(v)\right.}, v_{l}>v$
- $S_{2}: u-u_{l}=-\sqrt{\left(v-v_{l}\right)\left(p\left(v_{l}\right)-p(v)\right.}, v_{l}<v$

Conclude/ Describe Solution/ What It means

- $S_{1}: u-u_{l}=-\sqrt{\left(v-v_{l}\right)\left(p\left(v_{l}\right)-p(v)\right.}, v_{l}>v$
- $S_{2}: u-u_{l}=-\sqrt{\left(v-v_{l}\right)\left(p\left(v_{l}\right)-p(v)\right.}, v_{l}<v$
- $R_{1}: u-u_{l}=\int_{v_{l}}^{v} \sqrt{-p^{\prime}(y)} d y, v_{l}<v$

Conclude/ Describe Solution/ What It means

- $S_{1}: u-u_{l}=-\sqrt{\left(v-v_{l}\right)\left(p\left(v_{l}\right)-p(v)\right.}, v_{l}>v$
- $S_{2}: u-u_{l}=-\sqrt{\left(v-v_{l}\right)\left(p\left(v_{l}\right)-p(v)\right.}, v_{l}<v$
- $R_{1}: u-u_{l}=\int_{v_{l}}^{v} \sqrt{-p^{\prime}(y)} d y, v_{l}<v$
- $R_{2}: u-u_{l}=-\int_{v_{l}}^{v} \sqrt{-p^{\prime}(y)} d y, v_{l}>v$

Application: Isentropic gas dynamics model

Application: Isentropic gas dynamics model

0

$$
\left\{\begin{array}{l}
v_{t}-u_{x}=0 \\
u_{t}+\left(\frac{k}{v^{\gamma}}\right)_{x}=0, \quad t>0, x \in \mathbb{R}
\end{array}\right.
$$

Application: Isentropic gas dynamics model

-

$$
\left\{\begin{array}{l}
v_{t}-u_{x}=0 \\
u_{t}+\left(\frac{k}{v^{\gamma}}\right)_{x}=0, \quad t>0, x \in \mathbb{R}
\end{array}\right.
$$

- Note: $k>0, \gamma \geq 1$ are constants.

Application: Isentropic gas dynamics model

-

$$
\left\{\begin{array}{l}
v_{t}-u_{x}=0 \\
u_{t}+\left(\frac{k}{v^{\gamma}}\right)_{x}=0, \quad t>0, x \in \mathbb{R}
\end{array}\right.
$$

- Note: $k>0, \gamma \geq 1$ are constants.
- Represents the conservation of mass and momentum

Application: Isentropic gas dynamics model

0

$$
\left\{\begin{array}{l}
v_{t}-u_{x}=0 \\
u_{t}+\left(\frac{k}{v^{\gamma}}\right)_{x}=0, \quad t>0, x \in \mathbb{R}
\end{array}\right.
$$

- Note: $k>0, \gamma \geq 1$ are constants.
- Represents the conservation of mass and momentum
- v denotes the specific volume, i.e. $v=\rho^{-1}$, where ρ is the density, u denotes the velocity, and γ is the adiabatic gas constant.

Application: Isentropic gas dynamics model

-

$$
\left\{\begin{array}{l}
v_{t}-u_{x}=0 \\
u_{t}+\left(\frac{k}{v \gamma}\right)_{x}=0, \quad t>0, x \in \mathbb{R}
\end{array}\right.
$$

- Note: $k>0, \gamma \geq 1$ are constants.
- Represents the conservation of mass and momentum
- v denotes the specific volume, i.e. $v=\rho^{-1}$, where ρ is the density, u denotes the velocity, and γ is the adiabatic gas constant.
- Note, in the p-system, if we choose $p(v)=k v^{-\gamma}$, we retrieve this isentropic gas dynamics equations.

Table of Contents

(1) Introduction to the Riemann Problem

- Shock Waves
- Rarefaction Waves
(2) Set Up
(3) Introduction to 2-System
- Example
- Graphics
- Description of Solutions
(4) Solution to the general problem
(5) References

Definition

A centered simple wave, centered at $\left(x_{0}, t_{0}\right)$ is a simple wave depending on $\frac{\left(x-x_{0}\right)}{\left(t-t_{0}\right)}$

Definition

The kth characteristic family is said to be genuinely nonlinear in a region $D \subset \mathbb{R}^{n}$ provided that $\nabla \lambda_{k} \cdot r_{k} \neq 0$ in D. If this is the case, normalize r_{k} by $\nabla \lambda_{k} \cdot r_{k}=1$.

Solution of Riemann Problem for general hyperbolic systems

Theorem (Lax (1957))

Let $\mathbf{u}_{i} \in N \subset \mathbb{R}^{n}$.
Consider the system of n equations

$$
\mathbf{u}_{t}+\mathbf{f}(\mathbf{u})_{x}=0, x \in \mathbb{R}, t>0
$$

where $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right), \mathbf{f}(\mathbf{u})=\left(f_{1}(\mathbf{u}), f_{2}(\mathbf{u}), \ldots f_{n}(\mathbf{u})\right)$, the system is hyperbolic., and each characteristic field is either genuinely nonlinear or linear degenerate in N. Then, there is a neighborhood $\hat{N} \subset N$ of $\mathbf{u}_{\text {I }}$ such that if $\mathbf{u}_{r} \in \hat{N}$, the Riemann problem has precisely one solution, consisting of at most $(n+1)$ constant states.

Application To Gas Dynamics

Application To Gas Dynamics

$$
\begin{aligned}
v_{t}-u_{x} & =0 \\
u_{t}+p_{x} & =0 \\
\left(e+1 / 2 u^{2}\right)_{t}+(p u)_{x} & =0
\end{aligned}
$$

Application To Gas Dynamics

$$
\begin{aligned}
v_{t}-u_{x} & =0 \\
u_{t}+p_{x} & =0 \\
\left(e+1 / 2 u^{2}\right)_{t}+(p u)_{x} & =0
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
p_{\vee} & 0 & p_{s} \\
0 & 0 & 0
\end{array}\right)
$$

Application To Gas Dynamics

$$
\begin{aligned}
v_{t}-u_{x} & =0 \\
u_{t}+p_{x} & =0 \\
\left(e+1 / 2 u^{2}\right)_{t}+(p u)_{x} & =0
\end{aligned}
$$

-

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
p_{V} & 0 & p_{s} \\
0 & 0 & 0
\end{array}\right)
$$

- The eigenvalues are $\lambda_{1}=-\sqrt{-p_{v}}, \lambda_{2}=0, \lambda_{3}=\sqrt{-p_{v}}$

Application To Gas Dynamics

-

$$
\begin{aligned}
v_{t}-u_{x} & =0 \\
u_{t}+p_{x} & =0 \\
\left(e+1 / 2 u^{2}\right)_{t}+(p u)_{x} & =0
\end{aligned}
$$

-

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
p_{v} & 0 & p_{s} \\
0 & 0 & 0
\end{array}\right)
$$

- The eigenvalues are $\lambda_{1}=-\sqrt{-p_{v}}, \lambda_{2}=0, \lambda_{3}=\sqrt{-p_{v}}$
- We have two genuinely nonlinear characteristic families, and one linearly degenerate. So, we only have 2 families of shock waves and rarefaction waves.

Table of Contents

(1) Introduction to the Riemann Problem

- Shock Waves
- Rarefaction Waves
(2) Set Up
(3) Introduction to 2-System
- Example
- Graphics
- Description of Solutions
(4) Solution to the general problem
(5) References

References

1. Borovikov, V. On the problem of discontinuity decay for a system of two quasilinear equations. Dokl. Akad. , SSSR, 185 (1969), 250-252; English transl. in Sov. Math., Dokl., 10 (1969), 321-323.
2. Cooper, Jeffrey. Introduction to Partial Differential Equations with MATLAB. New York. Springer Science. 1998.
3. Lax, P. Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math., 10 (1957), 537-566.
4. Smoller, J. 1994. Shock Waves and Reaction-Diffusion Equations. New York. Springer-Verlag.
5. Smoller, J. On the solution of Riemann problem with general step data for an extended class of hyperbolic systems. Mich. Math. J., 16 (1969), 201-210.

The End

- Thank You!
- Questions?

