Math 6000, Fall 2020 (Prof. Kinser), Study Checks

Nitesh Mathur

26 August 2020

1. There exists unique morphism $x \rightarrow y$ iff $x \leq y$ in P (this defines a composition).

Check category axioms.

Definitions and Theorems

A partial order (POSET) on a nonempty set A is a relation \leq on A satisfying
(1) $x \leq x$ for all $x \in A$ (reflexive)
(2) if $x \leq y$ and $y \leq x$ then $x=y$ for all $x, y \in A$ (antisymmetric).
(3) if $x \leq y$ and $y \leq z$ then $x \leq z$ for all $x, y, z \in A$ (transitive).

From the notation above, the objects are sets (set A).
The morphism is as follows: $x \rightarrow y$ iff $x \leq y$ in A.
Composition Law:
$x \leq y$ and $y \leq z \Rightarrow x \leq z$ (by transitivity).
satisfying:
(i) If $x \rightarrow y(\Longleftrightarrow x \leq y)$ and $a \rightarrow b(\Longleftrightarrow a \leq b)$. Then they are are disjoint unless $a=x$ and $b=y$.
(ii) Associativity: Suppose $h: a \rightarrow b, g: b \rightarrow c, f: c \rightarrow d)$.
$a \leq b, b \leq c, c \leq d$. Then,
$h(g f) \Rightarrow a \leq(b \leq d) \Longleftrightarrow a \leq d$ and $(h g) f \Longleftrightarrow(a \leq c) \leq d \Longleftrightarrow a \leq d$. Check
(iii) identity morphism: $x \leq x(x \rightarrow x)$. -i reflexive

SE 2. Modify Proof of (\Rightarrow) for category of groups (pg. 10 notes)
3. Think of a counterexample (isomorphism, not same as retraction and section)
4. Check axioms of Power Set for functor (notes pg. 12) . Same for example $3 / 4$ maybe (pg. 13)
5. Check Functor Groups \rightarrow Groups have things like $G \mapsto Z(G)$.

SE 6. (Natural Transformations) $F, F^{\prime}: \mathcal{C} \rightarrow \mathcal{D}$ makes $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ a category.
SE 7. Suppose A free on X, B free on Y in the same category \mathcal{C}. Let $\phi: X \xrightarrow{\sim} Y$ be a bijection.
Use universal property to show $\exists!A \xrightarrow{f: \sim} B$ (iso) in \mathcal{C} such that diagram commutes (pg. 23 in notes)

SE 8. Trivial set is a free-object.
SE 9. Let I, I^{\prime} be initial objects in \mathcal{C}. Prove that there exists a unique isomorphims $f: I \rightarrow I^{\prime}$ ("initial objects are unique" upto isomorphism."
10. (Unimportant Study Exercise Let $\mathcal{C}=$ Sets, \mathcal{D} concrete category (ex: groups) and F : $\mathcal{D} \rightarrow \mathcal{C}$, the forget functor.
Prove that an initial object in the category $(X \downarrow F)$ (where X is any set) is the same thing as free objects in \mathcal{D} on X.
11. Review: Submodule, Quotient modules, isomorphism theorem, and homomorphism.

SE 12. Proposition: Let $(M,+)$ be an abelian group, then M is the structure of R-module is equivalent to satisfying a ring homomorphism:

$$
\phi: R \rightarrow \operatorname{End}_{\mathbb{Z}}(M)
$$

Check Details

13. (Unimportant Study Exercise) This is equivalent to giving ring homomorphism $S \rightarrow$ $\operatorname{End}_{R}(M)^{o p}$ or $R \rightarrow \operatorname{End}_{S}(M)$.
14. Unimportant Study Exercise (Construct nonstandard $\mathcal{C}-\mathcal{C}$ bimodule structure on \mathcal{C}.

SE 15. Direct Sum is Co-Product, Product is product in categorical sense (go over universal property stuff).

SE 16. Repeat with Coproduct (on pg. 41 in notes)
SE 17. $e R$ and $(1-e) R$ are 2-sided ideals of R and $R=e R \bigoplus(1-e) R$.
SE 18. Free-modules are free objects in the category of R - objects.
19. Repeat Example 3 in detail like class both computationally and symbolically when both are bi-modules.

