15.1 Suggested Problems Problems 47 and 48

Nitesh Mathur Ryan Kinser

March 16, 2021

Table of Contents

Nitesh Mathur Ryan Kinser 15.1 Suggested Problems

Define Φ: Q[u, v, w] → Q[x, y] by Φ(u) = x² + y², Φ(v) = x + y², and Φ(w) = x - y. Show that neither x nor y is in the image of Φ. Show that f = 2x³ - 4xy - 2y³ - 4y is in the image of Φ and find a polynomial in Q[u, v, w] mapping to f. Show that ker Φ is the ideal generated by

$$u^2 - 2uv - 2uw^2 + 4uw + v^2 - 2vw^2 - 4vw + w^4 + 3w^2$$

• Let $\Phi: k[y_1, ..., y_m]/J \to k[x_1, ..., x_n]/I$, where $I - \mathcal{I}(V), J = \mathcal{I}(W)$ are ideals and $V \subset \mathcal{A}^n, W \subset \mathcal{A}^m$.

- For 1 ≤ i ≤ m, let φ_i ∈ k[x₁,..., x_n] be any polynomial representing the coset Phi(y
 _i).
- Proposition 8 Let R = k[y₁, ..., y_m, x₁, ..., x_n] and let A be the ideal generated by y₁ φ₁, ..., y_m φ_m together with generators for *I*. Let G be the reduced Gröbner asis of A with respect to the lexicogrpahic monomial ordering x₁ > ... > x_n > y₁ > ... > y_n. Then,

(a) The kernel of Φ is A ∩ k[y₁,..., y_m] modulo J. The elements of G in k[y₁,..., y_m] (taken modulo J) generate ker Φ.

- (b) If f ∈ k[x₁,..,x_n] then f̄ is in the image of Φ iff the remainder after the general polynomial division of f by the elements in G is an element h ∈ k[y₁,...,y_m], in which case Φ(h̄) = f̄.
- Corollary 9 The map Φ is surjective iff for each $i, 1 \le i \le n$, the reduced Gröbner basis G contains a polynomial $x_i - h_i$ where $h_i \in k[y_1, ..., y_m]$.

Solution

• Let $k = \mathbb{Q}$.

• Consider the Gröbner basis generated by $(u - (x^2 + y^2), v - (x + y^2), w - (x - y)).$

15.1.47 15.1.48

$$g_{1} = u^{2} - 2uv + v^{2} + 4uw - 4vw + 3w^{2} - 2uw^{2} - 2vw^{2} + w^{4}$$

$$g_{2} = -u + v - w + w^{2} + 2wy$$

$$g_{3} = 3u - 3v + 3w - uw - 3vw + w^{3} + 2uy - 2vy$$

$$g_{4} = -v + w + y + y^{2}$$

$$g_{5} = -w + x - y$$

 The kernel of Φ is the ideal generated by G ∩ Q[u, v, w] = {g₁} by Proposition 8.

Table of Contents

Nitesh Mathur Ryan Kinser 15.1 Suggested Problems

15.1.48

Suppose α is a root of the irreducible polynomial p(x) ∈ k[x] and β = f(α)/g(α) with polynomials f(x), g(x) ∈ k[x] with g(α) ≠ 0.

(a) Show ag + bp = 1 for some polynomials $a, b \in k[x]$ and show $\beta = h(\alpha)$ where h = af.

(b) Show that the ideals (p, y - h) and (p, gy - f) are equal in k[x, y].

(c) Conclude that the minimal polynomial for β is the monic polynomial in $G \cap k[y]$ where G is the reduced Gröbner basis for the ideal (p, gy - f) in k[x, y] for the lexicographic monomial ordering x > y.

(d) Find the minimal polynomial over \mathbb{Q} of $(3 - \sqrt[3]{2} + \sqrt[3]{4})/(1 + 3\sqrt[3]{2} - 3\sqrt[3]{4}).$

Definitions and Theorems

• An integral domain in which every ideal (*a*, *b*) generated by two elements is principal is called a *Bezout Domain*.

- (Exercise 8.2.7) An integral domain *R* is a Bezout Domain iff every pair of elements *a*, *b* of *R* has a gcd in *R* that can be written as an *R*-linear combination of *a* and *b*, i.e. *d* = *ax* + *by* for some *x*, *y* ∈ *R*.
- Proposition 10 Suppose α is a root of the irreducible polynomial p(x) ∈ k[x] and β ∈ k(α) and β = f(α) for the polynomial f ∈ k[x]. Let G be the reduced Groebner basis for the ideal p(y f) in k[x, y] for the lexicographic monomial ordering x > y. Then the minimal polynomial of β over k is the monic polynomial in G ∩ k[y].

Solution (a)

• Since α is a root of irreducible polynomial $p(x), p(\alpha) = 0$.

- We also know that g(α) ≠ 0, so if we try to reduce g(x), it will not contain common factors with p(x).
- So, gcd(p(x), g(x)) = 1.
- By Bezout's Identity (8.2.7), there exists a(x), b(x) ∈ k[x] such that a(x)p(x) + b(x)g(x) = 1.
- It follows that:

$$ag = 1 - bp$$
$$g = \frac{1 - bp}{a}$$
$$g(\alpha) = \frac{1 - b(\alpha) p(\alpha) = 0}{a(\alpha)}$$

Continued

۲

 $\beta = \frac{f(\alpha)}{g(\alpha)}$ $= \frac{f(\alpha)}{\frac{1}{a(\alpha)}}$ $= \underbrace{f(\alpha) \cdot a(\alpha)}_{h(\alpha)}$

Nitesh Mathur Ryan Kinser 15.1 Suggested Problems

Solution to (b)

• We will use part (a) for this.

$$gy - 1 \cdot f = gy - (ag + bp) \cdot f$$
$$= gy - agf - bpf$$
$$= g(y - af) - bf(p)$$
$$\in (p, y - h)$$

15.1.48

۲

$$y - h = y \cdot 1 - af$$

= $y(ag + bp) - af$
= $yag + ybp - af$
= $yb(p) + a(gy - f)$
 $\in (p, gy - f)$

Solution to (c)

- We will apply part (b) and Proposition 10.
- α is a root of irreducible polynomial $p(x) \in k[x]$.

•
$$\beta = h(\alpha)$$
 for $h = af \in k[x]$.

- Let G be the reduced Gröbner basis for the ideal
 (p, y h) = (p, gy f) (by part (b)) for the lexicographic monomial ordering x > y.
- Then, the minimal polynomial of β over k is the monic polynomial in G ∩ k[y].

Solution to (d)

• Let $k = \mathbb{Q}$, $\alpha = \sqrt[3]{2}$ be the root of the irreducible polynomial $p(x) = x^3 - 2$.

• Then,
$$\beta = \frac{f(\alpha)}{g(\alpha)} = \frac{3 - \alpha + \alpha^2}{1 + 3\alpha - 3\alpha^2}.$$

- By part (c), the minimal polynomial of β over Q is the monic polynomial in G ∩ Q[y].
- Then the ideal, $(p, gy - f) = (x^3 - 2, (1 + 3x - 3x^2)y - (3 - x + x^2))$ has reduced Gröbner basis: $\ln[4] = \text{GroebnerBasis}[\{x^3 - 2, (1 + 3x - 3x^2) \star y - 3 + x - x^2\}, \{x, y\}]$ $\operatorname{Out}[4] = \{-47 - 93y - 189y^2 + y^3, 187 + 150x + 377y - 2y^2\}$
- Hence, our minimal polynomial is $y^3 189y^2 93y 47$.

The End

- Thank You!
- Questions?