Math 6000, Fall 2020 (Prof. Kinser), Study Checks

Nitesh Mathur

26 August 2020

1. There exists unique morphism $x \to y$ iff $x \le y$ in P (this defines a composition).

Check category axioms.

Definitions and Theorems

A partial order (POSET) on a nonempty set A is a relation \leq on A satisfying

- (1) $x \le x$ for all $x \in A$ (reflexive)
- (2) if $x \le y$ and $y \le x$ then x = y for all $x, y \in A$ (antisymmetric).

(3) if
$$x \le y$$
 and $y \le z$ then $x \le z$ for all $x, y, z \in A$ (transitive)

From the notation above, the **objects** are sets (set *A*).

The morphism is as follows: $x \to y$ iff $x \le y$ in A.

Composition Law:

 $x \leq y$ and $y \leq z \Rightarrow x \leq z$ (by transitivity).

satisfying:

(i) If $x \to y$ ($\iff x \le y$) and $a \to b$ ($\iff a \le b$). Then they are disjoint unless a = x and b = y.

(ii) Associativity: Suppose $h: a \to b, g: b \to c, f: c \to d$).

 $a \leq b, b \leq c, c \leq d$. Then,

 $h(gf) \Rightarrow a \leq (b \leq d) \iff a \leq d \text{ and } (hg)f \iff (a \leq c) \leq d \iff a \leq d. \text{ Check}$

(iii) identity morphism: $x \le x(x \to x)$. -¿ reflexive

SE 2. Modify Proof of (\Rightarrow) for category of groups (pg. 10 notes)

3. Think of a counterexample (isomorphism, not same as retraction and section)

- **4.** Check axioms of Power Set for functor (notes pg. 12). Same for example 3/4 maybe (pg. 13)
- **5.** Check Functor **Groups** \rightarrow **Groups** have things like $G \mapsto Z(G)$.

- **SE 6.** (Natural Transformations) $F, F' : \mathcal{C} \to \mathcal{D}$ makes $Fun(\mathcal{C}, \mathcal{D})$ a category.
- SE 7. Suppose A free on X, B free on Y in the same category C. Let $\phi : X \xrightarrow{\sim} Y$ be a bijection. Use **universal property** to show $\exists !A \xrightarrow{f:\sim} B$ (iso) in C such that diagram commutes (pg. 23 in notes)
- **SE 8.** Trivial set is a free-object.
- SE 9. Let I, I' be initial objects in C. Prove that there exists a **unique** isomorphims $f : I \to I'$ ("initial objects are unique" upto isomorphism."
 - 10. (Unimportant Study Exercise Let C =Sets, D concrete category (ex: groups) and $F : D \to C$, the forget functor.

Prove that an initial object in the category $(X \downarrow F)$ (where X is any set) is the same thing as free objects in \mathcal{D} on X.

- 11. Review: Submodule, Quotient modules, isomorphism theorem, and homomorphism.
- SE 12. Proposition: Let (M, +) be an abelian group, then M is the structure of R-module is equivalent to satisfying a ring homomorphism:

$$\phi: R \to End_{\mathbb{Z}}(M)$$

Check Details

- 13. (Unimportant Study Exercise) This is equivalent to giving ring homomorphism $S \rightarrow End_R(M)^{op}$ or $R \rightarrow End_S(M)$.
- 14. Unimportant Study Exercise (Construct nonstandard C C bimodule structure on C.
- **SE 15.** Direct Sum is Co-Product, Product is product in categorical sense (go over universal property stuff).

SE 16. Repeat with **Coproduct** (on pg. 41 in notes)

SE 17. eR and (1-e)R are 2-sided ideals of R and $R = eR \bigoplus (1-e)R$.

SE 18. Free-modules are free objects in the category of R- objects.

19. Repeat Example 3 in detail like class both **computationally** and **symbolically** when both are bi-modules.