Global BV solution to a system of balance laws from traffic flow

Nitesh Mathur
Advisor: Dr. Tong Li
The University of lowa, USA

XVIII International Conference on Hyperbolic Problems:
Theory, Numerics, Applications (HYP 2022)
June 20, 2022

Table of Contents

Background

Work Done

Obstacles

Theorems

Traffic System

- Constructing global solutions and finding zero relaxation limits of traffic flow
- Roadways, Vehicles, Drivers
- Microscopic Vs Macroscopic
- We will be focusing on a specific macroscopic model

History of Traffic Flow

- Lighthill-Whitham-Richards (LWR) model [1955, 1956]
- Payne-Whitham (PW) model [1971, 1974]
- Viscous models studied by Kerner-Konhauser, Kühne, Beckshulte, and Li [1984-1994, 2008]
- Aw-Rascle and Zhang's higher continuum (ARZ) models [2000, 2001]
- There are more references not mentioned above

Nonlinear Balance Laws

- Let $U \in \mathbb{R}^{n}$.
- $U=\left(u_{1}, u_{2}, \ldots, u_{n}\right), F(U)=\left(f_{1}(u), f_{2}(u), \ldots, f_{n}(u)\right)$
- Consider the general conservation form

$$
\begin{equation*}
U_{t}+F(U)_{x}+P(U)=0 \tag{1}
\end{equation*}
$$

with initial data

$$
\begin{equation*}
U(x, 0)=U_{0}(x) \tag{2}
\end{equation*}
$$

where $x \in \mathbb{R}, t>0$.

The Model

- To analyze the 2×2 traffic flow model:

$$
\begin{align*}
\rho_{t}+(\rho v)_{x} & =0 \\
v_{t}+\left(\frac{1}{2} v^{2}+g(\rho)\right)_{x}+\frac{v-v_{e}(\rho)}{\tau} & =0 \tag{3}
\end{align*}
$$

with initial data

$$
\begin{equation*}
(\rho(x, 0), v(x, 0))=\left(\rho_{0}(x), v_{0}(x)\right) \tag{4}
\end{equation*}
$$

where $x \in \mathbb{R}, t>0, \tau>0$.

- ρ - density, v - velocity, $v_{e}(\rho)$ - equilibrium velocity.
- $g(\rho)$ - anticipation factor and satisfies

$$
\begin{equation*}
g^{\prime}(\rho)=\rho\left(v_{e}^{\prime}(\rho) / \theta\right)^{2} \tag{5}
\end{equation*}
$$

where $g^{\prime}(\rho) \geq 0,0<\theta<1$.

LWR Model

- The equilibrium flow is described by Lighthill-Whitham-Richards (LWR) model [8, 9]

$$
\begin{equation*}
\rho_{t}+\left(\rho v_{e}(\rho)\right)_{x}=0, \quad x \in \mathbb{R}, t>0 \tag{6}
\end{equation*}
$$

with initial data $\rho(x, 0)=\rho_{0}(x)>0$.

- $q(\rho)=\rho v_{e}(\rho)$ is known as the fundamental diagram
- For our work, we let

$$
\begin{equation*}
v_{e}(\rho)=-a \rho+b, \tag{7}
\end{equation*}
$$

where $a>0, b>0$.

- In our study, the equilibrium flux $q(\rho)=\rho(-a \rho+b)$ is a concave function of ρ.

Work Overview

- We showed in [1] the existence of a global $B V$ solution for a system of balance laws arising in traffic flow in the framework of Dafermos [2]
- Computed entropy-entropy flux pair, Kawashima condition, sub-characteristic condition, and the partial dissipative inequality
- With these conditions we show the existence of $B V$ solutions for the Cauchy problem

Table of Contents

Background

Work Done

Obstacles

Theorems

First Transformation

- We want $U \equiv 0$ to be an equilibrium solution we need to do a change of variables $v=u+b$.
- Now we can rewrite (3) as follows

$$
\begin{align*}
\rho_{t}+(\rho(u+b))_{x} & =0 \\
u_{t}+\left(\frac{1}{2}(u+b)^{2}+g(\rho)\right)_{x}+\frac{u+b-v_{e}(\rho)}{\tau} & =0 \tag{8}
\end{align*}
$$

- In terms of the general form, we have

$$
\begin{align*}
U & =(\rho, v-b)=(\rho, u)^{T} \\
F(U) & \left.=\left(\rho(u+b), \frac{1}{2} u^{2}+u b+g(\rho)\right)\right)^{T} \tag{9}\\
P(U) & =\left(0, \frac{u+b-v_{e}(\rho)}{\tau}\right)^{T}
\end{align*}
$$

Preliminaries

- The Jacobian is

$$
\left[\begin{array}{cc}
u+b & \rho \tag{10}\\
g^{\prime}(\rho) & u+b
\end{array}\right]
$$

- Using (5) and (7), the eigenvalues are

$$
\begin{equation*}
\lambda_{1,2}=u+b \mp \frac{a}{\theta} \rho \tag{11}
\end{equation*}
$$

- The corresponding right eigenvectors are

$$
\begin{equation*}
r_{1,2}=\left(\mp \frac{\theta}{a}, 1\right)^{T} . \tag{12}
\end{equation*}
$$

- The system (8) is genuinely nonlinear since

$$
\begin{equation*}
\nabla \lambda_{i} \cdot r_{i}=\frac{q^{\prime \prime}(\rho)}{v_{e}^{\prime}(\rho)}=2 \neq 0, \quad i=1,2 \tag{13}
\end{equation*}
$$

Table of Contents

Background

Work Done

Obstacles

Theorems

Obstacles

In order to apply Dafermos' theory [2], we had to

- Search for a convex entropy-entropy flux pair
- Verify conditions
- Transform system (3) once again into equivalent form

Entropy-Entropy Flux Pair

- We need to find smooth entropy flux pair $(\eta, q)(U)$ where η is convex and has been normalized by $\eta(0), D \eta(0)=0$.
- This is important since admissible solutions U must satisfy the entropy inequality

$$
\begin{equation*}
\partial_{t} \eta(U(x, t))+\partial_{x} q(U(x, t))+D \eta(U(x, t)) P(U(x, t)) \leq 0 \tag{14}
\end{equation*}
$$

- We also want our system to be a symmetrizable, which means it needs to be endowed with nontrivial companion balance laws.
- So we also need to solve

$$
\begin{gather*}
D Q_{1}(U, X)=B(U, X)^{T} D G_{1}(U, X) \\
D Q_{2}(U, x)=B(U, X)^{T} D G_{2}(U, X) \tag{15}\\
\text { where } G_{1}=U, G_{2}=F(U), D Q_{i}=\left[\frac{\partial Q_{i}}{\partial \rho}, \frac{\partial Q_{i}}{\partial u}\right], i=1,2
\end{gather*}
$$

Continued

- Solving (15), we then constructed an explicit solution of a convex entropy-entropy flux pair

$$
\begin{align*}
& \eta(\rho, u)=Q_{1}(\rho, u)=(u-s \rho)^{2}+\Gamma(u+s \rho)^{2} \tag{16}\\
& q(\rho, u)=Q_{2}(\rho, u)=\left((u-s \rho)^{2}+\Gamma(u+s \rho)^{2}\right)(u+b) \\
&+(1+\Gamma)\left(u(s \rho)^{2}\right) \tag{17}\\
&+2(\Gamma-1) \frac{(s \rho)^{3}}{3}-\frac{1+\Gamma}{3} u^{3},
\end{align*}
$$

where $s=\frac{a}{\theta}, \Gamma=\frac{1+\theta}{1-\theta}>1$.

- With this entropy-entropy flux pair, the convexity conditions are satisfied

Partial Dissipative Inequality

- We assume that P is dissipative semidefinite relative to η, i.e.

$$
\begin{equation*}
D \eta(U) \cdot P(U) \geq \alpha|P(U)|^{2} \tag{18}
\end{equation*}
$$

with $\alpha>0$.

- For our system (8), we needed to find a condition such that

$$
\left[\begin{array}{cc}
\frac{\partial \eta}{\partial \rho} & \frac{\partial \eta}{\partial u}
\end{array}\right] \cdot\left[\begin{array}{c}
0 \tag{19}\\
\frac{u+b-v_{e}(\rho)}{\tau}
\end{array}\right] \geq \alpha\left(\frac{u+b-v_{e}(\rho)}{\tau}\right)^{2}
$$

- After simplification, we require

$$
\begin{equation*}
0<\alpha \leq \tau(2 \Gamma+1) \tag{20}
\end{equation*}
$$

where $\Gamma>1$.

Kawashima Condition

- The Kawashima condition is given by

$$
\begin{equation*}
D P(0) r_{i}(0) \neq 0, \quad i=1,2 \tag{21}
\end{equation*}
$$

- For our system, we have

$$
D P(0) r_{i}(0)=\left[\begin{array}{c}
0 \tag{22}\\
\mp \theta+1 \\
\tau
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

since $0<\theta<1$.

Sub-characteristic condition

- The sub-characteristic is satisfied when

$$
\begin{equation*}
\lambda_{1}<\lambda_{*}<\lambda_{2} \tag{23}
\end{equation*}
$$

- For $v=v_{e}(\rho)$,

$$
\lambda *(\rho)=-2 a \rho+b
$$

- The sub-characteristic condition is satisfied for (8) since we have

$$
\begin{equation*}
v_{e}(\rho)-\frac{a}{\theta} \rho<-2 a \rho+b<v_{e}(\rho)+\frac{a}{\theta} \rho \tag{24}
\end{equation*}
$$

for $0<\theta<1$.

Equivalent Form

- In order to apply Dafermos' theory, we needed to convert (8) into an equivalent form

$$
\begin{array}{r}
\partial_{t} V+\partial_{x} G(V, W)+X(V, W)=0 \\
\partial_{t} W+\partial_{x} H(V, W)+C W+Y(V, W)=0 \tag{25}
\end{array}
$$

where $x \in \mathbb{R}, t>0$, and $\eta_{W W} C(0,0)>0$.

- We followed Dafermos [2] and found the following change of variables

$$
\begin{equation*}
Z=(V, W)=(\rho, a \rho+u) \tag{26}
\end{equation*}
$$

which transforms (8) to

$$
\begin{align*}
V_{t}+[V(W-a V+b)]_{x} & =0 \\
W_{t}+\left[\frac{1}{2}\left(W^{2}-a^{2} V^{2}\right)+b W+g(V)\right]_{x}+\frac{1}{\tau} W & =0 \tag{27}
\end{align*}
$$

with initial conditions

$$
\begin{equation*}
Z_{0}=\left(V_{0}, W_{0}\right)=\left(\rho_{0}, a \rho_{0}+u_{0}\right) \tag{28}
\end{equation*}
$$

Table of Contents

Background

Work Done

Obstacles

Theorems

Theorem

Theorem (Admissible BV solution to the Cauchy problem)
Consider the Cauchy problem (27), (28) with genuinely nonlinear characteristic fields (13), endowed with a convex entropy η (16) (17). The source is dissipative semidefinite (18) relative to the entropy η, and the Kawashima condition (21) holds. Then there are positive constants $\delta_{1}, \sigma_{0}, c_{0}, c_{1}, \nu, b$ so that the Cauchy problem (27) (28) under initial data Z_{0} with

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(1+x^{2}\right)\left|Z_{0}(x)\right|^{2} d x=\sigma^{2}<\sigma_{0}^{2}, \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
T V_{(-\infty, \infty)} Z_{0}(\cdot)=\delta<\delta_{1}, \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\int_{-\infty}^{\infty} V_{0}(x) d x=0 \tag{31}
\end{equation*}
$$

possesses an admissible $B V$ solution Z on $(-\infty, \infty) \times[0, \infty)$ and

Theorem (Continued)

$$
\begin{gather*}
\int_{-\infty}^{\infty}|Z(x, t)| d x \leq b \sigma, \quad 0 \leq t<\infty \tag{32}\\
T V_{(-\infty, \infty)} Z(\cdot, t) \leq c_{0} \sigma+c_{1} \delta e^{-\nu t}, \quad 0 \leq t<\infty \tag{33}\\
\int_{-\infty}^{\infty}|Z(x, t)| d x \rightarrow 0, \quad \text { as } t \rightarrow \infty \tag{34}\\
T V_{(-\infty, \infty)} Z(\cdot, t) \rightarrow 0, \quad \text { as } t \rightarrow \infty \tag{35}
\end{gather*}
$$

where $\delta>0$.

References I

[1] T. Li and N. Mathur, Global BV Solution to a System of Balance Laws from Traffic Flow. Preprint (2021).
[2] C.M. Dafermos, Hyperbolic conservation laws in continuum physics. Fourth edition. Grundlehren der Mathematischen Wissenschaften, 325. Springer-Verlag, Berlin, (2016). xxxviii+826.
[3] D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws, Proc. Roy. Edinburgh Sect. A, 131, (2001), 1-26.
[4] A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60, (2000), 916-938.
[5] P. Goatin and N. Laurent-Brouty, The zero relaxation limit for the Aw-Rascle-Zhang traffic model, Z. Angew. Math. Phys., 70 (2019), Paper No. 31, 24

References II

[6] R.D. Kühne, Macroscopic Freeway Model for dense traffic-stop-start waves and incident detection, in Ninth International Symposium on Transportation and Traffic Theory, VNU Science Press, (1984), 21-42.
[7] C. Lattanzio and P. Marcati, The zero relaxation limit for the Aw-Rascle-Zhang traffic flow model, J. Differential Equations, 141, (1997), 150-178.
[8] T. Li, Global solutions and zero relaxation limit for a traffic flow model, SIAM J. Appl. Math., 61, (2000), 1042-1061.
[9] T. Li, Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow, J. Differential Equations, 190, (2003), 131-149

References III

[10] H.J. Payne, Models of Freeway Traffic and Control, in Simulation Councils Proc. Ser.: Mathematical Models of Public Systems, Vol. 1, G.A. Bekey, ed., Simulation Councils, La Jolla, CA, (1971), pp. 51-60.
[11] H. Zhang, New Perspectives on Continuum Traffic Flow Models (special double issue on traffic flow theory), Networks and Spatial Economics, 1, (2001).

