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Problem 1.

Math 6000, Fall 2020 (Prof. Kinser), Homework 7

Nitesh Mathur
3 November 2020

Discussed problem/solutions with Zach Bryhtan.

Skills developed: connecting representations of related groups. Let G be any group (not
necessarily finite) and G’ = [G, G| ,the commutator subgroup of GG. Explicitly describe
(with justification) a bijection between the sets of one-dimensional representations of G and
of the abelianization G/G".

Defs/Thms
1.
2.
3.

4.

Let G be a group.
A linear representation of GG is a homomorphism G — G L(V') for some vector space V.
A matrix representation of G is a homomorphism G — GL,,(F).

(Example 5 in class) Given a field F' and group homomorphism G — F* = GL,(F), we
get a 1 dimensional representation of G.

G /G is the largest abelian quotient of G, where G’ is the commutator subgroup.

Proof Let F be a field.

Let p; : G — F* = GLy(F) and py : G/G' — F* = GLy(F) be one-dimensional
representations of G and G/G’ respectively (by example 5).

Consider the natural projection map 7 : G — G/G’ defined by 7(g) = ¢gG’ for g € G.
Now, we need to show that ¢ : p; — ps is a bijection.

Then, we have the following maps:
G ——— GG
N e
F*=GL(V)
By the universal property, we have a unique map p; = p, o : G — GL1(V'). Hence, the
correspondence between p; and ps is bijective.

.., there is a bijection between the sets of one-dimensional representation of G and the
abelianization G/G’.




Problem 2.

Skills developed: understanding a fundamental property of simple modules.

Let R be aring and M, N be simple left R-modules. Prove that any nonzero homomorphism
from M to N is an isomorphism. Conclude that End () is a division ring.

Proof. (a)

Let ¢ : M — N be an R-module homomorphism such that ¢ is nonzero.
By the First Isomorphism Theorem (of Modules), ker(¢) < M and M/ ker(¢) = ¢(M).

Since M is simple, the only submodules of A are 0 and M itself. Hence, ker(¢) = 0 or
ker(¢) = M.

Because ¢ # 0, ker(¢) = 0.
Therefore, we have M/ ker(¢) = M/{0} = M = ¢(M) = N.
(since the image of ¢ is a nonzero submodule of /V, which is also simple).

Hence, M = N and ¢ is an isomorphism.

(b)

From the notation above, suppose N = M also. Then, we have ¢ : M — M, ie. ¢ €
EndR(M)

In part (a), we proved that ¢ is an isomorphism. In particular, it has a two-sided inverse.

.., Endg(M) is a division ring.

Extra

(From Wikipedia) Part (b) in general is known as the Schur’s Lemma stated below:

Let V and W be vector space with underlying field C. Let py, and py be irreducible repre-
sentations of G on V' and W respectively. Then,

(1) V and W not isomorphic, then there are no non-trivial G-linear maps between them.

(1) If V. = W and if py = pw, then the only non-trivial maps are the identity and scalar
multiples of identity.

If R is an algebra, M = N is a simple module, then by Schur’s Lemma, the endomorphism
ring of M is a division algebra over a field k.

(Also, Chapter 18, Lemma 7).




Problem 3.

(a)

(b)

(c)

Skills developed: working with group rings and short exact sequences, and familiarity with
fundamental “issue” of modular representation theory of groups (i.e. in positive character-
istic.)

We will later study semisimple rings, which can be characterized as having every module
both projective and injective, or equivalently every short exact sequence of modules over
that ring splits. Let G be a group and K a field of characteristic p > 0. The goal of this
problem is to prove that the group ring KG is not semisimple if p divides |G|. (We will
prove the converse in class, call Maschke’s theorem, so the statement above is “if and only
if”.)

Since {g € G} is a basis of K G, the augmentation map

e: KG— K, E(Zagg) :Zag

geG geG

is well-defined. Let I := ker(e). Recall that & can be regarded as a K G-module by the
action g.x = x for all z € K, called the trivial K G-module.

Prove that € is a morphism of K G-modules, and a ring homomorphism. Conlcude that [ is
a 2-sided ideal of KG.

Consider the short exact sequence of K G- modules

051> KGSK—=0.

If K G were to be a semi-simple ring, then € would necessarily split, giving a decomposition
KG = 1® Jas KG-modules where J C KG is a trivial KG-module. Letv =3 g €
KG@G. Prove that < v > is the only trivial submodule of K'G, where < v > means the one
dimensional subspace spanned by v.

From (b), if KG were semi-simple, then ¢ would split the inclusion < ) gecy >C K G.
Show that this gives a contradiction.

Therefore, we conclude (along with Maschke’s theorem) that K'G is a semi-simple ring
<= char K does not divide |G]|.

Defs/Thms 1.

1b.

The group ring of GG (over F'is the free vector space over [’ with basis elements the elements
of G and multiplication of basis elements same as multiplication in GG ,extended by linearity.

A typical element is a sum ) . __. a,g, o, € F, all but finitely many o, = 0.

geG

. (Maschke’s Theorem) Let GG be a finite group and F' field whose characteristic does not

divide |G| (including char(F) = 0). If V' is any F'G- submodule and U < V' a submodule,
then 3 W < V submodule suchthat U @ W = V.

(i.e. every submodule of V' is a direct summand).



3. There is an equivalence of categories Rep(G) = FG- Mod.

3a. To a representation p : G — GL(V'), we take the F'G module to the set V' with F'G acting
by:

gv=p(g)(v)forge Gio eV

3b. To an F'G - module V', we see V' is a vector space by restriction of scalars along F' < FG
,defined by

p(g)(v) =guforg e G,veV.

4. Semisimple (or semisimple with minimum condition) satisfies Wedderburn’s Theorem:
Let 12 be a nonzero ring with 1 (not necessarily commutative). Then FAE:
(1) every R-module is projective
(1) every R-module is injective
(1i1) every R-module is completely reducible.

(iv) the ring R considered as a left R-module is a direct sum

R=Li®L,®..BL,

where each L; is a simple module (i.e. simple left module) with L; = Re; for some ¢; € R
with

(1) ere; = 0if i # j
(2) e? = ¢, for all 4
3) Z?:l e; =1

Proof First we prove that € is a ring homomorphism.

(a-i) For ay, B, € K, g € G, we first consider E(dea azg + deG By9). Then, we have:

G(Z Qgg + Z Beg) = G(Z(ag + B4)9)

geG geG geG
= Z(O‘g + By)
geG
= Z ay + Z By
geG geG
= E(Z agg) + E(Z B99)
9€G geG



(a-ii) Now consider €(d_ cc g9 - > cq B59)-

The multiplication in group ring is defined as follows: (ag;)(bg;) = (ab)g (D and F chapter
7.2). Then, we have the following:

ZO‘QQ Zﬁgg = €( Z g, By, 9)

geG geG 9i9;=
= E :04969
geG
=€ E agg § ng
geG geG

Hence, € is a ring homomorphism.

(a-iii) Now, we show that € is K G-module homomorphism. Let r = geG 99, T = > 9eG Tg9-
Then,

e(re) = e([Y_ragllY_ 749))

geG geG
= ¢( Z T9%4q)
9i95;=
- Z oy
9i9;=
=27 Z zy
geG geG
=D _7og¢(>_ %49)
geG geG
= re(x)

Hence, € is a morphism of K G- modules.

(a-iv) Finally, we conclude that [ is a 2-sided ideal of K G.

(By the First Isomorphism Theorems for Rings), If ¢ : KG — K is a homomorphism of
rings, then the kernel of € is an ideal of K G.

Hence, [ = ker(e) is a 2-sided ideal of KG.

(b-i) Suppose that < v >=<>" _.g < KG is not trivial.

geG

Know Since we are given the short exact sequence:



0515 KGS K —0,
we know that (i) ¢ is injective, (ii) € is surjective, and (ii) im (i) = ker(e) = I.
By one of the propositions corresponding to a split sequence, there exists a submodule J <
KGsuchthat KG=i(l)+J = KG=1aJ.
(b-ii) Now, we show that < v > is the only trivial submodule of K G.

Suppose there is another trivial submodule of KG,U where u =), _,a,9 € U.

geG
(From class), we can also think of K'G' as an K -algebra. So, consider o, € Z(KG). Then,
consider the following:

(i) For a fixed ¢’ € G, since U is trivial, we have that:

g Z agg = Z Qyg.

geG geG

(i1) We also have:

9 agg =Y gag=a,dyg)

geG geG

(111) Putting (1), (i1) together and reordering, we get:

D ag(ge) =D a9 = agdy,

geG geqG geqG

where g- is the new ordering.
Subtracting the first and third expressions we get the following:
@iv)

> lag(g'g) — ag,(9'9)) = [0y — ag,](g'9)

geG
Since, both expressions are equal to > gec g9, In particular, we get: [y — ag,](9'9) =
0 = a,=aqy,.

(v) Let B, = oy — avg,. Then, we have

u:Zﬂgg€<v>

geG

Since w is in the span of v, < v >< K is the only trivial submodule of KG.

(Source: Had a lot of help and hints from Zach on this one)




(c) By way of contradiction, suppose K G were semi-simple and e split. Then, by part (b), the
only trivial submoduleisv =} . g.

Suppose K is a field of characteristic p > 0 and p||G|.
Then, we can write v as follows: v = ) | gec 9= |G| = 0, where the assertion follows since
p||Gl.

Similarly, for a fixed k € K, kv = 0 = kv € ker(e).
In particular, by part (b) KG = J @& I, where J =< v >. Since kv € ker(e), J < I.

This is a contradiction since we have the following:
KG=Il®J=KG/I=K sinceJ <.

Hence, p||G| if and only if K'G is not semi-simple.




