15.1 Suggested Problems

Problems 47 and 48

Nitesh Mathur
Ryan Kinser

March 16, 2021

Table of Contents

(1) 15.1.47
(2) 15.1.48

15.1.47

- Define $\Phi: \mathbb{Q}[u, v, w] \rightarrow \mathbb{Q}[x, y]$ by $\Phi(u)=x^{2}+y^{2}, \Phi(v)=x+y^{2}$, and $\Phi(w)=x-y$. Show that neither x nor y is in the image of Φ. Show that $f=2 x^{3}-4 x y-2 y^{3}-4 y$ is in the image of Φ and find a polynomial in $\mathbb{Q}[u, v, w]$ mapping to f. Show that $\operatorname{ker} \Phi$ is the ideal generated by

$$
u^{2}-2 u v-2 u w^{2}+4 u w+v^{2}-2 v w^{2}-4 v w+w^{4}+3 w^{2}
$$

Notations

- Let $\Phi: k\left[y_{1}, \ldots, y_{m}\right] / J \rightarrow k\left[x_{1}, \ldots, x_{n}\right] / I$, where $I-\mathcal{I}(V), J=\mathcal{I}(W)$ are ideals and $V \subset \mathcal{A}^{n}, W \subset \mathcal{A}^{m}$.
- For $1 \leq i \leq m$, let $\phi_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$ be any polynomial representing the coset $\operatorname{Phi}\left(\bar{y}_{i}\right)$.
- Proposition 8 Let $R=k\left[y_{1}, \ldots, y_{m}, x_{1}, \ldots, x_{n}\right]$ and let \mathcal{A} be the ideal generated by $y_{1}-\phi_{1}, \ldots, y_{m}-\phi_{m}$ together with generators for I. Let G be the reduced Gröbner asis of \mathcal{A} with respect to the lexicogrpahic monomial ordering
$x_{1}>\ldots>x_{n}>y_{1}>\ldots>y$, Then,

Definitions and Theorems

- (a) The kernel of Φ is $\mathcal{A} \cap k\left[y_{1}, \ldots, y_{m}\right]$ modulo J. The elements of G in $k\left[y_{1}, . ., y_{m}\right]$ (taken modulo J) generate ker Φ.
- (b) If $f \in k\left[x_{1}, . ., x_{n}\right]$ then \bar{f} is in the image of Φ iff the remainder after the general polynomial division of f by the elements in G is an element $h \in k\left[y_{1}, \ldots, y_{m}\right]$, in which case $\Phi(\bar{h})=\bar{f}$.
- Corollary 9 The map Φ is surjective iff for each $i, 1 \leq i \leq n$, the reduced Gröbner basis G contains a polynomial $x_{i}-h_{i}$ where $h_{i} \in k\left[y_{1}, \ldots, y_{m}\right]$.

Solution

- Let $k=\mathbb{Q}$.
- Consider the Gröbner basis generated by

$$
\left(u-\left(x^{2}+y^{2}\right), v-\left(x+y^{2}\right), w-(x-y)\right) .
$$

$g_{1}=u^{2}-2 u v+v^{2}+4 u w-4 v w+3 w^{2}-2 u w^{2}-2 v w^{2}+w^{4}$
$g_{2}=-u+v-w+w^{2}+2 w y$
$g_{3}=3 u-3 v+3 w-u w-3 v w+w^{3}+2 u y-2 v y$
$g_{4}=-v+w+y+y^{2}$
$g_{5}=-w+x-y$

- The kernel of Φ is the ideal generated by $G \cap \mathbb{Q}[u, v, w]=\left\{g_{1}\right\}$ by Proposition 8.

Table of Contents

(1) 15.1.47
(2) 15.1.48

15.1.48

- Suppose α is a root of the irreducible polynomial $p(x) \in k[x]$ and $\beta=f(\alpha) / g(\alpha)$ with polynomials $f(x), g(x) \in k[x]$ with $g(\alpha) \neq 0$.
(a) Show $a g+b p=1$ for some polynomials $a, b \in k[x]$ and show $\beta=h(\alpha)$ where $h=a f$.
(b) Show that the ideals $(p, y-h)$ and $(p, g y-f)$ are equal in $k[x, y]$.
(c) Conclude that the minimal polynomial for β is the monic polynomial in $G \cap k[y]$ where G is the reduced Gröbner basis for the ideal $(p,, g y-f)$ in $k[x, y]$ for the lexicographic monomial ordering $x>y$.
(d) Find the minimal polynomial over \mathbb{Q} of
$(3-\sqrt[3]{2}+\sqrt[3]{4}) /(1+3 \sqrt[3]{2}-3 \sqrt[3]{4})$.

Definitions and Theorems

- An integral domain in which every ideal (a, b) generated by two elements is principal is called a Bezout Domain.
- (Exercise 8.2.7) An integral domain R is a Bezout Domain iff every pair of elements a, b of R has a gcd in R that can be written as an R-linear combination of a and b, i.e. $d=a x+b y$ for some $x, y \in R$.
- Proposition 10 Suppose α is a root of the irreducible polynomial $p(x) \in k[x]$ and $\beta \in k(\alpha)$ and $\beta=f(\alpha)$ for the polynomial $f \in k[x]$. Let G be the reduced Groebner basis for the ideal $p(y-f)$ in $k[x, y]$ for the lexicographic monomial ordering $x>y$. Then the minimal polynomial of β over k is the monic polynomial in $G \cap k[y]$.

Solution (a)

- Since α is a root of irreducible polynomial $p(x), p(\alpha)=0$.
- We also know that $g(\alpha) \neq 0$, so if we try to reduce $g(x)$, it will not contain common factors with $p(x)$.
- So, $\operatorname{gcd}(p(x), g(x))=1$.
- By Bezout's Identity (8.2.7), there exists $a(x), b(x) \in k[x]$ such that $a(x) p(x)+b(x) g(x)=1$.
- It follows that:

$$
\begin{aligned}
a g & =1-b p \\
g & =\frac{1-b p}{a} \\
g(\alpha) & =\frac{1-b(\alpha) \underbrace{p(\alpha)}=0}{a(\alpha)}
\end{aligned}
$$

Continued

-

$$
\begin{aligned}
\beta & =\frac{f(\alpha)}{g(\alpha)} \\
& =\frac{f(\alpha)}{\frac{1}{a(\alpha)}} \\
& =\underbrace{f(\alpha) \cdot a(\alpha)}_{h(\alpha)}
\end{aligned}
$$

Solution to (b)

- We will use part (a) for this.

$$
\begin{aligned}
g y-1 \cdot f & =g y-(a g+b p) \cdot f \\
& =g y-a g f-b p f \\
& =g(y-a f)-b f(p) \\
& \in(p, y-h)
\end{aligned}
$$

-

$$
\begin{aligned}
y-h & =y \cdot 1-a f \\
& =y(a g+b p)-a f \\
& =y a g+y b p-a f \\
& =y b(p)+a(g y-f) \\
& \in(p, g y-f)
\end{aligned}
$$

Solution to (c)

- We will apply part (b) and Proposition 10.
- α is a root of irreducible polynomial $p(x) \in k[x]$.
- $\beta=h(\alpha)$ for $h=a f \in k[x]$.
- Let G be the reduced Gröbner basis for the ideal $(p, y-h)=(p, g y-f)$ (by part (b)) for the lexicographic monomial ordering $x>y$.
- Then, the minimal polynomial of β over k is the monic polynomial in $G \cap k[y]$.

Solution to (d)

- Let $k=\mathbb{Q}, \alpha=\sqrt[3]{2}$ be the root of the irreducible polynomial $p(x)=x^{3}-2$.
- Then, $\beta=\frac{f(\alpha)}{g(\alpha)}=\frac{3-\alpha+\alpha^{2}}{1+3 \alpha-3 \alpha^{2}}$.
- By part (c), the minimal polynomial of β over \mathbb{Q} is the monic polynomial in $G \cap \mathbb{Q}[y]$.
- Then the ideal,
$(p, g y-f)=\left(x^{3}-2,\left(1+3 x-3 x^{2}\right) y-\left(3-x+x^{2}\right)\right)$ has reduced Gröbner basis:

$$
\begin{aligned}
& \ln [4]=\text { GroebnerBasis }\left[\left\{x^{3}-2,\left(1+3 x-3 x^{2}\right) * y-3+x-x^{2}\right\},\{x, y\}\right] \\
& \text { Out }[4]=\left\{-47-93 y-189 y^{2}+y^{3}, 187+150 x+377 y-2 y^{2}\right\}
\end{aligned}
$$

- Hence, our minimal polynomial is $y^{3}-189 y^{2}-93 y-47$.

The End

- Thank You!
- Questions?

