Math 6000, Fall 2020 (Prof. Kinser), Homework 7

Nitesh Mathur

3 November 2020

Source Discussed problem/solutions with Zach Bryhtan.
Problem 1. Skills developed: connecting representations of related groups. Let G be any group (not necessarily finite) and $G^{\prime}=[G, G]$, the commutator subgroup of G. Explicitly describe (with justification) a bijection between the sets of one-dimensional representations of G and of the abelianization G / G^{\prime}.

Defs/Thms Let G be a group.

1. A linear representation of G is a homomorphism $G \rightarrow G L(V)$ for some vector space V.
2. A matrix representation of G is a homomorphism $G \rightarrow G L_{n}(F)$.
3. (Example 5 in class) Given a field F and group homomorphism $G \rightarrow F^{\times}=G L_{1}(F)$, we get a 1 dimensional representation of G.
4. G / G^{\prime} is the largest abelian quotient of G, where G^{\prime} is the commutator subgroup.

Proof Let F be a field.
Let $\rho_{1}: G \rightarrow F^{\times}=G L_{1}(F)$ and $\rho_{2}: G / G^{\prime} \rightarrow F^{\times}=G L_{1}(F)$ be one-dimensional representations of G and G / G^{\prime} respectively (by example 5).
Consider the natural projection map $\pi: G \rightarrow G / G^{\prime}$ defined by $\pi(g)=g G^{\prime}$ for $g \in G$.
Now, we need to show that $\varphi: \rho_{1} \rightarrow \rho_{2}$ is a bijection.
Then, we have the following maps:

By the universal property, we have a unique map $\rho_{1}=\rho_{2} \circ \pi: G \rightarrow G L_{1}(V)$. Hence, the correspondence between ρ_{1} and ρ_{2} is bijective.
\therefore, there is a bijection between the sets of one-dimensional representation of G and the abelianization G / G^{\prime}.

Problem 2. Skills developed: understanding a fundamental property of simple modules.
Let R be a ring and M, N be simple left R-modules. Prove that any nonzero homomorphism from M to N is an isomorphism. Conclude that $\operatorname{End}_{R}(M)$ is a division ring.

Proof. (a) Let $\phi: M \rightarrow N$ be an R-module homomorphism such that ϕ is nonzero.
By the First Isomorphism Theorem (of Modules), $\operatorname{ker}(\phi) \leq M$ and $M / \operatorname{ker}(\phi) \cong \phi(M)$.
Since M is simple, the only submodules of M are 0 and M itself. Hence, $\operatorname{ker}(\phi)=0$ or $\operatorname{ker}(\phi)=M$.
Because $\phi \neq 0, \operatorname{ker}(\phi)=0$.
Therefore, we have $M / \operatorname{ker}(\phi) \cong M /\{0\} \cong M \cong \phi(M)=N$.
(since the image of ϕ is a nonzero submodule of N, which is also simple).
Hence, $M \cong N$ and ϕ is an isomorphism.
(b) From the notation above, suppose $N=M$ also. Then, we have $\phi: M \rightarrow M$, i.e. $\phi \in$ $\operatorname{End}_{R}(M)$.
In part (a), we proved that ϕ is an isomorphism. In particular, it has a two-sided inverse.
$\therefore, \operatorname{End}_{R}(M)$ is a division ring.
Extra (From Wikipedia) Part (b) in general is known as the Schur's Lemma stated below:
Let V and W be vector space with underlying field \mathbb{C}. Let ρ_{V} and ρ_{W} be irreducible representations of G on V and W respectively. Then,
(i) V and W not isomorphic, then there are no non-trivial G-linear maps between them.
(ii) If $V=W$ and if $\rho_{V}=\rho_{W}$, then the only non-trivial maps are the identity and scalar multiples of identity.
If R is an algebra, $M=N$ is a simple module, then by Schur's Lemma, the endomorphism ring of M is a division algebra over a field k.
(Also, Chapter 18, Lemma 7).

Problem 3. Skills developed: working with group rings and short exact sequences, and familiarity with fundamental "issue" of modular representation theory of groups (i.e. in positive characteristic.)

We will later study semisimple rings, which can be characterized as having every module both projective and injective, or equivalently every short exact sequence of modules over that ring splits. Let G be a group and K a field of characteristic $p>0$. The goal of this problem is to prove that the group ring $K G$ is not semisimple if p divides $|G|$. (We will prove the converse in class, call Maschke's theorem, so the statement above is "if and only if".)
Since $\{g \in G\}$ is a basis of $K G$, the augmentation map

$$
\epsilon: K G \rightarrow K, \quad \epsilon\left(\sum_{g \in G} a_{g} g\right)=\sum_{g \in G} a_{g}
$$

is well-defined. Let $I:=\operatorname{ker}(\epsilon)$. Recall that K can be regarded as a $K G$-module by the action $g . x=x$ for all $x \in K$, called the trivial $K G$-module.
(a) Prove that ϵ is a morphism of $K G$-modules, and a ring homomorphism. Conlcude that I is a 2-sided ideal of $K G$.
(b) Consider the short exact sequence of $K G$ - modules

$$
0 \rightarrow I \rightarrow K G \xrightarrow{\epsilon} K \rightarrow 0 .
$$

If $K G$ were to be a semi-simple ring, then ϵ would necessarily split, giving a decomposition $K G \cong I \oplus J$ as $K G$-modules where $J \subset K G$ is a trivial $K G$-module. Let $v=\sum_{g \in G} g \in$ $K G$. Prove that $\langle v>$ is the only trivial submodule of $K G$, where $<v>$ means the one dimensional subspace spanned by v.
(c) From (b), if $K G$ were semi-simple, then ϵ would split the inclusion $<\sum_{g \in G} g>\subset K G$. Show that this gives a contradiction.
Therefore, we conclude (along with Maschke's theorem) that $K G$ is a semi-simple ring \Longleftrightarrow char K does not divide $|G|$.

Defs/Thms 1. The group ring of G (over F is the free vector space over F with basis elements the elements of G and multiplication of basis elements same as multiplication in G, extended by linearity.

1b. A typical element is a sum $\sum_{g \in G} \alpha_{g} g, \alpha_{g} \in F$, all but finitely many $\alpha_{g}=0$.
2. (Maschke's Theorem) Let G be a finite group and F field whose characteristic does not divide $|G|$ (including $\operatorname{char}(\mathrm{F})=0$). If V is any $F G$ - submodule and $U \leq V$ a submodule, then $\exists W \leq V$ submodule such that $U \oplus W=V$.
(i.e. every submodule of V is a direct summand).
3. There is an equivalence of categories $\operatorname{Rep}(\mathrm{G}) \cong \mathrm{FG}$ - Mod.

3a. To a representation $\rho: G \rightarrow G L(V)$, we take the $F G$ module to the set V with $F G$ acting by:

$$
g \cdot v=\rho(g)(v) \text { for } g \in G, v \in V
$$

3b. To an $F G$ - module V, we see V is a vector space by restriction of scalars along $F \leq F G$,defined by

$$
\rho(g)(v)=g . v \text { for } g \in G, v \in V \text {. }
$$

4. Semisimple (or semisimple with minimum condition) satisfies Wedderburn's Theorem:

Let R be a nonzero ring with 1 (not necessarily commutative). Then FAE:
(i) every R-module is projective
(ii) every R-module is injective
(iii) every R-module is completely reducible.
(iv) the ring R considered as a left R-module is a direct sum

$$
R=L_{1} \oplus L_{2} \oplus \ldots \oplus L_{n}
$$

where each L_{i} is a simple module (i.e. simple left module) with $L_{i}=R e_{i}$ for some $e_{i} \in R$ with
(1) $e_{i} e_{j}=0$ if $i \neq j$
(2) $e_{i}^{2}=e_{i}$ for all i
(3) $\sum_{i=1}^{n} e_{i}=1$

Proof First we prove that ϵ is a ring homomorphism.
(a-i) For $\alpha_{g}, \beta_{g} \in K, g \in G$, we first consider $\epsilon\left(\sum_{g \in G} \alpha_{g} g+\sum_{g \in G} \beta_{g} g\right)$. Then, we have:

$$
\begin{aligned}
\epsilon\left(\sum_{g \in G} \alpha_{g} g+\sum_{g \in G} \beta_{g} g\right) & =\epsilon\left(\sum_{g \in G}\left(\alpha_{g}+\beta_{g}\right) g\right) \\
& =\sum_{g \in G}\left(\alpha_{g}+\beta_{g}\right) \\
& =\sum_{g \in G} \alpha_{g}+\sum_{g \in G} \beta_{g} \\
& =\epsilon\left(\sum_{g \in G} \alpha_{g} g\right)+\epsilon\left(\sum_{g \in G} \beta_{g} g\right)
\end{aligned}
$$

(a-ii) Now consider $\epsilon\left(\sum_{g \in G} \alpha_{g} g \cdot \sum_{g \in G} \beta_{g} g\right)$.
The multiplication in group ring is defined as follows: $\left(a g_{i}\right)\left(b g_{j}\right)=(a b) g_{k}$ (\mathbf{D} and F chapter 7.2). Then, we have the following:

$$
\begin{aligned}
\epsilon\left(\sum_{g \in G} \alpha_{g} g \cdot \sum_{g \in G} \beta_{g} g\right) & =\epsilon\left(\sum_{g_{i} g_{j}=g_{k}} \alpha_{g_{i}} \beta_{g_{j}} g\right) \\
& =\sum_{g \in G} \alpha_{g} \beta_{g} \\
& =\epsilon\left(\sum_{g \in G} \alpha_{g} g\right) \cdot \epsilon\left(\sum_{g \in G} \beta_{g} g\right)
\end{aligned}
$$

Hence, ϵ is a ring homomorphism.
(a-iii) Now, we show that ϵ is $K G$-module homomorphism. Let $r=\sum_{g \in G} r_{g} g, x=\sum_{g \in G} x_{g} g$. Then,

$$
\begin{aligned}
\epsilon(r x) & =\epsilon\left(\left[\sum_{g \in G} r_{g} g\right]\left[\sum_{g \in G} x_{g} g\right]\right) \\
& =\epsilon\left(\sum_{g_{i} g_{j}=g_{k}} r_{g} x_{g} g\right) \\
& =\sum_{g_{i} g_{j}=g_{k}} r_{g} x_{g} \\
& =\sum_{g \in G} r_{g} \sum_{g \in G} x_{g} \\
& =\sum_{g \in G} r_{g} g \epsilon\left(\sum_{g \in G} x_{g} g\right) \\
& =r \epsilon(x)
\end{aligned}
$$

Hence, ϵ is a morphism of $K G$ - modules.
(a-iv) Finally, we conclude that I is a 2 -sided ideal of $K G$.
(By the First Isomorphism Theorems for Rings), If $\epsilon: K G \rightarrow K$ is a homomorphism of rings, then the kernel of ϵ is an ideal of $K G$.

Hence, $I=\operatorname{ker}(\epsilon)$ is a 2 -sided ideal of $K G$.
(b-i) Suppose that $<v>=<\sum_{g \in G} g \leq K G$ is not trivial.
Know Since we are given the short exact sequence:

$$
0 \rightarrow I \xrightarrow{i} K G \xrightarrow{\epsilon} K \rightarrow 0,
$$

we know that (i) i is injective, (ii) ϵ is surjective, and (ii) im $(i)=\operatorname{ker}(\epsilon)=I$.
By one of the propositions corresponding to a split sequence, there exists a submodule $J \leq$ $K G$ such that $K G=i(I)+J \Rightarrow K G \cong I \oplus J$.
(b-ii) Now, we show that $\langle v\rangle$ is the only trivial submodule of $K G$.
Suppose there is another trivial submodule of $K G, U$ where $u=\sum_{g \in G} \alpha_{g} g \in U$.
(From class), we can also think of $K G$ as an K-algebra. So, consider $\alpha_{g} \in Z(K G)$. Then, consider the following:
(i) For a fixed $g^{\prime} \in G$, since U is trivial, we have that:

$$
g^{\prime} \sum_{g \in G} \alpha_{g} g=\sum_{g \in G} \alpha_{g} g
$$

(ii) We also have:

$$
g^{\prime} \sum_{g \in G} \alpha_{g} g=\sum_{g \in G} g^{\prime} \alpha_{g} g=\alpha_{g}\left(g^{\prime} g\right)
$$

(iii) Putting (i), (ii) together and reordering, we get:

$$
\sum_{g \in G} \alpha_{g}\left(g^{\prime} g\right)=\sum_{g \in G} \alpha_{g} g=\sum_{g \in G} \alpha_{g_{2}} g^{\prime} g
$$

where g_{2} is the new ordering.
Subtracting the first and third expressions we get the following:
(iv)

$$
\sum_{g \in G}\left[\alpha_{g}\left(g^{\prime} g\right)-\alpha_{g_{2}}\left(g^{\prime} g\right)\right]=\left[\alpha_{g}-\alpha_{g_{2}}\right]\left(g^{\prime} g\right)
$$

Since, both expressions are equal to $\sum_{g \in G} \alpha_{g} g$, in particular, we get: $\left[\alpha_{g}-\alpha_{g_{2}}\right]\left(g^{\prime} g\right)=$ $0 \Longleftrightarrow \alpha_{g}=\alpha_{g_{2}}$.
(v) Let $\beta_{g}=\alpha_{g}-\alpha_{g_{2}}$. Then, we have

$$
u=\sum_{g \in G} \beta_{g} g \in<v>
$$

Since u is in the span of $v,<v>\leq K G$ is the only trivial submodule of $K G$.
(Source: Had a lot of help and hints from Zach on this one)
(c) By way of contradiction, suppose $K G$ were semi-simple and ϵ split. Then, by part (b), the only trivial submodule is $v=\sum_{g \in G} g$.
Suppose K is a field of characteristic $p>0$ and $p||G|$.
Then, we can write v as follows: $v=\sum_{g \in G} g=|G|=0$, where the assertion follows since $p||G|$.

Similarly, for a fixed $k \in K, k v=0 \Rightarrow k v \in \operatorname{ker}(\epsilon)$.
In particular, by part (b) $K G \cong J \oplus I$, where $J=<v>$. Since $k v \in \operatorname{ker}(\epsilon), J \leq I$.
This is a contradiction since we have the following:

$$
K G \cong I \oplus J \Rightarrow K G / I \cong K \quad \text { since } J \leq I
$$

Hence, $p||G|$ if and only if $K G$ is not semi-simple.

