Math 6000, Fall 2020 (Prof. Kinser), Study Checks

Nitesh Mathur

31 October 2020

1. Write details of proof of the following:
α injective $\Longleftrightarrow A$ is exact.
β surjective $\Longleftrightarrow C$ is exact.
$\operatorname{im} \alpha=\operatorname{ker}(\beta) \Longleftrightarrow \beta$ is exact.
(In this case, $C \cong B / A$).
2. $0 \rightarrow A \xrightarrow{\alpha} B \rightarrow 0$ is exact $\Longleftrightarrow \alpha$ is an isomorphism.
3. (Recall definition of triple - pg. 61-62 on notes)

This gives a category whos objects are s.e.s.s. in R-Mod.
A morphism of sequences is an isomorphism $\Longleftrightarrow \alpha, \beta, \eta$ are all isomorphisms of R-modules $\left(\alpha^{-1}, \beta^{-1}, \gamma^{-1}\right]$: Check morphisms of inverses).
4. (Counterexample) $R=\mathbb{C}[t]$ and $M_{i}=\frac{R}{\left(t^{i}\right)}$ for indecomposable modules.

Check exactness.
5. Redo Diagram Chase for practice (pg. 65 notes) α, γ injective $\Rightarrow \beta$ injective.

5b. Try α, γ surjective $\Rightarrow \beta$ surjective (similar for isomorphism) using diagram chase.
5c. Check axioms of split sequence using diagram chase (pg. 67 notes)
6. (Prove Proposition) Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a s.e.s.

Then $0 \rightarrow \operatorname{Hom}_{R}(C, N) \rightarrow \operatorname{Hom}_{R}(B, N) \rightarrow \operatorname{Hom}_{R}(A, N)$ is exact.
7. Check that $\tilde{\sigma}: M$ times $C \rightarrow \frac{M \otimes B}{i m(i d \times \alpha}$ is R-balanced. (pg.78)
8. Check that Free Modules are Projective using relation Hom and \oplus.
9. Prove injective TFAE Theorem (i) \Longleftrightarrow (ii) \Longleftrightarrow (iii). [Thm. 38 in D/F]
10. (Proposition pg.92) Let $\left\{M_{i}\right\}_{i \in I}$ be family of R-modules. Then,
(i) $\oplus_{i \in I} M_{i}$ projective $\Longleftrightarrow M+{ }_{i}$ projective.
(ii) " """ \Longleftrightarrow each flat.
(iii) $\prod_{i \in I} M_{i}$ injective \Longleftrightarrow each M_{i} injective.
(Hint: Use relations between Hom / \otimes and \oplus / Π.
10. Think about Adjoint Functors/ Functoriality (pg. 94)
11. (Abelianization) Ab(-): Groups \rightarrow Ab.groups and inclusion Ab.groups \rightarrow Groups.
(a) Show these are a pair of adjoint functors. (You have to figure out left vs right).
12. Let $R=\mathbb{C}[x]$ and $M=\frac{R}{x^{2}(x-1)}$.

Find all (or some) composition series and compare the factors.
13. Write rigorous proof by contradiction that \mathbb{Z} has no composition series.
14. $R=\mathbb{Z}$ is not Artinian.

Write this properly (pg. 109) and generalize to all PIDs.
15. (Thm) A left R module M has a composition series \Longleftrightarrow it has ACC and DCC.
16. (Qual Type Problem)

Interpret the theorem in the context of PIDs. (Overlap with theorem over PIDS).
Hints:
(i) Say take $R=\mathbb{C}[x]$ and $M=\frac{R}{x\left(x^{2}-1\right)} \oplus \frac{R}{x^{2}(x-1)^{2}}$ and find decomposition as in the KS Theorem.
(ii) Then, find composition factors of M and compare them to the composition factors of indecomposable modules in KS Theorem.
17. (Key Theoretical Example) Let S be a simple $R-$ module. Then, $E n d_{R-M o d}(S)$ is a division algebra.

Prove this.
18. Let R be a PID and $R=C[x] / I$ for some ideal I. Describe the Jacobian radical $J(R)$.
19. $A n n_{R}(M)=\{r \in R \mid r m=0 \forall m \in M\}$.
(ii) $A n n_{R}(M)$ is a $2-$ sided ideal.
(ii) For any left ideal $I \subset R, A n n_{R}(R / I) \subset I$.
(iii) Show reverse containment in (ii) does NOT hold in general by computing for $R=$ $M_{2}(K)(K=$ field $)$.

20. (Good Oral Exam Questions)

(Rotman - Proposition) There exists a surjective map of sets. Then maximal left ideals of $R \rightarrow$ simple left R-modules corresponds to $I \mapsto R / I$.
(pg 120-121).
21. Check $\phi: R \rightarrow^{2}$ defined by $\left[\begin{array}{ll}x & a \\ y & b\end{array}\right] \mapsto\left[\begin{array}{l}x \\ y\end{array}\right]$ is a homomorphism of left R-modules. $I_{1}=\operatorname{ker}\left(\phi_{1}\right), R / I_{1} \cong K^{2}$.
22. $R=T_{n}$ of upper triangular matrices.
(Check out the maximum left ideals and relate to nilpotent). - Pg. 130
23. (Ring of formal power series, $R=K[t]$ for K field).

Let $F=a_{0}+a_{1}+a_{2}+\ldots .=\sum_{i=0}^{\infty} a_{i} t^{i}$ with addition and multiplication as usual.
Prove that F as above is a unit $\Longleftrightarrow a_{0} \neq 0$.
(Hint: inductively construct the inverse).
24. (Theorem - Important but not deep).

There is an equivalence of categories $\operatorname{Rep}(G) \cong F-G$ Mod.
(pg. 842-843).

