Math 6000, Fall 2020 (Prof. Kinser), Homework 5

Nitesh Mathur

9 October 2020

Source Discussed problem/solutions with Zach Bryhtan and then went over drafts for the homework to get rid of erroneous writing.

Problem 1. Skills developed: extending the concept of "exact sequence" to groups. Let $1 \rightarrow H \xrightarrow{\alpha} G \xrightarrow{\beta}$ $K \rightarrow 1$ be an exact sequence of groups, meaning that α and β are group homomorphisms such that:
(i) α is injective;
(ii) β is surjective;
(iii) im $\alpha=\operatorname{ker}(\beta)$.

In particular, $K \simeq G / H$ (where H is identified with a subgroup of G via α.) Suppose that there exists a homomorphism $\beta^{\prime}: K \rightarrow G$ such that $\beta \circ \beta^{\prime}=1_{K}$, the identity map on K (this is called a splitting of β).
Show that
(a) this determines a homomorphism $\phi: K \rightarrow A u t(H)$,
(b) giving an isomorphism $\theta: G \rightarrow H \rtimes_{\varphi} K$,
(c) such that the diagram below commutes.

(The maps on the bottom row are the standard inclusion and quotient for a semidriect product.)

Defs/Thms 1. A pair of morphism $X \xrightarrow{\alpha} Y \xrightarrow{B} Z$ is exact if $\operatorname{im}(\alpha)=\operatorname{ker}(\beta)$.
2. A short exact sequence is an exact sequence of the form: $0 \rightarrow \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$
3. (From Class) Let H, N be groups. Recall,

$$
H \times N=\{(h, n) \mid h \in H, n \in N\}
$$

is a group via $\left(h_{1}, n_{1}\right) \cdot\left(h_{2}, n_{2}\right)=\left(h_{1} h_{2}, n_{1} n_{2}\right)$.
3b. Semidirect product is similar. The underlying set is the same but multiplication is "twisted" by choice of group homomorphisms $\phi: H \rightarrow \operatorname{Aut}(N)$ in $H \rtimes_{\phi} N$ such that $\left(h_{1}, h_{2}\right) .\left(h_{2}, n_{2}\right)=$ $\left.\left(h_{1} \phi\left(n_{1}\right)\right) . h_{2}, n_{1} n_{2}\right)$
4. (D and F: 4.4 Proposition $13-$ Pg. 135) Let H be a normal subgroup of G. Then G acts by conjugation on H as automorphisms of H. Specifically, the action of G on H by conjugation is defined for each $g \in G$ by

$$
h \mapsto g h g^{-1}
$$

for each $h \in H$.
5. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and $0 \rightarrow A^{\prime} \rightarrow B^{\prime} \rightarrow C^{\prime} \rightarrow 0$ be short exact sequences.

A morphism from the first sequence to the second sequence is a triple i.e. $\alpha: A \rightarrow A^{\prime}, \beta:$ $B \rightarrow B^{\prime}, \gamma: C \rightarrow C^{\prime}$ of R-module homomorphisms such that the diagram commutes.

Proof - Setup It is given that β is surjective $\Rightarrow \beta: G \rightarrow G / H=K$ is onto $\Rightarrow \beta(G)=K$.
By the First Isomorphism Theorem, since $\operatorname{ker}(\beta) \unlhd G, G / \operatorname{ker}(\beta) \cong \beta(G)=K$.
Since we have an exact sequence of groups, $K \cong G / \operatorname{ker}(\beta)=G / \operatorname{im}(\alpha)=G / \alpha(H)$.
In particular, since $K \cong G / H, H=\alpha(H)$.
(a) $K \cong G / H \Longleftrightarrow H \unlhd G$.

By Proposition 13 above, since H is normal subgroup, then G acts by conjugation on H as automorphisms of H. So, we can define the following map:
For each $g \in G$, define

$$
\begin{aligned}
\Psi: G & \rightarrow \operatorname{Aut}(H) \\
g & \mapsto \tilde{\phi}_{g}=g h g^{-1}
\end{aligned}
$$

for each $h \in H$.
Finally, we are given that there exists a $\beta^{\prime}: K \rightarrow G$ such that $\beta \circ \beta^{\prime}=1_{K}$. Then, we have the following commutative diagram:

Aut (H)

Hence, we have a homomorphism: $\phi: K \rightarrow \operatorname{Aut}(H)$ defined by $\phi=\Psi \circ \beta^{\prime}$.
(b) By Theorem 10, Let H and K be groups and let $\phi: K \rightarrow \operatorname{Aut}(H)$ be a group homomorphism. Then, the operation is defined as follows:

$$
\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=\left(h_{1} k_{1} \cdot h_{2}, k_{1} k_{2}\right)
$$

where (i) $H \unlhd H \rtimes_{\phi} K$, (ii) $H \cap K=1$, (iii) for all $h \in H, k \in K, h k h^{-1}=k . h=\phi(k) h$. We need to adapt this in our situation. We have $K=G / H$, where $H \unlhd G$. In particular, the quotient group has order $[G: H]$.
For $g \in G$, a left coset has the form $g H=\{g h \mid h \in H\}$ and right coset has the form $H g=\{h g \mid h \in H\}$. (If H is a normal subgroup, then $g H=H g$).

Show Show that $\theta: G \rightarrow H \rtimes_{\phi} K$ is an isomorphism.
Define the operation on $\theta: G \rightarrow H \rtimes_{\phi} G / H$ by:

$$
\begin{aligned}
G & \rightarrow H \rtimes_{\phi} G / H \\
a=g h & \mapsto(h, g H) \quad \text { for } g \in G, h \in H .
\end{aligned}
$$

The operation is well defined since the decomposition $a=g h$ is unique.
We need to show that θ is (i) one-to-one, (ii) onto, and (iii) a group homomorphism.
(b-i) We will show that the kernel is trivial.

$$
\begin{aligned}
\operatorname{ker}(\theta) & =\left\{a \in G \mid \theta(a)=\left(e_{H}, e H\right)\right\} \\
& =\left\{a \in G \mid \theta(g h)=\left(e_{H}, e H\right)\right\} \quad(\text { for } g \in G, h \in H) \\
& =\left\{a \in G \mid h=e_{H}, g H=e H\right\}
\end{aligned}
$$

Since $a=h g$, we have that $a=e_{G}$. Because the kernel is shown to be trivial, θ is injective.
Note (Credit Zach for spotting this)
If $a=g h, a, g \in G, h \in H$, then the above computation holds true only if $g \in H$ (since in line 3, we have $g H=e H=H$).
Suppose by way of contradiction, that $g \in H$ and $g \neq e_{G}$. Then, we have $a=g \cdot e_{H} \mapsto$ $\left(e_{H}, e H\right) \Rightarrow g=e_{G} \Rightarrow a=e_{G}$ as well. (We will show below in (b-iii) that θ is a group homomorphism, so explicitly if $g \in H$ such that $g \neq e_{G} \Rightarrow g=h^{\prime}$. Then, $a=g h=$ $h^{\prime} e_{H}=h^{\prime} \Rightarrow \theta(a)=\theta(g h)=\theta\left(e_{G} \cdot h^{\prime}\right)=\left(h^{\prime}, e H\right) \neq\left(e_{H}, e H\right)$ by assumption, which is a contradiction. Hence, we need $g=e_{G}$).
(b-ii) Let $\left(h_{1}, g_{1} H\right)$ be an arbitrary element of $H \rtimes_{\phi} G / H$. Then, we can choose $a_{1}=g_{1} h_{1} \in G$ such that $\theta\left(a_{1}\right)=\theta\left(g_{1} h_{1}\right)=\left(h_{1}, g_{1} H\right)$.
Since $\left(h_{1}, g_{1} H\right)$ was arbitrary, we have shown that θ is surjective.
(b-iii) Let $a_{1}, a_{2} \in G$, where $a_{1}=g_{1} h_{1}, a_{2}=g_{2} h_{2}$.
Then, by using the multiplication in semi-direct products as above, we get:

$$
\begin{aligned}
\theta\left(a_{1}\right) \theta\left(a_{2}\right) & =\theta\left(g_{1} h_{1}\right) \theta\left(g_{2} h_{2}\right) \\
& =\left(h_{1}, g_{1} H\right) \cdot\left(h_{2}, g_{2} H\right) \\
& =\left(h_{1}\left(g_{1} H\right) \cdot h_{2}, g_{1} H g_{2} H\right) \quad \text { (by the action) } \\
& =\left(h_{1} g_{1} H h_{2}\left(g_{1} H\right)^{-1}, g_{1} g_{2} H\right) \quad \text { (conjugation) } \\
& =\theta\left[\left(g_{1} h_{1}\right)\left(g_{2} h_{2}\right)\right] \\
& =\theta\left(a_{1} a_{2}\right)
\end{aligned}
$$

(c) (By 5. in Defs/Thms), If for two short exact sequences, we can show that there is a morphism from the first sequence to the second sequence via a triple, then then diagram commutes.
It was given that the sequence $1 \rightarrow H \xrightarrow{\alpha} G \xrightarrow{\beta} K \rightarrow 1$, was an exact sequence of groups.
For the second sequence, $1 \rightarrow H \xrightarrow{i} H \rtimes_{\phi} K \xrightarrow{\pi_{2}} K \rightarrow 1$, it is clear that
(i) i is injective (since it is the standard inclusion)
(ii) π_{2} is surjective (since it is the projection)
(iii) In particular, $\operatorname{im}(i)=\operatorname{ker}\left(\pi_{2}\right)$ which can be seen from:

For $h \in H, i(h)=(h, 0)=\operatorname{ker}\left(\pi_{2}\right)$. Hence, this is also a short exact sequence.
Then, we have the following triple:
Let $\alpha: H \rightarrow H$ be the identity mapping on H.
Let $\theta: G \rightarrow H \rtimes_{\phi} K$ be the isomorphism defined in (b).
Let $\gamma: G / H \rightarrow G / H$ be the identity on $G / H=K$.
Since we have found a triple, the diagram commutes.

Problem 2. Skills developed: practice with definitions below. Prove that the following are equivalent for a ring R :
(i) every left R-module is projective, and (ii) every left R-module is injective.

Defs/Thms 1. A short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is called split if it is isomorphic to the sequence $0 \rightarrow A \xrightarrow{i_{1}} A \oplus C \xrightarrow{P_{2}} C \rightarrow 0$.
2. A $P \in R-\operatorname{Mod}$ is projective if $\operatorname{Hom}_{R}(P,-)$ is an exact functor. $Q \in R-\operatorname{Mod}$ is an injective module if $\operatorname{Hom}_{R}(-, Q)$ is an exact functor.

3a. A contravariant function F (between module categories) is left exact if $0 \rightarrow A \rightarrow B \rightarrow$ $C \rightarrow 0$ exact $\Rightarrow 0 \rightarrow F(C) \rightarrow F(B) \rightarrow F(A)$ is exact.

3b. A covariant functor F between module categories is right exact if $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ exact $\Rightarrow F(A) \rightarrow F(B) \rightarrow F(C) \rightarrow 0$.

3c. A functor which is both left and right exact (thus preserves short exact sequences) can also show it preserves all exact sequences) is called a exact functor.
4. Proposition 30 Let P be an R-module. TFAE:
(i) P is projective.
(ii) For any R-modules L, M and N, if

$$
0 \rightarrow L \xrightarrow{\Psi} M \xrightarrow{\varphi} N \rightarrow 0
$$

is a short exact sequence, then

$$
0 \rightarrow \operatorname{Hom}_{R}(P, L) \xrightarrow{\Psi^{\prime}} \operatorname{Hom}_{R}(P, M) \xrightarrow{\varphi^{\prime}} \operatorname{Hom}_{R}(P, N) \rightarrow 0
$$

(iii) For any R-modules M and N, if $M \xrightarrow{\varphi} N \rightarrow 0$ is exact, then every R-module homomorphism from P into N lifts to an R-module homomorphism into M, i.e. given $f \in \operatorname{Hom}_{R}(P, N)$, there is a lift $F \in \operatorname{Hom}_{R}(P, M)$ making the diagram commute.
(iv) If P is a quotient of the R-module M then P is isomorphic to a direct summand of M, i.e. every short exact sequence $0 \rightarrow L \rightarrow M \rightarrow P \rightarrow 0$ splits.
(v) P is a direct summand of a free module i.e. \exists set I and $P^{\prime} \in R-\operatorname{Mod}$ such that $P \oplus P^{\prime} \sim R^{I}$ (free module)
5. Proposition 34 Let Q be an R-module. The FAE:
(i) Q is injective.
(ii) For any R-modules L, M, and N, if

$$
0 \rightarrow L \xrightarrow{\Psi} M \xrightarrow{\phi} N \rightarrow 0
$$

is a short exact sequence, then

$$
0 \rightarrow \operatorname{Hom}_{R}(N, Q) \xrightarrow{\phi^{\prime}} \operatorname{Hom}_{R}(M, Q) \xrightarrow{\Psi^{\prime}} \operatorname{Hom}_{R}(L, Q) \rightarrow 0
$$

is also a short exact sequence.
(iii) For any R-modules L and M, if $0 \rightarrow L \xrightarrow{\Psi} M$ is exact, then every R - module homomorphism from L into Q lifts to an R-module homomorphism of M into Q i.e., given $f \in \operatorname{Hom}_{R}(L, Q)$ there is a lift $F \in \operatorname{Hom}_{R}(M, Q)$ making the following diagram commute: $0 \rightarrow L \xrightarrow{\Psi} M, L \xrightarrow{f} Q$, then there is an induced map $f: M \rightarrow Q$.
(iv) If Q is a submodule of the R-module M then Q is a direct summand of M, i.e. every short exact sequence $0 \rightarrow Q \rightarrow M \rightarrow N \rightarrow 0$ splits.
Show \Rightarrow Show that a left R - projective module is injective.
Suppose every left R-module is projective. Consider a short exact sequence:

$$
0 \rightarrow L \rightarrow M \rightarrow P \rightarrow 0
$$

Since P is projective, by Proposition 30 (iv), every short exact sequence splits, i.e. it is isomorphic to the sequence

$$
0 \rightarrow L \xrightarrow{i} L \oplus P \xrightarrow{\pi_{2}} P \rightarrow 0
$$

Hence L is precisely the injective module. Since we assumed that every R-module is projective, we are done.
(We can see this if we let $L=Q$. Then the statement above corresponds to Proposition 34 (iv), where Q is injective:)

$$
0 \rightarrow Q \xrightarrow{i} Q \oplus P \xrightarrow{\pi_{2}} P \rightarrow 0
$$

Show \Leftarrow Show that a left R - injective module is projective.
Suppose every left R-module is injective. Consider a short exact sequence:

$$
0 \rightarrow Q \rightarrow M \rightarrow N \rightarrow 0
$$

Since Q is injective, by Proposition 34 (iii), the sequence splits, i.e. it is isomorphic to the sequence.

$$
0 \rightarrow Q \xrightarrow{i} Q \oplus N \xrightarrow{\pi_{2}} N \rightarrow 0
$$

Hence, N is precisely the projective module. Since we assumed every left R-module is injective, we are done.
(We can see this if we let $N=P$. Then, the statement above corresponds to Proposition 30 (iv)):

$$
0 \rightarrow Q \xrightarrow{i} Q \oplus P \xrightarrow{\pi_{2}} P \rightarrow 0
$$

Problem 3. Skills developed: practice with splitting and introduction to a useful module construction.
This exercise introduces the concept of pushout to prove an equivalent condition for a module to be injective that was stated but not proved in class. given homomorphisms of R-modules $g_{1}: M \rightarrow N_{1}$ and $g_{2}: M \rightarrow N_{2}$, the pushout of f, g is the R - module

$$
N_{1} \oplus_{M} N_{2}:=N_{2} /\left\{\left(g_{1}(m),-g_{2}(m)\right) \mid m \in M\right\} .
$$

The pushout fits into a commutative diagram:

where each f_{i} is the inclusion of the summand followed by the quotient.
(a) Prove that if g_{1} is injective, then f_{2} is injective.
(b) Let Q be an R-module such that every injective map $h: Q \rightarrow M$ splits. Prove that Q is injective. Hint: use an appropriate pushout and part (a)
Remark: There is a "dual" notion of pullback that can be used to prove directly the analagous characterization of projective modules, without going through the characterization that a projective module is a direct summand of a free module.

Proof (a) It is given that each f_{i} is the inclusion in the summand followed by the quotient, i.e.:
For $n_{1} \in N_{1}, f_{1}\left(n_{1}\right)=\left(n_{1}, 0\right)+\left(g_{1}(m),-g_{2}(m)\right)$, for $m \in M$. Similarly,
For $n_{2} \in N_{2}, f_{2}\left(n_{2}\right)=\left(0, n_{2}\right)+\left(g_{1}(m),-g_{2}(m)\right)$ for $m \in M$.
We are also given that g_{1} is injective. Hence, for $m_{1}, m_{2} \in M, g_{1}\left(m_{1}\right)=g_{1}\left(m_{2}\right) \Rightarrow m_{1}=$ m_{2}.

Show Let $n_{21}, n_{22} \in N_{2}$. If $f_{2}\left(n_{21}\right)=f_{2}\left(n_{22}\right)$, show that $n_{21}=n_{22}$.

$$
\begin{aligned}
f_{2}\left(n_{21}\right) & =f_{2}\left(n_{22}\right) \\
\left(0, n_{21}\right)+\left(g_{1}(m),-g_{2}(m)\right) & =\left(0, n_{22}\right)+\left(g_{1}(m),-g_{2}(m)\right) \quad(\text { for } m \in M) \\
\left(0, n_{21}\right)-\left(0, n_{22}\right)+\left(g_{1}(m),-g_{2}(m)\right) & =(0,0) \\
\left(g_{1}(m), n_{21}-n_{22}-g_{2}(m)\right) & =(0,0)
\end{aligned}
$$

g_{1} is injective $\Longleftrightarrow \operatorname{ker}\left(g_{1}\right)$ is trivial $\Rightarrow g_{1}(m)=0 \Longleftrightarrow m=0$.
Since M, N_{2} are R-modules and $g_{2}: M \rightarrow N_{2}$ is an R-module homomorphism, then 0 maps to $0 \Rightarrow g_{2}(m)=0$.

Then, we have:

$$
\begin{aligned}
\left(0, n_{21}-n_{22}-g_{2}(m)\right) & =(0,0) \\
\Rightarrow\left(0, n_{21}-n_{22}-0\right) & =(0,0) \\
\Rightarrow n_{21}-n_{22} & =0 \\
\Rightarrow n_{21} & =n_{22}
\end{aligned}
$$

(b) Recall Proposition 34 (ii) states the following:

For any R-modules L and M if $0 \rightarrow L \xrightarrow{\Psi} M$ is exact, then every R-module homomorphism from L into Q lifts to an R-module homomorphism from L into Q lifts to an R-module homomorphism of M into Q, i.e. given $f \in \operatorname{Hom}_{R}(L, Q)$, there is a lift $F \in \operatorname{Hom}_{R}(M, Q)$ making the diagram commute.

Note, that $0 \rightarrow L \xrightarrow{\Psi} M$ is exact $\Longleftrightarrow \Psi$ is injective.
Since an injective map $h: Q \rightarrow M$ splits, for a short exact sequence, it is isomorphic to the following sequence:
$1 \rightarrow M \rightarrow M \oplus Q \rightarrow Q \rightarrow 1$.
Let L be an R-module. Let $g_{1}: L \rightarrow M$ be an injective map and consider the following commutative diagram:

This is the pushout from part (a). Because $g_{1}: L \rightarrow M$ is assumed to be injective, by part (a), f_{2} is also injective.

Since $h: Q \rightarrow M$ splits, one of the equivalent definitions is that there exists an R-module homomorphism: $\pi_{2}: M \oplus_{L} Q \rightarrow Q$.
Then, consider $F: M \rightarrow Q$ such that $F=f_{1} \circ \pi_{2}$. Hence, we have found a lift such that the diagram commutes.
(The diagram commutes because $\pi_{2} \circ f_{1} \circ g_{1}: L \rightarrow Q$ and similarly, $\pi_{2} \circ f_{2} \circ g_{2}: L \rightarrow Q$. In particular, this is equal to $F \circ g_{1}: L \rightarrow Q$, where F is the lift defined above).

