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The Setup

Highly Idealized Robots

Consider robots constructed from rigid links or segments,
connected by joints

Possible motions are constructed using (1) planar revolute
joints, and (2) prismatic joints

A planar revolute joint permits a rotation of one segment
relative to another.

A prismatic joint permits one segment of one segment of a
robot to move by sliding or translation around an axis
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Example

Joints are connected by segments, and we write them in
increasing order

Example with 3 revolute joints, one prismatic joint, and 5
segments.
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The Space

Revolute joint can be described by measuring angle θ
counterclockwise and can be parameterized by a circle S1.
Prismatic joint is given by the distance the joint is extended
to and can be parameterized by a finite interval of real
numbers.
For a planar robot with r revolute joints and p prismatic
joints, the parameterization for thejoint space J looks like the
Cartesian product: J = S1 × ...× S1︸ ︷︷ ︸

r times

×I1 × ...× Ip

Fixing a Cartesian coordinate system in the plane, represent
the “hand” of a planar robots by (a, b) in a region U ⊂ R2,
where the possible hand orientations are parameterized by
vectors u in V = S1.
C = U × V is called the configuration or operational space
of the robot’s hand.
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Problems

The mapping f : J → C encodes how different possible
joint settings yields different hand configurations.

Forward Kinematic Problem

Can we give an explicit description or formula for f in terms
of the joint settings and the dimensions of the segments of
the robots arm?

Inverse Kinematic Problem

Given c ∈ C, can we determine one or all the j ∈ J such that
f (j) = c .
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Setup

Introduce local rectangular coordinate system at each of the
revolute joints

The origin is place at joint i; xi+1-axis lies along segment
i + 1; yi+1 axis forms a normal; li is the length of segment i .
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The Math

If q has (xi+1, yi+1) coordinates, i.e. q = (ai+1, bi+1), the
then to obtain q = (ai , bi ), we do the following:

Rotate by angle θi to align the xi and xi+1-axes

Then, translate by vector (li , 0) (to make the origins of the
coordinate systems coincide)(
ai
bi

)
=

(
cos θi sin θi
sin θi cos θi

)
·
(
ai+1

bi+1

)
+

(
li
0

)
Commonly written as:ai
bi
1

 =

cos θi sin θi 1
sin θi cos θi 0

0 0 1

 ·
ai+1

bi+1

1

 = Ai ·

ai+1

bi+1

1
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Example

The map f : J → C can be given by:

f (θ1 + θ2 + θ3) =

l3 cos(θ1 + θ2) + l2 cos θ1
l3 sin(θ1 + θ2) + l2 sin θ1

θ1 + θ2 + θ3


We leave the computation as an exercise to the reader...
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Gröbner Basis is Back

Let ci = cos θi and si = sin θi , then all the possible ways to
place the hand at a given point (x1, y1) = (a, b) are described
by the following polynomial equations:

a = l3(c1c2 − s1s2) + l2c1

b = l3(c1s2 + c2s1) + l2s1

0 = c21 + s21 − 1

0 = c22 + s22 − 1

Compute a grevlex Gröbner basis with c1 > s1 > c2 > s2.

This is the reduced Gröbner basis for ideal I generated by
polynomials in the ring R(a, b, l2, l3)[c1, s1, c2, s2].
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Specialization of Gröbner Basis
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Propositions

Assume Ī =< f1, ..., fs >⊂ k[x, t] satisfies Ī ∩ k[t] = {0} and
fix a monomial order as above. If G = {g1, ..., gt} is a Gr ö
bner basis for Ī , Then:

(i) G is a Gr ö bner basis for the ideal of k(t[x] generated by
the fi with respect to the induced monomial order.

(ii) For i = 1, ..., write gi ∈ G in the form:
gi = hi (t)xαi + terms < xαi ,

where hi (t) ∈ k[t] is nonzero. If we set
W = V(h,..., ht) ⊂ km, then for any specialization
t 7→ a ∈ km −W , the gi (x, a) form a Gröbner basis with
respect to the induced monomial order for the ideal generated
by the fi (x, a) in k[x].
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Propositions - Continued

Definition A kinematic singularity for a robot is a point
j ∈ J such that Jf (j) has rank strictly less than
min(dim(J , dim(C)).

Proposition Let f : J → C be the configuration mapping for
a planar robot with n ≥ 3 revolute points. Then there exist
kinematic singularities j ∈ J .
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Direct Applications

Automated Theorem Proving

Wu’s Method
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Other Applications of Algebraic Geometry

Statistics, Control Theory, Error-Correcting Codes,
phylogenetics, Geometric Modeling

Also connections to string theory, game theory, graph
matching, integer programming

Under the umbrella of ‘computational algebraic geometry’ and
‘numerical algebraic geometry’
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The End

Thank You!

Questions?
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