An Introduction to the Generalized Factorials Based on the Paper of Manjul Bhargava

Nitesh Mathur

February 11, 2021

Nitesh Mathur (University of Iowa)

February 11, 2021 1 / 24

2 The Generalized Factorial

Nitesh Mathur (University of Iowa)

Image: A matrix and a matrix



Nitesh Mathur (University of Iowa)

• Paper Published in 2000

Nitesh Mathur (University of Iowa)

- (日)

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014

Nitesh Mathur (University of Iowa)

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles
- Professor at Princeton, Leiden University, and adjunct professor in several others.

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles
- Professor at Princeton, Leiden University, and adjunct professor in several others.
- Musician (Tabla Player)



Nitesh Mathur (University of Iowa)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Nitesh Mathur (University of Iowa)

February 11, 2021 4 / 24

• Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$

- Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$
- Examples: 5! = (5)(4)(3)(2)(1) = 120

- Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$
- Examples: 5! = (5)(4)(3)(2)(1) = 120
- The Gamma Function

- Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$
- Examples: 5! = (5)(4)(3)(2)(1) = 120
- The Gamma Function
- $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$

- Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$
- Examples: 5! = (5)(4)(3)(2)(1) = 120
- The Gamma Function
- $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$
- $\Gamma(n) = (n-1)!$

- Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$
- Examples: 5! = (5)(4)(3)(2)(1) = 120
- The Gamma Function
- $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$
- $\Gamma(n) = (n-1)!$

•
$$\Gamma(5) = 4! = 24, \Gamma(1/2) = \sqrt{\pi}$$

Nitesh Mathur (University of Iowa)

• Theorem 1

For any nonnegative integers, k and I, (k + I)! is a multiple of k!I!.

• Theorem 1

For any nonnegative integers, k and I, (k + I)! is a multiple of k!I!.

• **Theorem 2** Let f be a primitive polynomial of degree k and let $d(\mathbb{Z}, f) = \gcd\{f(a) : a \in \mathbb{Z}\}$ Then, $d(\mathbb{Z}, f)$ divides k!.

• Theorem 1

For any nonnegative integers, k and I, (k + I)! is a multiple of k!I!.

• **Theorem 2** Let f be a primitive polynomial of degree k and let $d(\mathbb{Z}, f) = \gcd\{f(a) : a \in \mathbb{Z}\}$ Then, $d(\mathbb{Z}, f)$ divides k!.

Theorem 3

Let $a_0, a_1, ..., a_n \in \mathbb{Z}$ be any n+1 integers. Then their product of their pairwise differences

$$\prod_{i < j} (a_i - a_j)$$

is a multiple of 0!1!...n!

• Theorem 1

For any nonnegative integers, k and I, (k + I)! is a multiple of k!I!.

• **Theorem 2** Let f be a primitive polynomial of degree k and let $d(\mathbb{Z}, f) = \gcd\{f(a) : a \in \mathbb{Z}\}$ Then, $d(\mathbb{Z}, f)$ divides k!.

• Theorem 3

Let $a_0, a_1, ..., a_n \in \mathbb{Z}$ be any n+1 integers. Then their product of their pairwise differences

$$\prod_{i < j} (a_i - a_j)$$

is a multiple of 0!1!...n!

Theorem 4 The number of polynomial functions from ℤ to ℤ/nℤ is given by

$$\prod_{k=0}^{n-1} \frac{n}{\gcd(n,k!)}$$

2 The Generalized Factorial

Nitesh Mathur (University of Iowa)

Image: A matrix

These theorems are true on \mathbb{Z} .

Is there a "Generalized Factorial Function" so that for any subset S of \mathbb{Z} , the theorems mentioned above still remain true?

э

• Choose $a_0 \in S$

- Choose $a_0 \in S$
- Choose $a_1 \in S$ that minimizes the highest power of p dividing $a_1 a_0$

- Choose $a_0 \in S$
- Choose $a_1 \in S$ that minimizes the highest power of p dividing $a_1 a_0$
- Choose an element a₂ ∈ S that minimizes the highest power of p dividing (a₂ − a₀)(a₂ − a₁)

- Choose $a_0 \in S$
- Choose $a_1 \in S$ that minimizes the highest power of p dividing $a_1 a_0$
- Choose an element a₂ ∈ S that minimizes the highest power of p dividing (a₂ − a₀)(a₂ − a₁)
- For the kth step, choose an element a_k ∈ S that minimizes the highest power of p dividing (a_k a₀)(a_k a₁) · … · (a_k a_{k-1})

- Choose $a_0 \in S$
- Choose $a_1 \in S$ that minimizes the highest power of p dividing $a_1 a_0$
- Choose an element a₂ ∈ S that minimizes the highest power of p dividing (a₂ − a₀)(a₂ − a₁)
- For the kth step, choose an element a_k ∈ S that minimizes the highest power of p dividing (a_k a₀)(a_k a₁) · … · (a_k a_{k-1})
- Notation: For each k, v_k(S, p) represents the highest power of p that fulfills the above expression {v₀(S, p), v₁(S, p), ..}

2 The Generalized Factorial

Nitesh Mathur (University of Iowa)

Image: Image:

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

э

Image: A matched black

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2• Let $a_0 = 19$

Image: A matrix

э

Example

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

- Let *a*₀ = 19
- We need to pick a_1 .

The highest power of p that divides $2 - a_0 = -17$ is $2^0 = 1$

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

- Let *a*₀ = 19
- We need to pick a_1 .

The highest power of p that divides $2 - a_0 = -17$ is $2^0 = 1$

• Let's pick $a_2 (a_2 - 19)(a_2 - 2)$. Pick $a_2 = 5 \Rightarrow (5 - 19)(5 - 2) = (-14)(3) = (2 \cdot -7)(3)$ The highest power of p that divides $(a_2 - 19)(a_2 - 2)$ is $2^1 = 2$.

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

- Let *a*₀ = 19
- We need to pick *a*₁.

The highest power of p that divides $2 - a_0 = -17$ is $2^0 = 1$

- Let's pick $a_2 (a_2 19)(a_2 2)$. Pick $a_2 = 5 \Rightarrow (5 - 19)(5 - 2) = (-14)(3) = (2 \cdot -7)(3)$ The highest power of p that divides $(a_2 - 19)(a_2 - 2)$ is $2^1 = 2$.
- Similarly, for a₃, we need (a₃ − 19)(a₃ − 2)(a₃ − 5). (17 − 19)(17 − 2)(17 − 5) = (−2)(15)(2² ⋅ 3) The corresponding power here is 2³ = 8.

3

< ロ > < 同 > < 三 > < 三 > 、

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

- Let *a*₀ = 19
- We need to pick *a*₁.

The highest power of p that divides $2 - a_0 = -17$ is $2^0 = 1$

- Let's pick $a_2 (a_2 19)(a_2 2)$. Pick $a_2 = 5 \Rightarrow (5 - 19)(5 - 2) = (-14)(3) = (2 \cdot -7)(3)$ The highest power of p that divides $(a_2 - 19)(a_2 - 2)$ is $2^1 = 2$.
- Similarly, for a_3 , we need $(a_3 19)(a_3 2)(a_3 5)$. $(17 - 19)(17 - 2)(17 - 5) = (-2)(15)(2^2 \cdot 3)$ The corresponding power here is $2^3 = 8$.
- Similarly for the rest *a_k*

< ロ > < 同 > < 回 > < 回 > < 回 > <

• The p-ordering for *p* = 2 is as follows: {19, 2, 5, 17, 23, 31, ..., } and its corresponding p-sequence is as follows, {1, 1, 2, 8, 16, 128, ...}

February 11, 2021

11/24

Nitesh Mathur (University of Iowa)

3

メロト メポト メヨト メヨト

• Construct such a p ordering for every p (Note: Not unique)

< A

- Construct such a *p* ordering for every *p* (Note: Not unique)
- **Punchline 1**: The associated p-sequence of *S* is independent of the choice of p-ordering.

- Construct such a *p* ordering for every *p* (Note: Not unique)
- **Punchline 1**: The associated p-sequence of *S* is independent of the choice of p-ordering.
- **Punchline 2**: Let *S* be any subset of ℤ. Then the *factorial function* of *S*, denoted by *k*!_{*S*} is defined by

$$k!_{s} = \prod_{p} v_{k}(S, p)$$

Nitesh Mathur (University of Iowa)

∃ ► < ∃ ►</p>

Image: A image: A

3

• The p-ordering for the prime subset of $\ensuremath{\mathbb{Z}}$ is as follows:

< A

• The p-ordering for the prime subset of $\mathbb Z$ is as follows:

p = 2
 p-ordering: {19, 2, 5, 17, 23, 31, ..., }
 p-sequence is as follows, {1, 1, 2, 8, 16, 128, ...}

• The p-ordering for the prime subset of $\mathbb Z$ is as follows:

```
• p = 2
p-ordering: {19, 2, 5, 17, 23, 31, ..., }
p-sequence is as follows, {1, 1, 2, 8, 16, 128, ...}
```

```
    p = 3
    p-ordering: {2,3,7,5,13,17,19,...}
    p-sequence: {1,1,1,3,3,9,...}
```

Examples

- 4!_P = 48, 6!_P = 11520, ...
- Notice, one has to multiply across. Each k represents an index in each p-sequence.

	p = 2	p = 3	p = 5	p = 7	<i>p</i> = 11	 k ! _P
<i>k</i> = 0	1	1	1	1	1	 1×1×1×1×1×=1
<i>k</i> = 1	1	1	1	1	1	 1×1×1×1×1×=1
<i>k</i> = 2	2	1	1	1	1	 2×1×1×1×1×=2
<i>k</i> = 3	8	3	1	1	1	 8×3×1×1×1×=24
<i>k</i> = 4	16	3	1	1	1	 16×3×1×1×1× = 48
<i>k</i> = 5	128	9	5	1	1	 128×9×5×1×1×= 5760
<i>k</i> = 6	256	9	5	1	1	 256×9×5×1×1× = 11520

Table of values of $v_k(P, p)$ and $k!_P$

Image: A matrix and a matrix

Nitesh Mathur (University of Iowa)

æ

• Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3,\}$ is a p-ordering of \mathbb{N} . The p-sequences of \mathbb{N} are as follows:

- Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3,\}$ is a p-ordering of \mathbb{N} . The p-sequences of \mathbb{N} are as follows:
- p = 2: {1,1,2,2,8,8,16,16,...}

- Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3,\}$ is a p-ordering of \mathbb{N} . The p-sequences of \mathbb{N} are as follows:
- p = 2: {1,1,2,2,8,8,16,16,...}
- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$

- Consider N ⊂ Z The natural ordering of N = {1,2,3,...} is a p-ordering of N. The p-sequences of N are as follows:
- p = 2: $\{1, 1, 2, 2, 8, 8, 16, 16, ...\}$
- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$
- p = 5: $\{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, ..\}$

- Consider N ⊂ Z The natural ordering of N = {1,2,3,....} is a p-ordering of N.
 The p-sequences of N are as follows:
- p = 2: {1,1,2,2,8,8,16,16,...}
- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$
- p = 5: $\{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, ..\}$
- p = 7: {1,1,1,1,1,1,1,7,7,7,7,7,..}
 Check Your Results:

- Consider N ⊂ Z The natural ordering of N = {1,2,3,....} is a p-ordering of N.
 The p-sequences of N are as follows:
- p = 2: {1,1,2,2,8,8,16,16,...}
- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$
- p = 5: $\{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, ..\}$
- p = 7: {1,1,1,1,1,1,1,7,7,7,7,7,..}
 Check Your Results:
- $0!_{\mathbb{N}} = 1 * 1 * 1 * 1 * 1 ... = 1$

Consider N ⊂ Z The natural ordering of N = {1,2,3,....} is a p-ordering of N.
 The p-sequences of N are as follows:

• p = 2: {1, 1, 2, 2, 8, 8, 16, 16, ...}

•
$$p = 3$$
: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$

•
$$p = 5$$
: $\{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, ..\}$

- p = 7: {1,1,1,1,1,1,1,7,7,7,7,7,...}
 Check Your Results:
- $0!_{\mathbb{N}} = 1 * 1 * 1 * 1 * 1 * 1 ... = 1$
- $2!_{\mathbb{N}} = 2 * 1 * 1 * 1 * 1 ... = 2$

Consider N ⊂ Z The natural ordering of N = {1,2,3,....} is a p-ordering of N.
 The p-sequences of N are as follows:

• p = 2: {1, 1, 2, 2, 8, 8, 16, 16, ...}

- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$
- p = 5: $\{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, ..\}$
- p = 7: {1,1,1,1,1,1,1,7,7,7,7,7,..}
 Check Your Results:
- $0!_{\mathbb{N}} = 1 * 1 * 1 * 1 * 1 * 1 ... = 1$
- $2!_{\mathbb{N}} = 2 * 1 * 1 * 1 * 1 ... = 2$
- $3!_{\mathbb{N}} = 2 * 3 * 1 * 1 * 1 ... = 6$

Consider N ⊂ Z The natural ordering of N = {1,2,3,....} is a p-ordering of N.
 The p-sequences of N are as follows:

• p = 2: {1,1,2,2,8,8,16,16,...}

- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$
- p = 5: $\{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, ..\}$
- p = 7: {1,1,1,1,1,1,1,7,7,7,7,7,..}
 Check Your Results:
- $0!_{\mathbb{N}} = 1 * 1 * 1 * 1 * 1 * 1 ... = 1$
- $2!_{\mathbb{N}} = 2 * 1 * 1 * 1 * 1 ... = 2$
- $3!_{\mathbb{N}} = 2 * 3 * 1 * 1 * 1 ... = 6$
- $6!_{\mathbb{N}} = 16 * 9 * 5 * 1.... = 720$

SI. No.	Set S	k!s
1	Set of natural numbers	<i>k</i> !
2	Set of even integers	2 ^{<i>k</i>} × <i>k</i> !
3	Set of integers of the form an + b	a ^k ×k!
4	Set of integers of the form 2 ⁿ	$(2^k - 1)(2^k - 2) \dots (2^k - 2^{k-1}))$
5	Set of integers of the form q^n for some prime q	$(q^k-1)(q^k-2) \ldots (q^k-q^{k-1)})$
6	Set of squares of integers	(2 <i>k</i>)!/2

メロト メポト メモト メモト

2

Revisit Theorems

Nitesh Mathur (University of Iowa)

メロト メポト メモト メモト

2

For any nonnegative integers, k and $I, (k+1)!_S$ is a multiple of $k!_S I!_S$.

- ∢ /⊐ >

э

For any nonnegative integers, k and $I, (k+1)!_S$ is a multiple of $k!_S I!_S$.

• **Theorem 2** Let f be a primitive polynomial of degree k and let $d(S, f) = \gcd\{f(a) : a \in S\}$ Then, d(S, f) divides $k!_S$.

For any nonnegative integers, k and $I, (k+1)!_S$ is a multiple of $k!_S I!_S$.

• **Theorem 2** Let f be a primitive polynomial of degree k and let $d(S, f) = \gcd\{f(a) : a \in S\}$ Then, d(S, f) divides $k!_S$.

Theorem 3

Let $a_0, a_1, ..., a_n \in S$ be any n + 1 integers. Then their product of their pairwise differences

$$\prod_{i < j} (a_i - a_j)$$

is a multiple of $0!_S 1!_S ... n!_S$

For any nonnegative integers, k and $I, (k+1)!_S$ is a multiple of $k!_S I!_S$.

- **Theorem 2** Let f be a primitive polynomial of degree k and let $d(S, f) = \gcd\{f(a) : a \in S\}$ Then, d(S, f) divides $k!_S$.
- Theorem 3

Let $a_0, a_1, ..., a_n \in S$ be any n + 1 integers. Then their product of their pairwise differences

$$\prod_{i < j} (a_i - a_j)$$

is a multiple of $0!_S 1!_S ... n!_S$

Theorem 4 The number of polynomial functions from S to Z/nZ is given by

$$\prod_{k=0}^{n-1} \frac{n}{\gcd(n,k!_S)}$$

The Rest of the Paper

Nitesh Mathur (University of Iowa)

Image: A image: A

æ

• A bunch of proofs.

< □ > < 同 >

э

- A bunch of proofs.
- Generalization to Dedekind Rings.

- (日)

- A bunch of proofs.
- Generalization to Dedekind Rings.
- Generalization to Higher Dimensions.

- A bunch of proofs.
- Generalization to Dedekind Rings.
- Generalization to Higher Dimensions.
- Applications

2) The Generalized Factorial

Nitesh Mathur (University of Iowa)

Image: A matrix

э

Nitesh Mathur (University of Iowa)

∃ ► < ∃ ►</p>

Image: A image: A

3

• For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!_S$.

< A

э

• For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!_S$.

February 11, 2021

20 / 24

• What is the natural combinatorial interpretation for $\binom{n}{k}_{S} = \frac{n!_{S}}{k!_{S}(n-k)!_{S}}$ coefficients?

- For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!_{S}$.
- What is the natural combinatorial interpretation for $\binom{n}{k}_{S} = \frac{n!_{S}}{k!_{S}(n-k)!_{S}}$ coefficients?
- What is the "binomial theorem" for generalized binomial?

Nitesh Mathur (University of Iowa)

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

• An Algorithm to Reverse the Generalized Factorials Process

Image: A matrix

æ

- An Algorithm to Reverse the Generalized Factorials Process
- Sequences of Generalized Factorials show up in the denominators of numerous series.

February 11, 2021

21/24

- An Algorithm to Reverse the Generalized Factorials Process
- Sequences of Generalized Factorials show up in the denominators of numerous series.
- **Research Question:** Given a sequence of numbers, presumably a sequence of generalized factorials for a particular set, can we figure out what set that is?

Bhargava, Manjul (2000). "The Factorial Function and Generalizations" (PDF). The American Mathematical Monthly. 107 (9): 783–799.

- GAUSS, University of Iowa
- Dr. O'Neil, Jon Bolin
- Oklahoma-Arkansas MAA Section Meeting
- University of Tulsa
- TU Journal Club

Questions?

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト