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Traffic System

» Constructing global solutions and finding zero relaxation limits
of traffic flow

» Roadways, Vehicles, Drivers
» Microscopic Vs Macroscopic
» We will be focusing on a specific macroscopic model



History of Traffic Flow

» Lighthill-Whitham-Richards (LWR) model [1955, 1956]
Payne-Whitham (PW) model [1971, 1974]

» Viscous models studied by Kerner-Konhauser, Kiihne,
Beckshulte, and Li [1984-1994, 2008]

» Aw-Rascle and Zhang's higher continuum (ARZ) models
[2000, 2001]

» There are more references not mentioned above

v



Nonlinear Balance Laws

> Let U e R".
> U= (u1,up,...,un), F(U) = (A(v), (), ..., fa(u))
» Consider the general conservation form

Ut + F(U)x+P(U)=0

with initial data
U(x,0) = Uo(x),

where x € R, t > 0.



The Model

» To analyze the 2 x 2 traffic flow model:

Pt + (pV)x - 07

Ve + (%v2 +8(p))x + "_T"e(p) =0, )

with initial data
(p(x,0), v(x,0)) = (po(x), vo(x)) (4)

where x e R, t > 0,7 > 0.
» p - density, v - velocity, ve(p) - equilibrium velocity.
» g(p) - anticipation factor and satisfies

g'(p) = p(V(p)/0)?, (5)

where g’(p) >0,0< 0 < 1.



LWR Model

» The equilibrium flow is described by
Lighthill-Whitham-Richards (LWR) model [8, 9]

pr+ (pve(p))x =0, xeR,t>0, (6)

with initial data p(x,0) = po(x) > 0.
» q(p) = pve(p) is known as the fundamental diagram

» For our work, we let

ve(p) = —ap + b, ()

where a > 0,6 > 0.

» In our study, the equilibrium flux g(p) = p(—ap + b) is a
concave function of p.



Work Overview

» We showed in [1] the existence of a global BV solution for a
system of balance laws arising in traffic flow in the framework
of Dafermos [2]

» Computed entropy-entropy flux pair, Kawashima condition,
sub-characteristic condition, and the partial dissipative
inequality

> With these conditions we show the existence of BV solutions
for the Cauchy problem
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First Transformation

> We want U = 0 to be an equilibrium solution we need to do a

change of variables v = u + b.

» Now we can rewrite (3) as follows

pt+ (p(u+b))x =0

ue+ (E(ut b+ gp))y + M2 vel0)

=0
2 T

» In terms of the general form, we have
U= (p.v—b)=(pu)"
1
F(U) = (p(u+ b), 50> + ub+g(p)))"

P(U) = (O,M)T

T

(8)



Preliminaries

» The Jacobian is
u+b p
g'(p) u+b
» Using (5) and (7), the eigenvalues are
a
Ma=u+bFgp
P The corresponding right eigenvectors are
0 7
=(F-,1)".
rnz (:Fav )

» The system (8) is genuinely nonlinear since

/!
Vaon=T0 _ou0 iz12

ve(p)

(10)

(11)

(12)

(13)
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Obstacles

In order to apply Dafermos’ theory [2], we had to
» Search for a convex entropy-entropy flux pair
» Verify conditions

» Transform system (3) once again into equivalent form



Entropy-Entropy Flux Pair

>

| 2

We need to find smooth entropy flux pair (1, g)(U) where 7 is
convex and has been normalized by 1(0), Dn(0) = 0.

This is important since admissible solutions U must satisfy the
entropy inequality

den(U(x, 1)) + 0xq(U(x, 1)) + Dn(U(x, 1)) P(U(x,£)) <0 (14)

We also want our system to be a symmetrizable, which
means it needs to be endowed with nontrivial companion
balance laws.

So we also need to solve

DQ:(U, X) = B(U,X)T DG, (U, X)
D@:(U,x) = B(U,X)TDGy(U, X),

80, 8Q,

where G1 = U, G, = ()DQ,*[ ]/*12



Continued

» Solving (15), we then constructed an explicit solution of a
convex entropy-entropy flux pair

n(p,u) = Qulp,u) = (u—sp)* +T(u+sp)®,  (16)

q(p, u) = Qa(p, u) = ((u— sp)* + T (u + sp)*)(u + b)

1+ D)(u(s0)?) a7
(sp)> 14T 4
+2(IF=1) 3 3 U
a 1+6
WhereS—é,r—m > 1.

» With this entropy-entropy flux pair, the convexity conditions
are satisfied



Partial Dissipative Inequality

> \We assume that P is dissipative semidefinite relative to 7, i.e.
D(U) - P(U) = a|P(U)P?, (18)

with o« > 0.

» For our system (8), we needed to find a condition such that

on  On 0 u+b—ve(p),o
: — > o ———M 1 19
» After simplification, we require
0<a<7(2r+1), (20)

where [ > 1.



Kawashima Condition

» The Kawashima condition is given by

DP(0)r;(0) £0, i=1,2.

Lo

» For our system, we have

0
0 +1
T

DP(0)r;(0) =

since 0 < 0 < 1.

(21)

(22)



Sub-characteristic condition

» The sub-characteristic is satisfied when
A1 < A < Ao (23)
> For v = ve(p),
Ax(p) = —2ap + b.
» The sub-characteristic condition is satisfied for (8) since we
have

a a
ve(p) — g < —2ap+ b < ve(p) + i (24)

for0 <6< 1.



Equivalent Form

» In order to apply Dafermos’ theory, we needed to convert (8)
into an equivalent form
OV +0G(V,W)+ X(V,W)=0
W + 0 H(V,W)+ CW + Y(V,W) =0,
where x € R, t > 0,and nyw C(0,0) > 0.

» We followed Dafermos [2] and found the following change of
variables

(25)

Z=(V,W)=(p,ap+u), (26)
which transforms (8) to

Vi + [V(W — aV 4 b)]x =0
1 1 (27)
W; + [E(W2 —a’V?) + bW + g(V)]x + ~W=0

with initial conditions

Zy = (Vo, Wo) = (po, apo + o). (28)
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Theorem

Theorem (Admissible BV solution to the Cauchy problem)

Consider the Cauchy problem (27), (28) with genuinely nonlinear
characteristic fields (13), endowed with a convex entropy 1 (16)
(17). The source is dissipative semidefinite (18) relative to the
entropy 1, and the Kawashima condition (21) holds. Then there
are positive constants 1, 0g, Cg, €1, V, b so that the Cauchy
problem (27) (28) under initial data Zy with

| @ d)zP b= o < o (29)
TV(—oo,oo)ZO(') =0 < 41, (30)
/ Vo(x) dx =0, (31)

possesses an admissible BV solution Z on (—o0,00) X [0, 00) and



Theorem (Continued)

/ |Z(x,t)| dx < bo, 0<t< oo,

TV(—so,00)Z(+ t) < oo+ c1de™",  0<t < oo,
/ |Z(x,t)] dx -0, ast— oo,

TV(—oo,00)Z(+, ) = 0, as t — oo,

where § > 0.



References |

[1]

2]

[3]

[4]

[5]

T. Li and N. Mathur, Global BV Solution to a System of
Balance Laws from Traffic Flow. Preprint (2021).

C.M. Dafermos, Hyperbolic conservation laws in continuum
physics. Fourth edition. Grundlehren der Mathematischen
Wissenschaften, 325. Springer-Verlag, Berlin, (2016).
xxxviii+826.

D. Amadori and G. Guerra, Global BV solutions and
relaxation limit for a system of conservation laws, Proc. Roy.
Edinburgh Sect. A, 131, (2001), 1-26.

A. Aw and M. Rascle, Resurrection of “second order” models
of traffic flow, SIAM J. Appl. Math., 60, (2000), 916-938.

P. Goatin and N. Laurent-Brouty, The zero relaxation limit for
the Aw-Rascle-Zhang traffic model, Z. Angew. Math. Phys.,
70 (2019), Paper No. 31, 24



References |l

[6]

[7]

[8]

[9]

R.D. Kiihne, Macroscopic Freeway Model for dense
traffic-stop-start waves and incident detection, in Ninth
International Symposium on Transportation and Traffic
Theory, VNU Science Press, (1984), 21-42.

C. Lattanzio and P. Marcati, The zero relaxation limit for the
Aw-Rascle-Zhang traffic flow model, J. Differential Equations,
141, (1997), 150-178.

T. Li, Global solutions and zero relaxation limit for a traffic
flow model, SIAM J. Appl. Math., 61, (2000), 1042-1061.

T. Li, Global solutions of nonconcave hyperbolic conservation
laws with relaxation arising from traffic flow, J. Differential
Equations, 190, (2003), 131-149



References ||

[10] H.J. Payne, Models of Freeway Traffic and Control, in
Simulation Councils Proc. Ser.: Mathematical Models of
Public Systems, Vol. 1, G.A. Bekey, ed., Simulation Councils,
La Jolla, CA, (1971), pp. 51-60.

[11] H. Zhang, New Perspectives on Continuum Traffic Flow
Models (special double issue on traffic flow theory), Networks
and Spatial Economics, 1, (2001).



	Background
	Work Done
	Obstacles
	Theorems

