Math 6000, Fall 2020 (Prof. Kinser), Study Checks

Nitesh Mathur
8 December 2020

0. Read Chapter 18 - Dummitt and Foote

SE 1. Theorem: There is an equivalence of categories as follows: $\operatorname{Rep}(G) \equiv F G-\bmod$. Prove this is as much detail to master the definitions. See pg. 842-843.

SE 2. (not totally trivial) \mathbb{Q}_{8} has no faithful two-dimensional real representations.

SE. 3 Corollary 2 (to Maschke's Theorem) In the setup of the theorem, every finitely generated $F G$-module is completely reducible.
Prove: Study exercise using inducting on $\operatorname{dim} V$.

SE 4. (a) Prove that if $S \rightarrow T$ is a ring homomorphism $\&_{T} N$ is simple, then ${ }_{S} N$ (by restriction of scalars) also simple.
(b)Show that if $S=S_{1} \times S_{2}$ is a product of rings, $\&_{S} N$ is simple, then either S_{1} or S_{2} acts by 0 or ${ }_{S} N$ so ${ }_{S} N$ can be regarded as a simple left S_{1} or S_{2}-module.

SE 5. (In proof of Wedderburn (pg. 4), Sine $M v \subset R v \subset E$, get $R v=M v \oplus\left(M^{\prime} \cap R v\right)$.

SE 6. The map $R \rightarrow \operatorname{End}_{R}(E)$ defined by $r \mapsto \lambda r$ is a ring homomorphism.

SE 7. For any $v, w \in V$ as above, thought of $n \times 1$ column vectors using basis above, we have $B(v, w)=v^{T} \Gamma w \in F$, where v^{T} is $1 \times n, \Gamma$ is $n \times n, w$ is $n \times 1$ and F is 1×1.

SE 8. B is nondegenerate \Longleftrightarrow associated matrix Γ as above $\operatorname{det} \Gamma \neq 0$.

SE 9. If B is non-degenerate skew-symmetric form on a vector space V, then $\operatorname{dim} V$ is even.

SE 10. (Hard exercise) Let B be a symmetric nondegenerate bilinear form on V over F.
(1) If $F=\mathbb{R}$, then $O(V, B) \equiv O(p, q)$ for some p, q uniquely determined by B (i.e. can choose basis of V such that B represented by $I_{p, q}$).
(2) If $F=\mathbb{C}$, then $O(V, B) \equiv O(n, \mathbb{C})$ i.e. can choose basis of V such that B represented by $I d$ matrix.

