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Traffic System

▶ Constructing global solutions and finding zero relaxation limits
of traffic flow

▶ Roadways, Vehicles, Drivers

▶ Microscopic Vs Macroscopic

▶ We will be focusing on a specific macroscopic model



History of Traffic Flow

▶ Lighthill-Whitham-Richards (LWR) model [1955, 1956]

▶ Payne-Whitham (PW) model [1971, 1974]

▶ Viscous models studied by Kerner-Konhauser, Kühne,
Beckshulte, and Li [1984-1994, 2008]

▶ Aw-Rascle and Zhang’s higher continuum (ARZ) models
[2000, 2001]

▶ There are more references not mentioned above



Nonlinear Balance Laws

▶ Let U ∈ Rn.

▶ U = (u1, u2, ..., un),F (U) = (f1(u), f2(u), ..., fn(u))

▶ Consider the general conservation form

Ut + F (U)x + P(U) = 0 (1)

with initial data
U(x , 0) = U0(x), (2)

where x ∈ R, t > 0.



The Model

▶ To analyze the 2× 2 traffic flow model:

ρt + (ρv)x = 0,

vt + (
1

2
v2 + g(ρ))x +

v − ve(ρ)

τ
= 0,

(3)

with initial data

(ρ(x , 0), v(x , 0)) = (ρ0(x), v0(x)) (4)

where x ∈ R, t > 0, τ > 0.

▶ ρ - density, v - velocity, ve(ρ) - equilibrium velocity.

▶ g(ρ) - anticipation factor and satisfies

g ′(ρ) = ρ(v ′e(ρ)/θ)
2, (5)

where g ′(ρ) ≥ 0, 0 < θ < 1.



LWR Model

▶ The equilibrium flow is described by
Lighthill-Whitham-Richards (LWR) model [8, 9]

ρt + (ρve(ρ))x = 0, x ∈ R, t > 0, (6)

with initial data ρ(x , 0) = ρ0(x) > 0.

▶ q(ρ) = ρve(ρ) is known as the fundamental diagram

▶ For our work, we let

ve(ρ) = −aρ+ b, (7)

where a > 0, b > 0.

▶ In our study, the equilibrium flux q(ρ) = ρ(−aρ+ b) is a
concave function of ρ.



Work Overview

▶ We showed in [1] the existence of a global BV solution for a
system of balance laws arising in traffic flow in the framework
of Dafermos [2]

▶ Computed entropy-entropy flux pair, Kawashima condition,
sub-characteristic condition, and the partial dissipative
inequality

▶ With these conditions we show the existence of BV solutions
for the Cauchy problem
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First Transformation

▶ We want U ≡ 0 to be an equilibrium solution we need to do a
change of variables v = u + b.

▶ Now we can rewrite (3) as follows

ρt + (ρ(u + b))x = 0

ut + (
1

2
(u + b)2 + g(ρ))x +

u + b − ve(ρ)

τ
= 0

(8)

▶ In terms of the general form, we have

U = (ρ, v − b) = (ρ, u)T

F (U) = (ρ(u + b),
1

2
u2 + ub + g(ρ)))T

P(U) = (0,
u + b − ve(ρ)

τ
)T

(9)



Preliminaries

▶ The Jacobian is [
u + b ρ
g ′(ρ) u + b

]
(10)

▶ Using (5) and (7), the eigenvalues are

λ1,2 = u + b ∓ a

θ
ρ (11)

▶ The corresponding right eigenvectors are

r1,2 = (∓θ

a
, 1)T . (12)

▶ The system (8) is genuinely nonlinear since

∇λi · ri =
q′′(ρ)

v ′e(ρ)
= 2 ̸= 0, i = 1, 2. (13)



Table of Contents

Background

Work Done

Obstacles

Theorems



Obstacles

In order to apply Dafermos’ theory [2], we had to

▶ Search for a convex entropy-entropy flux pair

▶ Verify conditions

▶ Transform system (3) once again into equivalent form



Entropy-Entropy Flux Pair

▶ We need to find smooth entropy flux pair (η, q)(U) where η is
convex and has been normalized by η(0),Dη(0) = 0.

▶ This is important since admissible solutions U must satisfy the
entropy inequality

∂tη(U(x , t)) + ∂xq(U(x , t)) + Dη(U(x , t))P(U(x , t)) ≤ 0 (14)

▶ We also want our system to be a symmetrizable, which
means it needs to be endowed with nontrivial companion
balance laws.

▶ So we also need to solve

DQ1(U,X ) = B(U,X )TDG1(U,X )

DQ2(U, x) = B(U,X )TDG2(U,X ),
(15)

where G1 = U,G2 = F (U),DQi = [
∂Qi

∂ρ
,
∂Qi

∂u
], i = 1, 2.



Continued

▶ Solving (15), we then constructed an explicit solution of a
convex entropy-entropy flux pair

η(ρ, u) = Q1(ρ, u) = (u − sρ)2 + Γ(u + sρ)2, (16)

q(ρ, u) = Q2(ρ, u) = ((u − sρ)2 + Γ(u + sρ)2)(u + b)

+ (1 + Γ)(u(sρ)2)

+ 2(Γ− 1)
(sρ)3

3
− 1 + Γ

3
u3,

(17)

where s =
a

θ
, Γ =

1 + θ

1− θ
> 1.

▶ With this entropy-entropy flux pair, the convexity conditions
are satisfied



Partial Dissipative Inequality

▶ We assume that P is dissipative semidefinite relative to η, i.e.

Dη(U) · P(U) ≥ α|P(U)|2, (18)

with α > 0.

▶ For our system (8), we needed to find a condition such that

[
∂η

∂ρ

∂η

∂u

]
·

 0
u + b − ve(ρ)

τ

 ≥ α(
u + b − ve(ρ)

τ
)2 (19)

▶ After simplification, we require

0 < α ≤ τ(2Γ + 1), (20)

where Γ > 1.



Kawashima Condition

▶ The Kawashima condition is given by

DP(0)ri (0) ̸= 0, i = 1, 2. (21)

▶ For our system, we have

DP(0)ri (0) =

[
0

∓θ + 1

τ

]
̸=

[
0
0

]
(22)

since 0 < θ < 1.



Sub-characteristic condition

▶ The sub-characteristic is satisfied when

λ1 < λ∗ < λ2. (23)

▶ For v = ve(ρ),
λ∗(ρ) = −2aρ+ b.

▶ The sub-characteristic condition is satisfied for (8) since we
have

ve(ρ)−
a

θ
ρ < −2aρ+ b < ve(ρ) +

a

θ
ρ (24)

for 0 < θ < 1.



Equivalent Form

▶ In order to apply Dafermos’ theory, we needed to convert (8)
into an equivalent form

∂tV + ∂xG (V ,W ) + X (V ,W ) = 0

∂tW + ∂xH(V ,W ) + CW + Y (V ,W ) = 0,
(25)

where x ∈ R, t > 0,and ηWWC (0, 0) > 0.
▶ We followed Dafermos [2] and found the following change of

variables
Z = (V ,W ) = (ρ, aρ+ u), (26)

which transforms (8) to

Vt + [V (W − aV + b)]x = 0

Wt + [
1

2
(W 2 − a2V 2) + bW + g(V )]x +

1

τ
W = 0

(27)

with initial conditions

Z0 = (V0,W0) = (ρ0, aρ0 + u0). (28)
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Theorem

Theorem (Admissible BV solution to the Cauchy problem)

Consider the Cauchy problem (27), (28) with genuinely nonlinear
characteristic fields (13), endowed with a convex entropy η (16)
(17). The source is dissipative semidefinite (18) relative to the
entropy η, and the Kawashima condition (21) holds. Then there
are positive constants δ1, σ0, c0, c1, ν, b so that the Cauchy
problem (27) (28) under initial data Z0 with

ˆ ∞

−∞
(1 + x2)|Z0(x)|2 dx = σ2 < σ2

0, (29)

TV(−∞,∞)Z0(·) = δ < δ1, (30)

ˆ ∞

−∞
V0(x) dx = 0, (31)

possesses an admissible BV solution Z on (−∞,∞)× [0,∞) and



Theorem (Continued)

ˆ ∞

−∞
|Z (x , t)| dx ≤ bσ, 0 ≤ t < ∞, (32)

TV(−∞,∞)Z (·, t) ≤ c0σ + c1δe
−νt , 0 ≤ t < ∞, (33)

ˆ ∞

−∞
|Z (x , t)| dx → 0, as t → ∞, (34)

TV(−∞,∞)Z (·, t) → 0, as t → ∞, (35)

where δ > 0.



References I

[1] T. Li and N. Mathur, Global BV Solution to a System of
Balance Laws from Traffic Flow. Preprint (2021).

[2] C.M. Dafermos, Hyperbolic conservation laws in continuum
physics. Fourth edition. Grundlehren der Mathematischen
Wissenschaften, 325. Springer-Verlag, Berlin, (2016).
xxxviii+826.

[3] D. Amadori and G. Guerra, Global BV solutions and
relaxation limit for a system of conservation laws, Proc. Roy.
Edinburgh Sect. A, 131, (2001), 1-26.

[4] A. Aw and M. Rascle, Resurrection of “second order” models
of traffic flow, SIAM J. Appl. Math., 60, (2000), 916-938.

[5] P. Goatin and N. Laurent-Brouty, The zero relaxation limit for
the Aw-Rascle-Zhang traffic model, Z. Angew. Math. Phys.,
70 (2019), Paper No. 31, 24



References II

[6] R.D. Kühne, Macroscopic Freeway Model for dense
traffic-stop-start waves and incident detection, in Ninth
International Symposium on Transportation and Traffic
Theory, VNU Science Press, (1984), 21-42.

[7] C. Lattanzio and P. Marcati, The zero relaxation limit for the
Aw-Rascle-Zhang traffic flow model, J. Differential Equations,
141, (1997), 150-178.

[8] T. Li, Global solutions and zero relaxation limit for a traffic
flow model, SIAM J. Appl. Math., 61, (2000), 1042–1061.

[9] T. Li, Global solutions of nonconcave hyperbolic conservation
laws with relaxation arising from traffic flow, J. Differential
Equations, 190, (2003), 131–149



References III

[10] H.J. Payne, Models of Freeway Traffic and Control, in
Simulation Councils Proc. Ser.: Mathematical Models of
Public Systems, Vol. 1, G.A. Bekey, ed., Simulation Councils,
La Jolla, CA, (1971), pp. 51–60.

[11] H. Zhang, New Perspectives on Continuum Traffic Flow
Models (special double issue on traffic flow theory), Networks
and Spatial Economics, 1, (2001).


	Background
	Work Done
	Obstacles
	Theorems

