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Source Discussed problem/solutions with Zach Bryhtan.

Problem 1. Skills developed: connecting representations of related groups. Let G be any group (not
necessarily finite) and G′ = [G,G] ,the commutator subgroup of G. Explicitly describe
(with justification) a bijection between the sets of one-dimensional representations of G and
of the abelianization G/G′.

Defs/Thms Let G be a group.

1. A linear representation of G is a homomorphism G→ GL(V ) for some vector space V .

2. A matrix representation of G is a homomorphism G→ GLn(F ).

3. (Example 5 in class) Given a field F and group homomorphism G → F× = GL1(F ), we
get a 1 dimensional representation of G.

4. G/G′ is the largest abelian quotient of G, where G′ is the commutator subgroup.

Proof Let F be a field.

Let ρ1 : G → F× = GL1(F ) and ρ2 : G/G′ → F× = GL1(F ) be one-dimensional
representations of G and G/G′ respectively (by example 5).

Consider the natural projection map π : G→ G/G′ defined by π(g) = gG′ for g ∈ G.

Now, we need to show that ϕ : ρ1 → ρ2 is a bijection.

Then, we have the following maps:

G G/G′

F× = GL1(V )

π

ρ1
ρ2

By the universal property, we have a unique map ρ1 = ρ2 ◦ π : G → GL1(V ). Hence, the
correspondence between ρ1 and ρ2 is bijective.

∴, there is a bijection between the sets of one-dimensional representation of G and the
abelianization G/G′.
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Problem 2. Skills developed: understanding a fundamental property of simple modules.

LetR be a ring andM,N be simple leftR-modules. Prove that any nonzero homomorphism
from M to N is an isomorphism. Conclude that EndR(M) is a division ring.

Proof. (a) Let φ :M → N be an R-module homomorphism such that φ is nonzero.

By the First Isomorphism Theorem (of Modules), ker(φ) ≤M and M/ ker(φ) ∼= φ(M).

Since M is simple, the only submodules of M are 0 and M itself. Hence, ker(φ) = 0 or
ker(φ) =M .

Because φ 6= 0, ker(φ) = 0.

Therefore, we have M/ ker(φ) ∼= M/{0} ∼= M ∼= φ(M) = N .

(since the image of φ is a nonzero submodule of N , which is also simple).

Hence, M ∼= N and φ is an isomorphism.

(b) From the notation above, suppose N = M also. Then, we have φ : M → M , i.e. φ ∈
EndR(M).

In part (a), we proved that φ is an isomorphism. In particular, it has a two-sided inverse.

∴,EndR(M) is a division ring.

Extra (From Wikipedia) Part (b) in general is known as the Schur’s Lemma stated below:

Let V and W be vector space with underlying field C. Let ρV and ρW be irreducible repre-
sentations of G on V and W respectively. Then,

(i) V and W not isomorphic, then there are no non-trivial G-linear maps between them.

(ii) If V = W and if ρV = ρW , then the only non-trivial maps are the identity and scalar
multiples of identity.

If R is an algebra, M = N is a simple module, then by Schur’s Lemma, the endomorphism
ring of M is a division algebra over a field k.

(Also, Chapter 18, Lemma 7).
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Problem 3. Skills developed: working with group rings and short exact sequences, and familiarity with
fundamental “issue” of modular representation theory of groups (i.e. in positive character-
istic.)

We will later study semisimple rings, which can be characterized as having every module
both projective and injective, or equivalently every short exact sequence of modules over
that ring splits. Let G be a group and K a field of characteristic p > 0. The goal of this
problem is to prove that the group ring KG is not semisimple if p divides |G|. (We will
prove the converse in class, call Maschke’s theorem, so the statement above is “if and only
if”.)

Since {g ∈ G} is a basis of KG, the augmentation map

ε : KG→ K, ε(
∑
g∈G

agg) =
∑
g∈G

ag

is well-defined. Let I := ker(ε). Recall that K can be regarded as a KG-module by the
action g.x = x for all x ∈ K, called the trivial KG-module.

(a) Prove that ε is a morphism of KG-modules, and a ring homomorphism. Conlcude that I is
a 2-sided ideal of KG.

(b) Consider the short exact sequence of KG- modules

0→ I → KG
ε−→ K → 0.

If KG were to be a semi-simple ring, then ε would necessarily split, giving a decomposition
KG ∼= I ⊕ J as KG-modules where J ⊂ KG is a trivial KG-module. Let v =

∑
g∈G g ∈

KG. Prove that < v > is the only trivial submodule of KG, where < v > means the one
dimensional subspace spanned by v.

(c) From (b), if KG were semi-simple, then ε would split the inclusion <
∑

g∈G g >⊂ KG.
Show that this gives a contradiction.

Therefore, we conclude (along with Maschke’s theorem) that KG is a semi-simple ring
⇐⇒ char K does not divide |G|.

Defs/Thms 1. The group ring ofG (over F is the free vector space over F with basis elements the elements
of G and multiplication of basis elements same as multiplication in G ,extended by linearity.

1b. A typical element is a sum
∑

g∈G αgg, αg ∈ F , all but finitely many αg = 0.

2. (Maschke’s Theorem) Let G be a finite group and F field whose characteristic does not
divide |G| (including char(F) = 0). If V is any FG- submodule and U ≤ V a submodule,
then ∃W ≤ V submodule such that U ⊕W = V .

(i.e. every submodule of V is a direct summand).
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3. There is an equivalence of categories Rep(G) ∼= FG- Mod.

3a. To a representation ρ : G → GL(V ), we take the FG module to the set V with FG acting
by:

g.v = ρ(g)(v) for g ∈ G, v ∈ V

3b. To an FG - module V , we see V is a vector space by restriction of scalars along F ≤ FG
,defined by

ρ(g)(v) = g.v for g ∈ G, v ∈ V.

4. Semisimple (or semisimple with minimum condition) satisfies Wedderburn’s Theorem:

Let R be a nonzero ring with 1 (not necessarily commutative). Then FAE:

(i) every R-module is projective

(ii) every R-module is injective

(iii) every R-module is completely reducible.

(iv) the ring R considered as a left R-module is a direct sum

R = L1 ⊕ L2 ⊕ ...⊕ Ln
where each Li is a simple module (i.e. simple left module) with Li = Rei for some ei ∈ R
with

(1) eiej = 0 if i 6= j

(2) e2i = ei for all i

(3)
∑n

i=1 ei = 1

Proof First we prove that ε is a ring homomorphism.

(a-i) For αg, βg ∈ K, g ∈ G, we first consider ε(
∑

g∈G αgg +
∑

g∈G βgg). Then, we have:

ε(
∑
g∈G

αgg +
∑
g∈G

βgg) = ε(
∑
g∈G

(αg + βg)g)

=
∑
g∈G

(αg + βg)

=
∑
g∈G

αg +
∑
g∈G

βg

= ε(
∑
g∈G

αgg) + ε(
∑
g∈G

βgg)
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(a-ii) Now consider ε(
∑

g∈G αgg ·
∑

g∈G βgg).

The multiplication in group ring is defined as follows: (agi)(bgj) = (ab)gk (D and F chapter
7.2). Then, we have the following:

ε(
∑
g∈G

αgg ·
∑
g∈G

βgg) = ε(
∑

gigj=gk

αgiβgjg)

=
∑
g∈G

αgβg

= ε(
∑
g∈G

αgg) · ε(
∑
g∈G

βgg)

Hence, ε is a ring homomorphism.

(a-iii) Now, we show that ε is KG-module homomorphism. Let r =
∑

g∈G rgg, x =
∑

g∈G xgg.
Then,

ε(rx) = ε([
∑
g∈G

rgg][
∑
g∈G

xgg])

= ε(
∑

gigj=gk

rgxgg)

=
∑

gigj=gk

rgxg

=
∑
g∈G

rg
∑
g∈G

xg

=
∑
g∈G

rggε(
∑
g∈G

xgg)

= rε(x)

Hence, ε is a morphism of KG- modules.

(a-iv) Finally, we conclude that I is a 2-sided ideal of KG.

(By the First Isomorphism Theorems for Rings), If ε : KG → K is a homomorphism of
rings, then the kernel of ε is an ideal of KG.

Hence, I = ker(ε) is a 2-sided ideal of KG.

(b-i) Suppose that < v >=<
∑

g∈G g ≤ KG is not trivial.

Know Since we are given the short exact sequence:
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0→ I
i−→ KG

ε−→ K → 0,

we know that (i) i is injective, (ii) ε is surjective, and (ii) im (i) = ker(ε) = I .

By one of the propositions corresponding to a split sequence, there exists a submodule J ≤
KG such that KG = i(I) + J ⇒ KG ∼= I ⊕ J .

(b-ii) Now, we show that < v > is the only trivial submodule of KG.

Suppose there is another trivial submodule of KG,U where u =
∑

g∈G αgg ∈ U .

(From class), we can also think of KG as an K -algebra. So, consider αg ∈ Z(KG). Then,
consider the following:

(i) For a fixed g′ ∈ G, since U is trivial, we have that:

g′
∑
g∈G

αgg =
∑
g∈G

αgg.

(ii) We also have:

g′
∑
g∈G

αgg =
∑
g∈G

g′αgg = αg(g
′g)

(iii) Putting (i), (ii) together and reordering, we get:

∑
g∈G

αg(g
′g) =

∑
g∈G

αgg =
∑
g∈G

αg2g
′g,

where g2 is the new ordering.

Subtracting the first and third expressions we get the following:

(iv) ∑
g∈G

[αg(g
′g)− αg2(g′g)] = [αg − αg2 ](g′g)

Since, both expressions are equal to
∑

g∈G αgg, in particular, we get: [αg − αg2 ](g
′g) =

0 ⇐⇒ αg = αg2 .

(v) Let βg = αg − αg2 . Then, we have

u =
∑
g∈G

βgg ∈ < v >

Since u is in the span of v , < v >≤ KG is the only trivial submodule of KG.

(Source: Had a lot of help and hints from Zach on this one)
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(c) By way of contradiction, suppose KG were semi-simple and ε split. Then, by part (b), the
only trivial submodule is v =

∑
g∈G g.

Suppose K is a field of characteristic p > 0 and p
∣∣∣∣|G|.

Then, we can write v as follows: v =
∑

g∈G g = |G| = 0 , where the assertion follows since

p

∣∣∣∣|G|.
Similarly, for a fixed k ∈ K, kv = 0⇒ kv ∈ ker(ε).

In particular, by part (b) KG ∼= J ⊕ I , where J =< v >. Since kv ∈ ker(ε), J ≤ I .

This is a contradiction since we have the following:

KG ∼= I ⊕ J ⇒ KG/I ∼= K since J ≤ I.

Hence, p
∣∣∣∣|G| if and only if KG is not semi-simple.
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