Math 6000, Fall 2020 (Prof. Kinser), Study Checks

Nitesh Mathur

31 October 2020

1. Write details of proof of the following: α injective $\iff A$ is exact.

 β surjective $\iff C$ is exact.

im $\alpha = \ker(\beta) \iff \beta$ is exact.

(In this case, $C \cong B/A$).

- **2.** $0 \to A \xrightarrow{\alpha} B \to 0$ is exact $\iff \alpha$ is an isomorphism.
- 3. (Recall definition of triple pg. 61-62 on notes) This gives a category whos objects are s.e.s.s. in *R*-Mod.
 A morphism of sequences is an isomorphism ⇔ α, β, η are all isomorphisms of *R*-modules (α⁻¹, β⁻¹, γ⁻¹] : Check morphisms of inverses).
- 4. (Counterexample) $R = \mathbb{C}[t]$ and $M_i = \frac{R}{(t^i)}$ for indecomposable modules. Check exactness.
- **5.** Redo **Diagram Chase** for practice (pg. 65 notes) α, γ injective $\Rightarrow \beta$ injective.
- **5b.** Try α, γ surjective $\Rightarrow \beta$ surjective (similar for isomorphism) using diagram chase.
- **5c.** Check axioms of split sequence using diagram chase (pg. 67 notes)
- 6. (Prove Proposition) Let $0 \to A \to B \to C \to 0$ be a s.e.s. Then $0 \to Hom_R(C, N) \to Hom_R(B, N) \to Hom_R(A, N)$ is exact.
- 7. Check that $\tilde{\sigma}: MtimesC \to \frac{M \otimes B}{im(id \times \alpha)}$ is R-balanced. (pg.78)
- **8.** Check that Free Modules are Projective using relation Hom and \oplus .
- 9. Prove injective TFAE Theorem (i) \iff (ii) \iff (iii). [Thm. 38 in D/F]

- 10. (Proposition pg.92) Let {M_i}_{i∈I} be family of R-modules. Then,
 (i) ⊕_{i∈I}M_i projective ⇔ M+_i projective.
 (ii) "" ⇔ each flat.
 (iii) ∏_{i∈I} M_i injective ⇔ each M_i injective.
 (Hint: Use relations between Hom/ ⊗ and ⊕/∏.
- 10. Think about Adjoint Functors/ Functoriality (pg. 94)
- 11. (Abelianization) Ab(−): Groups → Ab.groups and inclusion Ab.groups → Groups.
 (a) Show these are a pair of adjoint functors. (You have to figure out left vs right).
- **12.** Let $R = \mathbb{C}[x]$ and $M = \frac{R}{x^2(x-1)}$.

Find all (or some) composition series and compare the factors.

- 13. Write rigorous proof by contradiction that \mathbb{Z} has no composition series.
- **14.** $R = \mathbb{Z}$ is not Artinian.

Write this properly (pg. 109) and generalize to all PIDs.

- **15.** (Thm) A left R module M has a composition series \iff it has ACC and DCC.
- **16.** (Qual Type Problem)

Interpret the theorem in the context of PIDs. (Overlap with theorem over PIDS).

Hints:

(i) Say take $R = \mathbb{C}[x]$ and $M = \frac{R}{x(x^2 - 1)} \oplus \frac{R}{x^2(x - 1)^2}$ and find decomposition as in the **KS** Theorem.

(ii) Then, find composition factors of M and compare them to the composition factors of indecomposable modules in KS Theorem.

17. (Key Theoretical Example) Let S be a simple R-module. Then, $End_{R-Mod}(S)$ is a division algebra.

Prove this.

18. Let R be a PID and R = C[x]/I for some ideal I. Describe the Jacobian radical J(R).

19.
$$Ann_R(M) = \{r \in R | rm = 0 \ \forall m \in M\}.$$

- (ii) $Ann_R(M)$ is a 2- sided ideal.
- (ii) For any left ideal $I \subset R$, $Ann_R(R/I) \subset I$.

(iii) Show reverse containment in (ii) does NOT hold in general by computing for $R = M_2(K)$ (K = field).

20. (Good Oral Exam Questions)

(Rotman - Proposition) There exists a surjective map of sets. Then maximal left ideals of $R \rightarrow$ simple left R-modules corresponds to $I \mapsto R/I$. (pg 120-121).

21. Check $\phi: R \to^2$ defined by $\begin{bmatrix} x & a \\ y & b \end{bmatrix} \mapsto \begin{bmatrix} x \\ y \end{bmatrix}$ is a homomorphism of left R-modules. $I_1 = \ker(\phi_1), R/I_1 \cong K^2.$

- 22. $R = T_n$ of upper triangular matrices. (Check out the maximum left ideals and relate to nilpotent). - Pg. 130
- 23. (Ring of formal power series, R = K[t] for K field).
 Let F = a₀ + a₁ + a₂ + = ∑_{i=0}[∞] a_itⁱ with addition and multiplication as usual.
 Prove that F as above is a unit ⇔ a₀ ≠ 0.
 (Hint: inductively construct the inverse).
- 24. (Theorem Important but not deep).
 There is an equivalence of categories Rep(G) ≅ F G Mod. (pg. 842-843).