Lax Oleinik Formula
 Integral Solution, Entropy Condition, and Uniqueness

Nitesh Mathur
Dr. Xiaoyi Zhang

February 2, 2021

Table of Contents

(1) Navier Stokes

Introduction

(1) We are studying the IVP for scalar conservation laws:

$$
\left\{\begin{align*}
u_{t}+F(u)_{x}=0 & \text { in } \mathbb{R} \times(0, \infty) \tag{1}\\
u=g & \text { on } \mathbb{R} \times\{t=0\}
\end{align*}\right.
$$

Introduction

(1) We are studying the IVP for scalar conservation laws:

$$
\left\{\begin{align*}
u_{t}+F(u)_{x}=0 & \text { in } \mathbb{R} \times(0, \infty) \tag{1}\\
u=g & \text { on } \mathbb{R} \times\{t=0\}
\end{align*}\right.
$$

(2) Recall that $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is an integral solution of (??) if

$$
\begin{equation*}
\int_{0}^{\infty} \int_{-\infty}^{\infty} u v_{t}+F(u) v_{x} d x d t+\left.g v d x\right|_{t=0}=0 \tag{2}
\end{equation*}
$$

holds for all test functions v.

Theorem 2

(1) The Lax-Oleinik formula is defined by

$$
\begin{equation*}
u(x, t)=G\left(\frac{x-y(x, t)}{t}\right) \tag{3}
\end{equation*}
$$

where $G=\left(F^{\prime}\right)^{-1}$.

Theorem 2

(1) The Lax-Oleinik formula is defined by

$$
\begin{equation*}
u(x, t)=G\left(\frac{x-y(x, t)}{t}\right), \tag{3}
\end{equation*}
$$

where $G=\left(F^{\prime}\right)^{-1}$.
(2) Theorem

Theorem 2

(1) The Lax-Oleinik formula is defined by

$$
\begin{equation*}
u(x, t)=G\left(\frac{x-y(x, t)}{t}\right) \tag{3}
\end{equation*}
$$

where $G=\left(F^{\prime}\right)^{-1}$.
(2) Theorem
(3) Assume $F: \mathbb{R} \rightarrow \mathbb{R}$ is smooth, uniformly convex, and $g \in L^{\infty}(\mathbb{R})$.

Theorem 2

(1) The Lax-Oleinik formula is defined by

$$
\begin{equation*}
u(x, t)=G\left(\frac{x-y(x, t)}{t}\right) \tag{3}
\end{equation*}
$$

where $G=\left(F^{\prime}\right)^{-1}$.

(2) Theorem

(3) Assume $F: \mathbb{R} \rightarrow \mathbb{R}$ is smooth, uniformly convex, and $g \in L^{\infty}(\mathbb{R})$.
(9) Then, $u(x, t)$ is an integral solution for the initial value problem (??).

Notation

(1) Define

$$
\begin{equation*}
w(x, t)=\min _{y \in \mathbb{R}}\left\{t L\left(\frac{x-y}{t}\right)+h(y)\right\}, \quad(x \in \mathbb{R}, t>0), \tag{4}
\end{equation*}
$$

where $L=F^{*}$.

Notation

(1) Define

$$
\begin{equation*}
w(x, t)=\min _{y \in \mathbb{R}}\left\{t L\left(\frac{x-y}{t}\right)+h(y)\right\}, \quad(x \in \mathbb{R}, t>0) \tag{4}
\end{equation*}
$$

where $L=F^{*}$.
(2) Then w is a solution of the IVP for the Hamilton-Jacobi:

$$
\begin{align*}
w_{t}+F\left(w_{x}\right)=0 & \text { a.e. in } \mathbb{R} \times(0, \infty) \\
w=h & \text { on } \mathbb{R} \times\{t=0\} \tag{5}
\end{align*}
$$

Notation

(1) Define

$$
\begin{equation*}
w(x, t)=\min _{y \in \mathbb{R}}\left\{t L\left(\frac{x-y}{t}\right)+h(y)\right\}, \quad(x \in \mathbb{R}, t>0), \tag{4}
\end{equation*}
$$

where $L=F^{*}$.
(2) Then w is a solution of the IVP for the Hamilton-Jacobi:

$$
\begin{align*}
w_{t}+F\left(w_{x}\right)=0 & \text { a.e. in } \mathbb{R} \times(0, \infty) \tag{5}\\
w & =h
\end{align*} \quad \text { on } \mathbb{R} \times\{t=0\} .
$$

(3) Recall that $w(x, 0)=h(x)=\int_{0}^{x} g(y) d y$.

Notation

(1) Define

$$
\begin{equation*}
w(x, t)=\min _{y \in \mathbb{R}}\left\{t L\left(\frac{x-y}{t}\right)+h(y)\right\}, \quad(x \in \mathbb{R}, t>0) \tag{4}
\end{equation*}
$$

where $L=F^{*}$.
(2) Then w is a solution of the IVP for the Hamilton-Jacobi:

$$
\begin{align*}
w_{t}+F\left(w_{x}\right)=0 & \text { a.e. in } \mathbb{R} \times(0, \infty) \tag{5}\\
w=h & \text { on } \mathbb{R} \times\{t=0\}
\end{align*}
$$

(3) Recall that $w(x, 0)=h(x)=\int_{0}^{x} g(y) d y$.
(9) Now, we choose any test function v satsifying $v: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ smooth with compact support.

Proof

(1) Multiply by v_{x} and integrate by parts over $\mathbb{R} \times(0, \infty)$:

Proof

(1) Multiply by v_{x} and integrate by parts over $\mathbb{R} \times(0, \infty)$:
(2)

$$
\left[w_{t}+F\left(w_{x}\right)\right] v_{x}
$$

Proof

(1) Multiply by v_{x} and integrate by parts over $\mathbb{R} \times(0, \infty)$:
(2)

$$
\left[w_{t}+F\left(w_{x}\right)\right] v_{x}
$$

(3)

$$
0=\int_{0}^{\infty} \int_{-\infty}^{\infty}\left[w_{t}+F\left(w_{x}\right)\right] v_{x} d x d t
$$

Proof

(1) Multiply by v_{x} and integrate by parts over $\mathbb{R} \times(0, \infty)$:
(2)

$$
\left[w_{t}+F\left(w_{x}\right)\right] v_{x}
$$

©

$$
0=\int_{0}^{\infty} \int_{-\infty}^{\infty}\left[w_{t}+F\left(w_{x}\right)\right] v_{x} d x d t
$$

(1)

$$
0=\int_{0}^{\infty} \int_{-\infty}^{\infty} \underbrace{w_{t} v_{x}}_{I_{1}}+\underbrace{F\left(w_{x}\right) v_{x}}_{I_{2}} d x d t
$$

Proof (Continued)

(1) Consider I_{1}. Then, after integration by parts, we have:

Proof (Continued)

(1) Consider I_{1}. Then, after integration by parts, we have:
(2)

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} I_{1} d x d t=-\int_{0}^{\infty} \int_{-\infty}^{\infty} w v_{t x} d x d t-\left.\int_{-\infty}^{\infty} w v_{x} d x\right|_{t=0}
$$

Proof (Continued)

(1) Consider I_{1}. Then, after integration by parts, we have:
(2)

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} I_{1} d x d t=-\int_{0}^{\infty} \int_{-\infty}^{\infty} w v_{t x} d x d t-\left.\int_{-\infty}^{\infty} w v_{x} d x\right|_{t=0}
$$

(3)

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} l_{1} d x d t=\int_{0}^{\infty} \int_{-\infty}^{\infty} w_{x} v_{t} d x d t+\left.\int_{-\infty}^{\infty} w_{x} d x\right|_{t=0}
$$

Proof (Conclude)

(1) Observe that we have $w_{x}(x, 0)=g(x)$. Then,

Proof (Conclude)

(1) Observe that we have $w_{x}(x, 0)=g(x)$. Then,
(2)

$$
I_{1}=\int_{0}^{\infty} \int_{-\infty}^{\infty} w_{x} v_{t} d x d t+\left.\int_{-\infty}^{\infty} g v d x\right|_{t=0}
$$

Proof (Conclude)

(1) Observe that we have $w_{x}(x, 0)=g(x)$. Then,
(2)

$$
I_{1}=\int_{0}^{\infty} \int_{-\infty}^{\infty} w_{x} v_{t} d x d t+\left.\int_{-\infty}^{\infty} g v d x\right|_{t=0}
$$

(3) Finally, $\int_{0}^{\infty} \int_{-\infty}^{\infty} I_{1}+I_{2}=$

Proof (Conclude)

(1) Observe that we have $w_{x}(x, 0)=g(x)$. Then,
(2)

$$
I_{1}=\int_{0}^{\infty} \int_{-\infty}^{\infty} w_{x} v_{t} d x d t+\left.\int_{-\infty}^{\infty} g v d x\right|_{t=0}
$$

(3) Finally, $\int_{0}^{\infty} \int_{-\infty}^{\infty} I_{1}+I_{2}=$
(9)

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} w_{x} v_{t} d x d t+F\left(w_{x}\right) v_{x} d x d t+\left.\int_{-\infty}^{\infty} g v d x\right|_{t=0}
$$

Proof (Conclude)

(1) Observe that we have $w_{x}(x, 0)=g(x)$. Then,
(2)

$$
I_{1}=\int_{0}^{\infty} \int_{-\infty}^{\infty} w_{x} v_{t} d x d t+\left.\int_{-\infty}^{\infty} g v d x\right|_{t=0}
$$

(3) Finally, $\int_{0}^{\infty} \int_{-\infty}^{\infty} I_{1}+I_{2}=$
(9)

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} w_{x} v_{t} d x d t+F\left(w_{x}\right) v_{x} d x d t+\left.\int_{-\infty}^{\infty} g v d x\right|_{t=0}
$$

(0) Let $u=w_{x}$, we get that u is an integral solution (??) for (??).

Table of Contents

(1) Navier Stokes

Entropy Condition

(1) Earlier, we found that integral solutions are not necessary unique.

Entropy Condition

(1) Earlier, we found that integral solutions are not necessary unique.
(2) Recall the Entropy condition for scalar conservation law needed $F^{\prime}\left(u_{l}\right)>\sigma>F^{\prime}\left(u_{r}\right)$.

Entropy Condition

(1) Earlier, we found that integral solutions are not necessary unique.
(2) Recall the Entropy condition for scalar conservation law needed $F^{\prime}\left(u_{l}\right)>\sigma>F^{\prime}\left(u_{r}\right)$.
(3) Since $F^{\prime \prime}>0$, we conclude that $u_{l}>u_{r}$.

One Sided Jump Estimate

(1) There exists a constant C such that the function u defined by the Lax-Olienik formula satisfies the inequality:

One Sided Jump Estimate

(1) There exists a constant C such that the function u defined by the Lax-Olienik formula satisfies the inequality:
(2)

$$
\begin{equation*}
u(x+z, t)-u(x, t) \leq \frac{C}{t} z \tag{6}
\end{equation*}
$$

One Sided Jump Estimate

(1) There exists a constant C such that the function u defined by the Lax-Olienik formula satisfies the inequality:
(2)

$$
\begin{equation*}
u(x+z, t)-u(x, t) \leq \frac{C}{t} z \tag{6}
\end{equation*}
$$

(3) (??) is known as the entropy condition.

One Sided Jump Estimate

(1) There exists a constant C such that the function u defined by the Lax-Olienik formula satisfies the inequality:
(2)

$$
\begin{equation*}
u(x+z, t)-u(x, t) \leq \frac{C}{t} z \tag{6}
\end{equation*}
$$

(3) (??) is known as the entropy condition.
(9) Observe that for $t>0, u(x, t)-\frac{C}{t} x$ is nonincreasing. So, $u_{l}(x, t) \geq u_{r}(x, t)$.

Proof

(1) Assume G is Lipschitz continuous.

Proof

(1) Assume G is Lipschitz continuous.
(2) Since $G=\left(F^{\prime}\right)^{-1}$ and $y(\cdot, t)$ are nondecreasing, we have

Proof

(1) Assume G is Lipschitz continuous.
(2) Since $G=\left(F^{\prime}\right)^{-1}$ and $y(\cdot, t)$ are nondecreasing, we have

B

$$
u(x, t)=G\left(\frac{x-y(x, t)}{t}\right)
$$

Proof

(1) Assume G is Lipschitz continuous.
(2) Since $G=\left(F^{\prime}\right)^{-1}$ and $y(\cdot, t)$ are nondecreasing, we have

B

$$
u(x, t)=G\left(\frac{x-y(x, t)}{t}\right)
$$

(9)

$$
\begin{aligned}
u(x, t) & \geq G\left(\frac{x-y(x+z, t)}{t}\right) \quad \text { for } z>0 \\
& \geq G\left(\frac{x+z-y(x+z, t)}{t}\right)-\frac{\operatorname{Lip}(G) z}{t} \\
& =u(x+z, t)-\frac{\operatorname{Lip}(G) z}{t}
\end{aligned}
$$

Table of Contents

(1) Navier Stokes

Entropy Solution

(1) We say that a function $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is an entropy solution of the initial value problem

Entropy Solution

(1) We say that a function $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is an entropy solution of the initial value problem
(2)

$$
\begin{align*}
& u_{t}+F(u)_{x}=0 \\
& u \tag{7}\\
& \text { in } \mathbb{R} \times(0, \infty) \\
& \\
& \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{align*}
$$

Entropy Solution

(1) We say that a function $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is an entropy solution of the initial value problem
(2)

$$
\begin{align*}
u_{t}+F(u)_{x} & =0 \quad \\
u & \text { in } \mathbb{R} \times(0, \infty) \tag{7}\\
u & \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{align*}
$$

(3) Provided

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} u v_{t}+F(u) v_{x} d x d t+\left.\int_{-\infty}^{\infty} g v d x\right|_{t=0}=0
$$

Entropy Solution

(1) We say that a function $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is an entropy solution of the initial value problem
(2)

$$
\begin{align*}
& u_{t}+F(u)_{x}=0 \quad \\
& u=g \quad \text { in } \mathbb{R} \times(0, \infty) \tag{7}\\
& u \mathbb{R}^{n} \times\{t=0\}
\end{align*}
$$

(3) Provided

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} u v_{t}+F(u) v_{x} d x d t+\left.\int_{-\infty}^{\infty} g v d x\right|_{t=0}=0
$$

(9) For test functions $v: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R} w /$ compact support, \&

Entropy Solution

(1) We say that a function $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is an entropy solution of the initial value problem
(2)

$$
\begin{align*}
u_{t}+F(u)_{x} & =0 \quad \\
u & \text { in } \mathbb{R} \times(0, \infty) \tag{7}\\
u & \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{align*}
$$

(3) Provided

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} u v_{t}+F(u) v_{x} d x d t+\left.\int_{-\infty}^{\infty} g v d x\right|_{t=0}=0
$$

(9) For test functions $v: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R} w /$ compact support, \&
©

$$
u(x+z, t)-u(x, t) \leq C\left(1+\frac{1}{t}\right) z
$$

constant $C \geq 0$ and a.e. $x, z \in \mathbb{R}, t>0, z>0$.
(1) Uniqueness of entropy solutions

Theorem 3

(1) Uniqueness of entropy solutions
(2) Assume F is convex and smooth.

Theorem 3

(1) Uniqueness of entropy solutions
(2) Assume F is convex and smooth.
(3) Then, there exists (up to a set of measure zero) at most one entropy solution of the initial value problem (??).

Proof Outline

(1) Step 1: Assume u, \tilde{u} are two entropy solutions of (??) and $w=u-\tilde{u}$. Then,

$$
\begin{aligned}
F(u(x, t))-F(\tilde{u}(x, t)) & =\int_{0}^{1} \frac{d}{d r} F(r u(x, t)+(1-r) \tilde{u}(x, t)) d r \\
& =b(x, t) w(x, t)
\end{aligned}
$$

Proof Outline

(1) Step 1: Assume u, \tilde{u} are two entropy solutions of (??) and $w=u-\tilde{u}$. Then,

$$
\begin{aligned}
F(u(x, t))-F(\tilde{u}(x, t)) & =\int_{0}^{1} \frac{d}{d r} F(r u(x, t)+(1-r) \tilde{u}(x, t)) d r \\
& =b(x, t) w(x, t)
\end{aligned}
$$

(2) If v is a test function, then, $0=\int_{0}^{\infty} \int_{-\infty}^{\infty} w\left[v_{t}+b v_{x}\right] d x d t$.

Proof Outline

(1) Step 1: Assume u, \tilde{u} are two entropy solutions of (??) and $w=u-\tilde{u}$. Then,

$$
\begin{aligned}
F(u(x, t))-F(\tilde{u}(x, t)) & =\int_{0}^{1} \frac{d}{d r} F(r u(x, t)+(1-r) \tilde{u}(x, t)) d r \\
& =b(x, t) w(x, t)
\end{aligned}
$$

(2) If v is a test function, then, $0=\int_{0}^{\infty} \int_{-\infty}^{\infty} w\left[v_{t}+b v_{x}\right] d x d t$.
(3) Step 2: Take $\epsilon>0$ and $u^{\epsilon}=\eta_{\epsilon} * u, \tilde{u}^{\epsilon}=\eta_{\epsilon} * u$. Then,

Proof Outline

(1) Step 1: Assume u, \tilde{u} are two entropy solutions of (??) and $w=u-\tilde{u}$. Then,

$$
\begin{aligned}
F(u(x, t))-F(\tilde{u}(x, t)) & =\int_{0}^{1} \frac{d}{d r} F(r u(x, t)+(1-r) \tilde{u}(x, t)) d r \\
& =b(x, t) w(x, t)
\end{aligned}
$$

(2) If v is a test function, then, $0=\int_{0}^{\infty} \int_{-\infty}^{\infty} w\left[v_{t}+b v_{x}\right] d x d t$.
(3) Step 2: Take $\epsilon>0$ and $u^{\epsilon}=\eta_{\epsilon} * u, \tilde{u}^{\epsilon}=\eta_{\epsilon} * u$. Then,
(9) $u_{x}^{\epsilon}(x, t), \tilde{u}_{x}^{\epsilon}(x, t) \leq C\left(1+\frac{1}{t}\right)$ and $u^{\epsilon} \rightarrow u, \tilde{u}^{\epsilon} \rightarrow \tilde{u}$

Proof Outline-2

(1) Step 3: Then,

$$
b_{\epsilon}(x, t)=\int_{0}^{1} \frac{d}{d r} F\left(r u^{\epsilon}(x, t)+(1-r) \tilde{u}^{\epsilon}(x, t)\right) d r
$$

Proof Outline-2

(1) Step 3: Then,

$$
b_{\epsilon}(x, t)=\int_{0}^{1} \frac{d}{d r} F\left(r u^{\epsilon}(x, t)+(1-r) \tilde{u}^{\epsilon}(x, t)\right) d r
$$

(2) We can define the test function line analogously.

Proof Outline-2

(1) Step 3: Then,

$$
b_{\epsilon}(x, t)=\int_{0}^{1} \frac{d}{d r} F\left(r u^{\epsilon}(x, t)+(1-r) \tilde{u}^{\epsilon}(x, t)\right) d r
$$

(2) We can define the test function line analogously.
(3) Step 4: Let $T>0$ and for any smooth $\Psi: \mathbb{R} \times(0, T) \rightarrow \mathbb{R}$, choose v that is the solution for a linear transport equation:

$$
\begin{array}{rlrl}
v_{t}^{\epsilon}+b_{\epsilon} v_{x}^{\epsilon} & =\Psi & & \text { in } \mathbb{R} \times(0, T) \tag{8}\\
v & =0 \quad & \text { on } \mathbb{R} \times\{t=T\}
\end{array}
$$

Proof Outline-2

(1) Step 3: Then,

$$
b_{\epsilon}(x, t)=\int_{0}^{1} \frac{d}{d r} F\left(r u^{\epsilon}(x, t)+(1-r) \tilde{u}^{\epsilon}(x, t)\right) d r
$$

(2) We can define the test function line analogously.
(3) Step 4: Let $T>0$ and for any smooth $\Psi: \mathbb{R} \times(0, T) \rightarrow \mathbb{R}$, choose v that is the solution for a linear transport equation:

$$
\begin{align*}
v_{t}^{\epsilon}+b_{\epsilon} v_{x}^{\epsilon} & =\Psi & & \text { in } \mathbb{R} \times(0, T) \tag{8}\\
v & =0 & & \text { on } \mathbb{R} \times\{t=T\}
\end{align*}
$$

(9) Then $v^{\epsilon}(x, t)$ is the unique solution of (??) via method of characteristics.

Proof Outline - 3

(1) Step 5: Then show that for each $s>0$, there exists a constant C_{s} such that

$$
\left|v_{x}^{\epsilon}\right| \leq C_{s} \quad \text { on } \mathbb{R} \times(s, T)
$$

Proof Outline - 3

(1) Step 5: Then show that for each $s>0$, there exists a constant C_{s} such that

$$
\left|v_{x}^{\epsilon}\right| \leq C_{s} \quad \text { on } \mathbb{R} \times(s, T)
$$

(2) To do this, we would need to differentiate (??) and define $a(x, t)=e^{\lambda t} v_{x}^{\epsilon}(x, t)$ for $\lambda=\frac{C}{s}+1$.

Proof Outline - 3

(1) Step 5: Then show that for each $s>0$, there exists a constant C_{s} such that

$$
\left|v_{x}^{\epsilon}\right| \leq C_{s} \quad \text { on } \mathbb{R} \times(s, T)
$$

(2) To do this, we would need to differentiate (??) and define $a(x, t)=e^{\lambda t} v_{x}^{\epsilon}(x, t)$ for $\lambda=\frac{C}{s}+1$.
(3) Step 6: Now prove the inequality:

$$
\int_{-\infty}^{\infty}\left|v_{x}^{\epsilon}(x, t)\right| d x \leq D
$$

for all $0 \leq t \leq T$ and some constant D.

Proof Outline - 3

(1) Step 5: Then show that for each $s>0$, there exists a constant C_{s} such that

$$
\left|v_{x}^{\epsilon}\right| \leq C_{s} \quad \text { on } \mathbb{R} \times(s, T)
$$

(2) To do this, we would need to differentiate (??) and define $a(x, t)=e^{\lambda t} v_{x}^{\epsilon}(x, t)$ for $\lambda=\frac{C}{s}+1$.
(3) Step 6: Now prove the inequality:

$$
\int_{-\infty}^{\infty}\left|v_{x}^{\epsilon}(x, t)\right| d x \leq D
$$

for all $0 \leq t \leq T$ and some constant D.
(4) We need to choose partitions, define variations and take the supremum over all partitions.

Proof Outline - Conclude

(1) Step 7: Set $v=v^{\epsilon}$.

Proof Outline - Conclude

(1) Step 7: Set $v=v^{\epsilon}$.
(2) Apply the Dominated Convergence Theorem.

Proof Outline - Conclude

(1) Step 7: Set $v=v^{\epsilon}$.
(2) Apply the Dominated Convergence Theorem.
(3) Then,

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} w \Psi d x d t=0
$$

for all smooth functions Ψ.

Proof Outline - Conclude

(1) Step 7: Set $v=v^{\epsilon}$.
(2) Apply the Dominated Convergence Theorem.
(3) Then,

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} w \psi d x d t=0
$$

for all smooth functions Ψ.
(9) Hence, $w=u-\tilde{u}=0 \Rightarrow u=\tilde{u}$ a.e.

The End

- Thank You!
- Questions?

