Applications of Analysis In PDE An Overview and Applications

Nitesh Mathur Dr. Palle Jorgensen

December 2, 2020

Nitesh Mathur Dr. Palle Jorgensen Applications of Analysis In PDE

(日)

Table of Contents

1 Introduction

- 2 Main Idea
- 3 Sobolev spaces
- 4 Weak Derivatives
- 5 Applications to Elliptic PDEs
- 6 Other Interesting PDE Applications

Examples of PDEs

Laplace's equation:

$$\Delta u = \sum_{i=1}^{n} u_{x_i x_i} = 0 \tag{1}$$

イロト イボト イヨト イヨト

э

Examples of PDEs

Laplace's equation:

$$\Delta u = \sum_{i=1}^{n} u_{x_i x_i} = 0 \tag{1}$$

equation: equation:

$$u_t - \Delta u = 0 \tag{2}$$

Examples of PDEs

Laplace's equation:

$$\Delta u = \sum_{i=1}^{n} u_{x_i x_i} = 0 \tag{1}$$

equation: equation:

$$u_t - \Delta u = 0 \tag{2}$$

$$iu_t + \Delta u = 0 \tag{3}$$

Examples of PDEs

Laplace's equation:

$$\Delta u = \sum_{i=1}^{n} u_{x_i x_i} = 0 \tag{1}$$

equation: equation:

$$u_t - \Delta u = 0 \tag{2}$$

Schrodinger's equation:

$$iu_t + \Delta u = 0 \tag{3}$$

Wave Equation:

$$u_{tt} - \Delta u = 0 \tag{4}$$

Table of Contents

Introduction

- 2 Main Idea
- 3 Sobolev spaces
- Weak Derivatives
- 5 Applications to Elliptic PDEs
- 6 Other Interesting PDE Applications

Main Idea

 For some of the nonlinear PDEs mentioned above, we can find fundamental solutions and explicit formulas using particular techniques.

(日)

Main Idea

- For some of the nonlinear PDEs mentioned above, we can find fundamental solutions and explicit formulas using particular techniques.
- The other way to look at solutions is to view it from a 'functional analysis' point of view.

Main Idea

- For some of the nonlinear PDEs mentioned above, we can find fundamental solutions and explicit formulas using particular techniques.
- The other way to look at solutions is to view it from a 'functional analysis' point of view.
- Instead of attempting to find explicit solutions, energy estimates are used to prove 'weak solutions' to PDE.

(日)

Main Idea

- For some of the nonlinear PDEs mentioned above, we can find fundamental solutions and explicit formulas using particular techniques.
- The other way to look at solutions is to view it from a 'functional analysis' point of view.
- Instead of attempting to find explicit solutions, energy estimates are used to prove 'weak solutions' to PDE.
- The ideal setting to study many of these energy method techniques for PDEs occur in Sobolev spaces.

Introduction

Recall a Banach space is a normed linear space which is complete in the metric defined by its norm.

(日)

Introduction

- Recall a Banach space is a normed linear space which is complete in the metric defined by its norm.
- In particular, we say that a complex vector space X is a normed linear space if for each x ∈ X, we have a norm ||x|| defined as follows:

(a)
$$||x + y|| \le ||x|| + ||y||$$
 for all $x, y \in X$
(b) $||\alpha x|| = |\alpha|||x||$ for $x \in X, \alpha$ scalar.
(c) $||x|| = 0 \Rightarrow x = 0$.

(日)

Table of Contents

Introduction

- Main Idea
- 3 Sobolev spaces
- Weak Derivatives
- 5 Applications to Elliptic PDEs
- 6 Other Interesting PDE Applications

Holder Continuous

 A function u is said to be Holder continuous with exponent γ if it satisifes:

$$|u(x) - u(y)| \le C|x - y|^{\gamma}$$
(5)

(日)

Holder Continuous

 A function u is said to be Holder continuous with exponent γ if it satisifes:

$$|u(x) - u(y)| \le C|x - y|^{\gamma}$$
(5)

• □ > • □ > • □ > ·

The Holder space $C^{k,\gamma}(\bar{U})$ consists of all functions $u \in C^k(\bar{U})$ for which the norm:

$$||u||_{C^{k,\gamma}}(\bar{U}) = \sum_{|\alpha| \le k} ||D^{\alpha}u||_{C(\bar{U})} + \sum_{|\alpha| = k} |D^{\alpha}u|_{C^{0,\gamma}}(\bar{U})$$
(6)

Holder Continuous

 A function u is said to be Holder continuous with exponent γ if it satisifes:

$$|u(x) - u(y)| \le C|x - y|^{\gamma}$$
(5)

(日)

The Holder space $C^{k,\gamma}(\bar{U})$ consists of all functions $u \in C^k(\bar{U})$ for which the norm:

$$||u||_{C^{k,\gamma}}(\bar{U}) = \sum_{|\alpha| \le k} ||D^{\alpha}u||_{C(\bar{U})} + \sum_{|\alpha| = k} |D^{\alpha}u|_{C^{0,\gamma}}(\bar{U})$$
(6)

• In particular, the space of functions $C^{k,\gamma}(\bar{U})$ is a Banach space.

Motivation To Sobolev Spaces

 Holder spaces are not often suitable for PDE theory since it is hard to make good analytic estimates

Motivation To Sobolev Spaces

- Holder spaces are not often suitable for PDE theory since it is hard to make good analytic estimates
- We need to find spaces that have less smoothness properties than Holder spaces but are still smooth enough

• □ ▶ • □ ▶ • □ ▶

Table of Contents

Introduction

- 2 Main Idea
- 3 Sobolev spaces
- Weak Derivatives
- 5 Applications to Elliptic PDEs
- Other Interesting PDE Applications

Weak Derivatives

Let C[∞]_c(U) be the space of infinitely differentiable functions
 φ : U → ℝ with compact support in U.

<ロト < 同ト < ヨト < ヨト

Weak Derivatives

- Let C[∞]_c(U) be the space of infinitely differentiable functions
 φ : U → ℝ with compact support in U.
- **2** Let $\phi \in C_c^{\infty}$ be denoted as a **test function**.

< ロ > < 同 > < 回 > < 回 > .

Weak Derivatives

- Let C[∞]_c(U) be the space of infinitely differentiable functions
 φ : U → ℝ with compact support in U.
- 2 Let $\phi \in C_c^{\infty}$ be denoted as a **test function**.
- Suppose $u, v \in L^1_{loc}(U)$ and α is a multiindex. We say that v is the α^{th} -weak partial derivative of u, written as $D^{\alpha}u = v$ if

$$\int_{U} u D^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{U} v \phi \, dx \tag{7}$$

< ロ > < 同 > < 三 > < 三 >

for **all** test functions $\phi \in C_c^{\infty}(U)$.

Weak Derivatives

- Let C[∞]_c(U) be the space of infinitely differentiable functions
 φ : U → ℝ with compact support in U.
- 2 Let $\phi \in C_c^{\infty}$ be denoted as a **test function**.
- Suppose $u, v \in L^1_{loc}(U)$ and α is a multiindex. We say that v is the α^{th} -weak partial derivative of u, written as $D^{\alpha}u = v$ if

$$\int_{U} u D^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{U} v \phi \, dx \tag{7}$$

< ロ > < 同 > < 回 > < 回 > .

for **all** test functions $\phi \in C_c^{\infty}(U)$.

Basically, if there exists such a v, we say that D^αu = v in the weak sense. Otherwise, u does not possess a weak α-th partial derivative.

Sobolev Space Definition

• Fix
$$1 \le p \le \infty$$
 and $k \ge 0$.

Nitesh Mathur Dr. Palle Jorgensen Applications of Analysis In PDE

Sobolev Space Definition

• Fix $1 \le p \le \infty$ and $k \ge 0$.

The Sobolev space W^{k,p}(U) consists of all locally summable functions u : U → ℝ such that for each multiindex α with |α| ≤ k, D^αu exists in weak sense and belongs to L^p(U).

Sobolev Space Definition

• Fix
$$1 \le p \le \infty$$
 and $k \ge 0$.

- Solution The Sobolev space W^{k,p}(U) consists of all locally summable functions u : U → ℝ such that for each multiindex α with |α| ≤ k, D^αu exists in weak sense and belongs to L^p(U).
- So For $u \in W^{k,p}(U)$, define the norm as follows:

$$||u||_{W^{k,p}(U)} = \begin{cases} (\sum_{|\alpha| \le k} \int_U |D^{\alpha}u|^p \ dx)^{1/p} & (1 \le p < \infty) \\ \sum_{|\alpha| \le k} \ \operatorname{ess \, sup}_U |D^{\alpha}u| & (p = \infty). \end{cases}$$

Sobolev Spaces(Continued)

Nitesh Mathur Dr. Palle Jorgensen Applications of Analysis In PDE

Sobolev Spaces(Continued)

Nitesh Mathur Dr. Palle Jorgensen Applications of Analysis In PDE

Sobolev Spaces(Continued)

• For example, for
$$p = 2$$
,
 $H^{k}(U) = W^{k,2}(U)$, $(k = 0, 1, 2, ...)$ is a Hilbert space.
If $k = 0, H^{0}(U) = L^{2}(U)$.

Sobolev Spaces(Continued)

- For example, for p = 2, $H^{k}(U) = W^{k,2}(U)$, (k = 0, 1, 2, ...) is a Hilbert space. If $k = 0, H^{0}(U) = L^{2}(U)$.
- In particular, a Sobolev space is a Banach space.

Sobolev Spaces(Continued)

- For example, for p = 2, $H^{k}(U) = W^{k,2}(U)$, (k = 0, 1, 2, ...) is a Hilbert space. If $k = 0, H^{0}(U) = L^{2}(U)$.
- In particular, a Sobolev space is a Banach space.
- Lots of properties, inequalities, and embeddings related to Sobolev spaces

Sobolev Inequalities/Embeddings

• Motivation: If a function u belongs to $W^{1,p}(U)$, does u automatically belong to other spaces?

Sobolev Inequalities/Embeddings

- Motivation: If a function u belongs to $W^{1,p}(U)$, does u automatically belong to other spaces?
- Gagliardo-Nirenberg-Sobolev inequality: Assume 1 ≤ p < n. There exists a constant C, depending only on p and n such that

$$||u||_{L^{p}*(\mathbb{R}^{n})} \leq C||Du||_{L^{p}(\mathbb{R}^{n})}$$
for all $u \in C^{1}_{c}(\mathbb{R}^{n}).$

$$(8)$$

< ロ > < 同 > < 回 > < 回 > .

Sobolev Inequalities/Embeddings

- Motivation: If a function u belongs to $W^{1,p}(U)$, does u automatically belong to other spaces?
- Gagliardo-Nirenberg-Sobolev inequality: Assume 1 ≤ p < n. There exists a constant C, depending only on p and n such that

$$||u||_{L^{p}*(\mathbb{R}^{n})} \leq C||Du||_{L^{p}(\mathbb{R}^{n})}$$
(8)

for all $u \in C_c^1(\mathbb{R}^n)$.

Morrey's inequality: Assume n

$$||u||_{C^{0,\gamma}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(\mathbb{R}^n)}$$
(9)

for all $u \in C^1(\mathbb{R}^n)$, where $\gamma = 1 - n/p$.

Table of Contents

Introduction

- 2 Main Idea
- 3 Sobolev spaces
- Weak Derivatives
- 5 Applications to Elliptic PDEs
- Other Interesting PDE Applications

Applications to Elliptic PDEs

• Notation: $U \subset \mathbb{R}^n, u : \overline{U} \to \mathbb{R}$ unknown function, $f : U \to \mathbb{R}$ given, and L a second-order partial differential operator

(日)

Applications to Elliptic PDEs

- Notation: $U \subset \mathbb{R}^n, u : \overline{U} \to \mathbb{R}$ unknown function, $f : U \to \mathbb{R}$ given, and L a second-order partial differential operator
- Onsider the BVP for the following PDE:

$$\begin{cases} Lu = f & \text{in } U \\ u = 0 & \text{on } \partial U \end{cases}$$
(10)

Applications to Elliptic PDEs

- Notation: $U \subset \mathbb{R}^n, u : \overline{U} \to \mathbb{R}$ unknown function, $f : U \to \mathbb{R}$ given, and L a second-order partial differential operator
- Onsider the BVP for the following PDE:

$$\begin{cases} Lu = f & \text{in } U \\ u = 0 & \text{on } \partial U \end{cases}$$
(10)

< ロ > < 同 > < 三 > < 三 >

This is called the Dirchlet's boundary condition.

Differential Operator

The differential operator have either the form:

$$Lu = -\sum_{i,j=1}^{n} (a^{ij}(x)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u$$
(11)

イロト イヨト イヨト

Differential Operator

The differential operator have either the form:

$$Lu = -\sum_{i,j=1}^{n} (a^{ij}(x)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u$$
(11)

(日)

2 Then, the PDE Lu = f is in in **divergence form**.

Differential Operator

3

The differential operator have either the form:

$$Lu = -\sum_{i,j=1}^{n} (a^{ij}(x)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u$$
(11)

2 Then, the PDE Lu = f is in in **divergence form**.

$$Lu = -\sum_{i,j}^{n} a^{ij}(x)u_{x_ix_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u \qquad (12)$$

(日)

Introduction Main Idea Sobolev spaces Weak Derivatives Applications to Elliptic PDEs

Differential Operator

The differential operator have either the form:

$$Lu = -\sum_{i,j=1}^{n} (a^{ij}(x)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u$$
(11)

2 Then, the PDE Lu = f is in in **divergence form**.

$$Lu = -\sum_{i,j}^{n} a^{ij}(x)u_{x_ix_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u \qquad (12)$$

< ロ > < 同 > < 三 > < 三 >

3

This is known as the nondivergence form.

• We say that the partial differential operator L is (uniformly) elliptic if there exists a constant $\theta > 0$ such that

$$\sum_{i,j}^{n} a^{ij}(x)\xi_i\xi_j \ge \theta |\xi|^2 \tag{13}$$

< ロ > < 同 > < 三 > < 三 >

for a.e. $x \in U$ and all $\xi \in \mathbb{R}^n$.

• We say that the partial differential operator L is (uniformly) elliptic if there exists a constant $\theta > 0$ such that

$$\sum_{i,j}^{n} a^{ij}(x)\xi_i\xi_j \ge \theta |\xi|^2 \tag{13}$$

< ロ > < 同 > < 三 > < 三 >

for a.e. $x \in U$ and all $\xi \in \mathbb{R}^n$.

(Notation) Let H be a real Hilbert space, || be the norm, (,) the inner product, and <, > denote the pairing of H with its dual space.

Theorems

Lax-Milgram Theorem: Assume that B : H × H → ℝ is a bilinear mapping, for which there exist constants α, β > 0 such that

 $|B[u, v]| \le \alpha ||u|| ||v||$ $(u, v \in H)$ and $\beta ||u||^2 \le B[u, u]$ $(u \in H)$. Finally, let $f : H \to \mathbb{R}$ be a bounded linear functional on H. Then there exists a unique element $u \in H$ such that

$$B[u, v] = \langle f, v \rangle$$
 for all $v \in H$.

Theorems

■ Lax-Milgram Theorem: Assume that B : H × H → ℝ is a bilinear mapping, for which there exist constants α, β > 0 such that

 $|B[u, v]| \le \alpha ||u|| ||v||$ $(u, v \in H)$ and $\beta ||u||^2 \le B[u, u]$ $(u \in H)$. Finally, let $f : H \to \mathbb{R}$ be a bounded linear functional on H. Then there exists a unique element $u \in H$ such that

$$B[u, v] = \langle f, v \rangle$$
 for all $v \in H$.

• Energy Estimates: There exists $\alpha, \beta > 0 \& \gamma \ge 0$ such that $|B[u, v]| \le \alpha ||u||_{H_0^1(U)} ||v||_{H_0^1(U)} \& \beta ||u||_{H_0^1(U)}^2 \le B[u, u] + \gamma ||u||_{L^2(U)}^2$ for all $u, v \in H_0^1(U)$.

Table of Contents

Introduction

- 2 Main Idea
- 3 Sobolev spaces
- 4 Weak Derivatives
- 6 Applications to Elliptic PDEs
- 6 Other Interesting PDE Applications

The Navier-Stokes

Navier-Stokes Equation for incompressible, viscous flow:

$$\begin{cases} u_t + u \cdot Du - \Delta u &= -Dp \\ \operatorname{div} u &= 0 \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Navier-Stokes

Navier-Stokes Equation for incompressible, viscous flow:

$$\begin{cases} u_t + u \cdot Du - \Delta u &= -Dp \\ \operatorname{div} u &= 0 \end{cases}$$

Conservation of momentum and conservation of mass in Newtonian fluids

The Navier-Stokes

Navier-Stokes Equation for incompressible, viscous flow:

$$\begin{cases} u_t + u \cdot Du - \Delta u &= -Dp \\ \operatorname{div} u &= 0 \end{cases}$$

- Conservation of momentum and conservation of mass in Newtonian fluids
- Clay-Institute Problem: Navier-Stokes existence and smoothness: Existence of Smooth solutions in 3 dimensions

The Navier-Stokes

Navier-Stokes Equation for incompressible, viscous flow:

$$\begin{cases} u_t + u \cdot Du - \Delta u &= -Dp \\ \operatorname{div} u &= 0 \end{cases}$$

- Conservation of momentum and conservation of mass in Newtonian fluids
- Clay-Institute Problem: Navier-Stokes existence and smoothness: Existence of Smooth solutions in 3 dimensions
- Physical Applications in weather models, ocean currents, water flow, video game systems

Other Interesting PDEs

Black-Scholes Equation - Applications in Stock Market

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$
(14)

Other Interesting PDEs

Black-Scholes Equation - Applications in Stock Market

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$
(14)

< ロ > < 同 > < 三 > < 三 >

② Einstein Field Equation

Other Interesting PDEs

Black-Scholes Equation - Applications in Stock Market

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$
(14)

- einstein Field Equation
- Brusselator Equation, Lotka-Volterra equations dynamical systems/biology

Other Interesting PDEs

Black-Scholes Equation - Applications in Stock Market

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$
(14)

- einstein Field Equation
- Srusselator Equation, Lotka-Volterra equations dynamical systems/biology
- Stochastic Processes and BVP (Kakutani's solution to Dirichlet problem using Brownian motion)

The End

- Thank You!
- Questions?

Nitesh Mathur Dr. Palle Jorgensen Applications of Analysis In PDE

< ロ > < 回 > < 回 > < 回 > < 回 >