
Math 6000, Fall 2020 (Prof. Kinser), Homework 5

Nitesh Mathur

9 October 2020

Source Discussed problem/solutions with Zach Bryhtan and then went over drafts for the homework
to get rid of erroneous writing.

Problem 1. Skills developed: extending the concept of “exact sequence” to groups. Let 1→ H
α−→ G

β−→
K → 1 be an exact sequence of groups, meaning that α and β are group homomorphisms
such that:

(i) α is injective;

(ii) β is surjective;

(iii) im α = ker(β).

In particular, K ' G/H (where H is identified with a subgroup of G via α.) Suppose that
there exists a homomorphism β′ : K → G such that β ◦ β′ = 1K , the identity map on K
(this is called a splitting of β).

Show that

(a) this determines a homomorphism φ : K → Aut(H),

(b) giving an isomorphism θ : G→ H oϕ K,

(c) such that the diagram below commutes.

1 H G K 1

1 H H oϕ K K 1

α β

id θ id

(The maps on the bottom row are the standard inclusion and quotient for a semidriect prod-
uct.)

Defs/Thms 1. A pair of morphism X
α−→ Y

B−→ Z is exact if im(α) = ker(β).

2. A short exact sequence is an exact sequence of the form: 0→ α−→ B
β−→ C → 0
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3. (From Class) Let H,N be groups. Recall,

H ×N = {(h, n)|h ∈ H,n ∈ N}
is a group via (h1, n1).(h2, n2) = (h1h2, n1n2).

3b. Semidirect product is similar. The underlying set is the same but multiplication is “twisted”
by choice of group homomorphisms φ : H → Aut(N) inHoφN such that (h1, h2).(h2, n2) =
(h1φ(n1)).h2, n1n2)

4. (D and F: 4.4 Proposition 13 - Pg. 135) Let H be a normal subgroup of G. Then G acts by
conjugation onH as automorphisms ofH . Specifically, the action ofG onH by conjugation
is defined for each g ∈ G by

h 7→ ghg−1

for each h ∈ H .

5. Let 0→ A→ B → C → 0 and 0→ A′ → B′ → C ′ → 0 be short exact sequences.

A morphism from the first sequence to the second sequence is a triple i.e. α : A → A′, β :
B → B′, γ : C → C ′ of R−module homomorphisms such that the diagram commutes.

Proof - Setup It is given that β is surjective⇒ β : G→ G/H = K is onto⇒ β(G) = K.

By the First Isomorphism Theorem, since ker(β) E G, G/ ker(β) ∼= β(G) = K.

Since we have an exact sequence of groups, K ∼= G/ ker(β) = G/ im (α) = G/α(H).

In particular, since K ∼= G/H,H = α(H).

(a) K ∼= G/H ⇐⇒ H E G.

By Proposition 13 above, since H is normal subgroup, then G acts by conjugation on H as
automorphisms of H . So, we can define the following map:

For each g ∈ G, define

Ψ : G→ Aut(H)

g 7→ φ̃g = ghg−1

for each h ∈ H .

Finally, we are given that there exists a β′ : K → G such that β ◦ β′ = 1K . Then, we have
the following commutative diagram:

K G

Aut(H)

β′

φ
ψ
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Hence, we have a homomorphism: φ : K → Aut(H) defined by φ = Ψ ◦ β′.

(b) By Theorem 10, Let H and K be groups and let φ : K → Aut(H) be a group homomor-
phism. Then, the operation is defined as follows:

(h1, k1)(h2, k2) = (h1k1.h2, k1k2)

where (i) H E H oφ K, (ii) H ∩K = 1, (iii) for all h ∈ H, k ∈ K,hkh−1 = k.h = φ(k)h.

We need to adapt this in our situation. We have K = G/H, where H E G. In particular, the
quotient group has order [G : H].

For g ∈ G, a left coset has the form gH = {gh|h ∈ H} and right coset has the form
Hg = {hg|h ∈ H}. (If H is a normal subgroup, then gH = Hg).

Show Show that θ : G→ H oφ K is an isomorphism.

Define the operation on θ : G→ H oφ G/H by:

G→ H oφ G/H

a = gh 7→ (h, gH) for g ∈ G, h ∈ H.

The operation is well defined since the decomposition a = gh is unique.

We need to show that θ is (i) one-to-one, (ii) onto, and (iii) a group homomorphism.

(b-i) We will show that the kernel is trivial.

ker(θ) = {a ∈ G|θ(a) = (eH , eH)}
= {a ∈ G|θ(gh) = (eH , eH)} (for g ∈ G, h ∈ H)

= {a ∈ G|h = eH , gH = eH}

Since a = hg, we have that a = eG. Because the kernel is shown to be trivial, θ is injective.

Note (Credit Zach for spotting this)

If a = gh, a, g ∈ G, h ∈ H , then the above computation holds true only if g ∈ H (since in
line 3, we have gH = eH = H).

Suppose by way of contradiction, that g ∈ H and g 6= eG. Then, we have a = g · eH 7→
(eH , eH) ⇒ g = eG ⇒ a = eG as well. (We will show below in (b-iii) that θ is a group
homomorphism, so explicitly if g ∈ H such that g 6= eG ⇒ g = h′. Then, a = gh =
h′eH = h′ ⇒ θ(a) = θ(gh) = θ(eG · h′) = (h′, eH) 6= (eH , eH) by assumption, which is a
contradiction. Hence, we need g = eG).
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(b-ii) Let (h1, g1H) be an arbitrary element of H oφ G/H . Then, we can choose a1 = g1h1 ∈ G
such that θ(a1) = θ(g1h1) = (h1, g1H).

Since (h1, g1H) was arbitrary, we have shown that θ is surjective.

(b-iii) Let a1, a2 ∈ G, where a1 = g1h1, a2 = g2h2.

Then, by using the multiplication in semi-direct products as above, we get:

θ(a1)θ(a2) = θ(g1h1)θ(g2h2)

= (h1, g1H) · (h2, g2H)

= (h1(g1H).h2, g1Hg2H) (by the action)
= (h1g1Hh2(g1H)−1, g1g2H) (conjugation)
= θ[(g1h1)(g2h2)]

= θ(a1a2)

(c) (By 5. in Defs/Thms), If for two short exact sequences, we can show that there is a morphism
from the first sequence to the second sequence via a triple, then then the diagram commutes.

It was given that the sequence 1→ H
α−→ G

β−→ K → 1 , was an exact sequence of groups.

For the second sequence, 1→ H
i−→ H oφ K

π2−→ K → 1, it is clear that

(i) i is injective (since it is the standard inclusion)

(ii) π2 is surjective (since it is the projection)

(iii) In particular, im (i) = ker(π2) which can be seen from:

For h ∈ H, i(h) = (h, 0) = ker(π2). Hence, this is also a short exact sequence.

Then, we have the following triple:

Let α : H → H be the identity mapping on H .

Let θ : G→ H oφ K be the isomorphism defined in (b).

Let γ : G/H → G/H be the identity on G/H = K.

Since we have found a triple, the diagram commutes.
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Problem 2. Skills developed: practice with definitions below. Prove that the following are equivalent for
a ring R:

(i) every left R−module is projective, and (ii) every left R−module is injective.

Defs/Thms 1. A short exact sequence 0 → A → B → C → 0 is called split if it is isomorphic to the
sequence 0→ A

i1−→ A⊕ C P2−→ C → 0.

2. A P ∈ R − Mod is projective if HomR(P,−) is an exact functor. Q ∈ R − Mod is an
injective module if HomR(−, Q) is an exact functor.

3a. A contravariant function F (between module categories) is left exact if 0 → A → B →
C → 0 exact⇒ 0→ F (C)→ F (B)→ F (A) is exact.

3b. A covariant functor F between module categories is right exact if 0 → A → B → C → 0
exact⇒ F (A)→ F (B)→ F (C)→ 0.

3c. A functor which is both left and right exact (thus preserves short exact sequences) can also
show it preserves all exact sequences) is called a exact functor.

4. Proposition 30 Let P be an R−module. TFAE:

(i) P is projective.

(ii) For any R−modules L,M and N , if

0→ L
Ψ−→M

ϕ−→ N → 0

is a short exact sequence, then

0→ HomR(P,L)
Ψ′
−→ HomR(P,M)

ϕ′
−→ HomR(P,N)→ 0

(iii) For any R-modules M and N , if M
ϕ−→ N → 0 is exact, then every R−module ho-

momorphism from P into N lifts to an R−module homomorphism into M , i.e. given
f ∈ HomR(P,N), there is a lift F ∈ HomR(P,M) making the diagram commute.

(iv) If P is a quotient of the R−module M then P is isomorphic to a direct summand of M ,
i.e. every short exact sequence 0→ L→M → P → 0 splits.

(v) P is a direct summand of a free module i.e. ∃ set I and P ′ ∈ R − Mod such that
P ⊕ P ′ ∼ RI (free module)

5. Proposition 34 Let Q be an R−module. The FAE:

(i) Q is injective.

(ii) For any R−modules L,M, and N , if

0→ L
Ψ−→M

φ−→ N → 0
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is a short exact sequence, then

0→ HomR(N,Q)
φ′−→ HomR(M,Q)

Ψ′
−→ HomR(L,Q)→ 0

is also a short exact sequence.

(iii) For any R−modules L and M , if 0 → L
Ψ−→ M is exact, then every R− module

homomorphism from L into Q lifts to an R-module homomorphism of M into Q i.e., given
f ∈ HomR(L,Q) there is a lift F ∈ HomR(M,Q) making the following diagram commute:

0→ L
Ψ−→M,L

f−→ Q, then there is an induced map f : M → Q.

(iv) If Q is a submodule of the R−module M then Q is a direct summand of M , i.e. every
short exact sequence 0→ Q→M → N → 0 splits.

Show⇒ Show that a left R− projective module is injective.

Suppose every left R−module is projective. Consider a short exact sequence:

0→ L→M → P → 0

Since P is projective, by Proposition 30 (iv), every short exact sequence splits, i.e. it is
isomorphic to the sequence

0→ L
i−→ L⊕ P π2−→ P → 0

Hence L is precisely the injective module. Since we assumed that every R−module is pro-
jective, we are done.

(We can see this if we let L = Q. Then the statement above corresponds to Proposition 34
(iv), where Q is injective:)

0→ Q
i−→ Q⊕ P π2−→ P → 0

Show⇐ Show that a left R− injective module is projective.

Suppose every left R−module is injective. Consider a short exact sequence:

0→ Q→M → N → 0

Since Q is injective, by Proposition 34 (iii), the sequence splits, i.e. it is isomorphic to the
sequence.

0→ Q
i−→ Q⊕N π2−→ N → 0

Hence, N is precisely the projective module. Since we assumed every left R−module is
injective, we are done.

(We can see this if we let N = P. Then, the statement above corresponds to Proposition 30
(iv)):

0→ Q
i−→ Q⊕ P π2−→ P → 0
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Problem 3. Skills developed: practice with splitting and introduction to a useful module construction.

This exercise introduces the concept of pushout to prove an equivalent condition for a module
to be injective that was stated but not proved in class. given homomorphisms of R−modules
g1 : M → N1 and g2 : M → N2, the pushout of f, g is the R− module

N1 ⊕M N2 := N2/{(g1(m),−g2(m))|m ∈M}.

The pushout fits into a commutative diagram:

M N1

N2 N1 ⊕M N2

g1

g2 f1

f2

where each fi is the inclusion of the summand followed by the quotient.

(a) Prove that if g1 is injective, then f2 is injective.

(b) Let Q be an R−module such that every injective map h : Q→M splits. Prove that Q is
injective. Hint: use an appropriate pushout and part (a)

Remark: There is a “dual” notion of pullback that can be used to prove directly the analagous
characterization of projective modules, without going through the characterization that a
projective module is a direct summand of a free module.

Proof (a) It is given that each fi is the inclusion in the summand followed by the quotient, i.e.:

For n1 ∈ N1, f1(n1) = (n1, 0) + (g1(m),−g2(m)), for m ∈M . Similarly,

For n2 ∈ N2, f2(n2) = (0, n2) + (g1(m),−g2(m)) for m ∈M .

We are also given that g1 is injective. Hence, for m1,m2 ∈ M, g1(m1) = g1(m2) ⇒ m1 =
m2.

Show Let n21, n22 ∈ N2. If f2(n21) = f2(n22), show that n21 = n22.

f2(n21) = f2(n22)

(0, n21) + (g1(m),−g2(m)) = (0, n22) + (g1(m),−g2(m)) (for m ∈M)

(0, n21)− (0, n22) + (g1(m),−g2(m)) = (0, 0)

(g1(m), n21 − n22 − g2(m)) = (0, 0)

g1 is injective ⇐⇒ ker(g1) is trivial⇒ g1(m) = 0 ⇐⇒ m = 0.

Since M,N2 are R−modules and g2 : M → N2 is an R−module homomorphism, then 0
maps to 0⇒ g2(m) = 0.
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Then, we have:

(0, n21 − n22 − g2(m)) = (0, 0)

⇒ (0, n21 − n22 − 0) = (0, 0)

⇒ n21 − n22 = 0

⇒ n21 = n22

(b) Recall Proposition 34 (ii) states the following:

For any R−modules L and M if 0 → L
Ψ−→ M is exact, then every R−module homo-

morphism from L into Q lifts to an R−module homomorphism from L into Q lifts to
an R−module homomorphism of M into Q, i.e. given f ∈ HomR(L,Q), there is a lift
F ∈ HomR(M,Q) making the diagram commute.

Note, that 0→ L
Ψ−→M is exact ⇐⇒ Ψ is injective.

Since an injective map h : Q→ M splits, for a short exact sequence, it is isomorphic to the
following sequence:

1→M →M ⊕Q→ Q→ 1.

Let L be an R−module. Let g1 : L → M be an injective map and consider the following
commutative diagram:

L M

Q M ⊕L Q

g1

g2 f1

f2

This is the pushout from part (a). Because g1 : L → M is assumed to be injective, by part
(a), f2 is also injective.

Since h : Q → M splits, one of the equivalent definitions is that there exists an R−module
homomorphism: π2 : M ⊕L Q→ Q.

Then, consider F : M → Q such that F = f1 ◦ π2. Hence, we have found a lift such that the
diagram commutes.

(The diagram commutes because π2 ◦ f1 ◦ g1 : L→ Q and similarly, π2 ◦ f2 ◦ g2 : L→ Q.
In particular, this is equal to F ◦ g1 : L→ Q, where F is the lift defined above).

8


