Math 6000, Fall 2020 (Prof. Kinser), Homework 4

Nitesh Mathur

22 September 2020

Source Discussed solutions to these problems with Zach Bryhtan, and we read each others' writing as well. Also contacted office hour for clarification.

Problem 1. Skills developed: practice with universal property and other features of tensor products.
Let $\phi: R \rightarrow S$ be a ring homomorphism. Recall from a previous homework that $N \in$ S - Mod can be considered an R - Mod by restriction of scalars. We will denote this by ${ }_{R} N$ here. Let M be an $R-$ module.
Construct morphisms of abelian groups in a natural way:
$\alpha: \operatorname{Hom}_{R}\left(M,{ }_{R} N\right) \rightarrow \operatorname{Hom}_{S}\left(S \otimes_{R} M, N\right)$ and $\beta: \operatorname{Hom}_{S}\left(S \otimes_{R} M, N\right) \rightarrow \operatorname{Hom}_{R}\left(M,{ }_{R} N\right)$
satisfying that α and β are inverse to one another (and prove that this is the case).
Optional (somewhat tedious Challenge) Show that α and β are functorial in M and N, separately.

Defs/Thms

1. Let L be an abelian group say $\phi: M \times N \rightarrow L$ is R-balanced if
(i) $\phi\left(m_{1}+m_{2}, n\right)=\phi\left(m_{1}, n\right)+\phi\left(m_{2}, n\right)$
(ii) $\phi\left(m, n_{1}+n_{2}\right)=\phi\left(m, n_{1}\right)+\phi\left(m, n_{2}\right)$
(iii) $\phi(m r, n)=\phi(m, r n)$
for all $m, m_{1}, m_{2} \in M, n_{1}, n_{2} \in N$, and $r \in R$.
2. D and F (pg. 345) Suppose R is a ring with $1, M$ is a right R-module, and N is a left R-module. Let $M \bigotimes_{R} N$ be the tensor product of M and N over R and let $i: M \times N \rightarrow$ $M \bigotimes_{R} N$ be the R - balanced map defined above.
(1) If $\Phi: M \bigotimes_{R} N \rightarrow L$ is any group homomorphism from $M \bigotimes_{R} N$ to an abelian group L, then the composite map $\phi=\Psi \circ i$ is an R-balanced map from $M \times N$ to L.
(2) Conversely, suppose L is an abelian group and $\phi: M \times N \rightarrow L$ is any R-balanced map. Then there is a unique group homomorphism $\Phi: M \bigotimes_{R} N \rightarrow L$ such that ϕ factors through i, i.e. $\phi=\Phi \circ i$. Equivalently $\phi \Longleftrightarrow \Phi$ in the commutative diagram:

establishes a bijection:
R - balanced maps $(\phi: M \times N \rightarrow L) \Longleftrightarrow$ Group homomorphisms $\left(\Phi: M \bigotimes_{R} N \rightarrow L\right)$
3. Proof It is given that $\phi: R \rightarrow S$ is a ring homomorphism.

In order for $S \otimes_{R} M$ to make sense, we need S to be a right R-module and M to be a left R-module.
From the the last homework, by restriction of scalars, we can consider S as a right- R module as follows: $s \cdot r=s \cdot \phi(r)$ for $r \in R, s \in S$. Similarly, N can be considered as a left $R-$ module by $r \cdot n=\phi(r) n$ for $r \in R, n \in N$.

Let $g \in \operatorname{Hom}\left(M,{ }_{R} N\right)$ be a right module homomorphism. Consider the following commutative diagram:

(Note, in the diagram above, ${ }_{R} N$ is considered as a R module when coming from g, the R-module homomorphism, and can be considered a S-module N when coming from group homomorphism Φ, which we will describe below).

Claim We claim that $\alpha(g)=\Phi_{g}$ is the morphism of abelian groups.
(a-Show) We want to show that the $\tilde{\phi}$ is an R-balanced map so we can get the induced morphism from $S \otimes_{R} M$ to N by the Universal Mapping Property.
Let $(s, m) \in S \times M$. Define $\tilde{\phi}(s, m)=s g(m)$.
(a-i) Then, consider $\tilde{\phi}\left(s_{1}+s_{2}, m\right)$.

$$
\begin{aligned}
\tilde{\phi}\left(s_{1}+s_{2}, m\right) & =\left(s_{1}+s_{2}\right) g(m) \\
& =s_{1} g(m)+s_{2} g(m) \\
& =\tilde{\phi}\left(s_{1}, m\right)+\tilde{\phi}\left(s_{2}, m\right)
\end{aligned}
$$

(a-ii) Consider $\tilde{\phi}\left(s, m_{1}+m_{2}\right)$.

$$
\tilde{\phi}\left(s, m_{1}+m_{2}\right)=s g\left(m_{1}+m_{2}\right)
$$

$$
\begin{aligned}
& =s\left[g\left(m_{1}\right)+g\left(m_{2}\right)\right] \quad \text { since } g \text { is a R-module homomorphism } \\
& =s g\left(m_{1}\right)+s g\left(m_{2}\right) \\
& =\tilde{\phi}\left(s, m_{1}\right)+\tilde{\phi}\left(s, m_{2}\right)
\end{aligned}
$$

(a-iii) Consider $\tilde{\phi}(s r, m)$. for $r \in R$.

$$
\begin{aligned}
\tilde{\phi}(s r, m) & =(s . r) g(m) \\
& =s \phi(r) g(m) \\
& =s g(r m) \quad \text { since } g \text { is a R-module homomorphism } \\
& =\tilde{\phi}(s, r m)
\end{aligned}
$$

Note, in the second and third equality we used the fact that s can be considered as a right R-module and $g(r m) \in N$ can be considered a left R-module due to the restriction of scalars.

Hence, we have shown that $\phi: S \times M \rightarrow N$ is R-balanced. Then, by the universal mapping property, there is a unique group homomorphism $\Phi: S \otimes_{R} M \rightarrow N$ such that $\tilde{\phi}$ factors through i, i.e. $\tilde{\phi}=\Phi \circ i$.
In particular, for simple tensor $(s \otimes m) \in(S, M), \Phi_{g}(s \otimes m)=s \cdot g(m)$.
(a-iv) Show that α is a homomorphism of abelian groups. Suppose $g_{1}, g_{2} \in \operatorname{Hom}\left(M,{ }_{R} N\right)$. Then, we have

$$
\begin{aligned}
\alpha\left(g_{1}+g_{2}\right)(s \otimes m) & =\Phi_{g_{1}+g_{2}}(s \otimes m) \\
& =s\left(g_{1}+g_{2}\right)(m) \\
& =s\left(g_{1}(m)+g_{2}(m)\right) \\
& =s g_{1}(m)+s g_{2}(m) \quad\left(\text { since } g_{1}, g_{2}\right. \text { are R-module homomorphisms) } \\
& =\alpha\left(g_{1}\right)(s \otimes m)+\alpha\left(g_{2}\right)(s \otimes m)
\end{aligned}
$$

Hence, α is a homomorphism.
(b) Show Define a map $\beta: \operatorname{Hom}_{S}\left(S \otimes_{R} M, N\right) \rightarrow \operatorname{Hom}_{R}\left(M,{ }_{R} N\right)$. Suppose $\Phi \in \operatorname{Hom}\left(S \otimes_{R} M, N\right)$.
(b) Claim $\beta(\Phi)=g_{\Phi}$.
(b) Proof Consider the following commutative diagram, similar to (a):

Define $\beta(\Phi)=g_{\Phi}$, where $g_{\Phi}=\Phi \circ \tilde{i} \circ i$.
(b-i) Show that β is a homomorphism.
Let $\Phi_{1}, \Phi_{2} \in \operatorname{Hom}_{S \otimes_{R} M, N}$. Then,

$$
\begin{aligned}
\beta\left(\Phi_{1}+\Phi_{2}\right) & =g_{\Phi_{1}+\Phi_{2}} \\
& =\left(\Phi_{1}+\Phi_{2}\right) \circ \tilde{i} \circ i \\
& =\left(\Phi_{1} \circ \tilde{i} \circ i\right)+\left(\Phi_{2} \circ \tilde{i} \circ i\right) \\
& =g_{\Phi_{1}}+g_{\Phi_{2}} \\
& =\beta\left(\Phi_{1}\right)+\beta\left(\Phi_{2}\right)
\end{aligned}
$$

Hence, β is also a homomorphism.
(c)Show Show that α, β are actually inverses.
(c)-i Consider $\alpha \circ \beta$. Then:

$$
\begin{aligned}
\alpha \circ \beta\left(\Phi_{1}\right) & =\alpha \circ\left(\Phi_{1} \circ i \circ \tilde{i}\right) \\
& =\alpha\left(g_{\Phi_{1}}\right) \\
& =\Phi_{1}
\end{aligned}
$$

(c)-ii Consider $\beta \circ \alpha$. Then,

$$
\begin{aligned}
\beta \circ \alpha(g) & =\beta\left(\Phi_{g}\right) \\
& =\Phi \circ \tilde{i} \circ i \\
& =g_{\Phi} \\
& =g
\end{aligned}
$$

Therefore, we have shown that α and β are actually inverses.

Problem 2. Skills developed: practice manipulating tensors. Let $K \subset L$ be a field extension of finite degree d.
(a) Determine (with proof) a necessary and sufficient condition on d for $L \bigotimes_{K} L \cong L \bigotimes_{L} L$ as $K-$ vector spaces.
(b) Compute (with proof) the dimension of $L \bigotimes_{K} L$ as an L-vector space, where we use the induced left action of L on the tensor product.
(c) Prove that $\mathbb{Q} \bigotimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$ as a \mathbb{Q} vector space (this is independent of the first two parts, since \mathbb{Z} is not a field).

Defs/Thms

1. The degree of a field extension K / F denoted $[K: F]$ is the dimension of K as a vector space over F i.e. $[K: F]=\operatorname{dim}_{F} K$. The extension is said to be finite if $[K: F]$ is finite.
2. (D and F Corollary 13, pg. 502) If the extension K / F is finite, then it is algebraic.
3. (From notes/ D and F Corollary 11 pg . 396) The dimension of $\operatorname{Hom}_{F}(V, W)$ is $(\operatorname{dim} V)(\operatorname{dim} W)$.
4. (D and F pg. 343 Example 1) For any ring R and any left $R-\operatorname{module} R \otimes_{R} N \cong N$ (so "extending scalars from R to R " does not change the module).
5. (D and F pg. 503 Theorem 14) Let $F \subset K \subset L$. Then,

$$
[L: F]=[L: K] \cdot[K: F]
$$

(Tower of Fields)

(a) Suppose $L \otimes_{K} L \cong L \otimes_{L} L$.

In particular, $L \otimes_{K} L \cong L \otimes_{L} L \Longleftrightarrow \operatorname{dim}_{K}\left(L \otimes_{K} L\right)=\operatorname{dim}_{K}\left(L \otimes_{L} L\right)$.
(a-i) It is given that $\operatorname{dim}_{K} L=[L: K]=d$. Then, we have:

$$
\begin{aligned}
{\left[L \otimes_{K} L: K\right] } & =\operatorname{dim}_{K}\left(L \otimes_{K} L\right) \\
& =\left(\operatorname{dim}_{K} L\right) \cdot\left(\operatorname{dim}_{K} L\right) \\
& =[L: K] \cdot[L: K] \\
& =d \cdot d \\
& =d^{2}
\end{aligned}
$$

(a-ii) (By the fact above that $R \otimes_{R} N \cong N$), we can see that $L \otimes_{L} L \cong L$.
(In particular, let $R=L$ and $N=L$ can be considered as a module over itself. Hence, we have $L \otimes_{L} L \cong L$). Then,

$$
\begin{aligned}
\operatorname{dim}_{K}\left(L \otimes_{L} L\right) & =\operatorname{dim}_{K} L \\
& =[L: K] \\
& =d
\end{aligned}
$$

(a-iii) Conclude Therefore,

$$
\begin{aligned}
L \otimes_{K} L & \cong L \otimes_{L} L \\
\Longleftrightarrow \operatorname{dim}_{K}\left(L \otimes_{K} L\right) & =\operatorname{dim}_{K}\left(L \otimes_{L} L\right) \\
\Rightarrow d^{2} & =d \\
d^{2}-d & =0 \\
d(d-1) & =0 \\
\Rightarrow d & =0,1
\end{aligned}
$$

The necessary and sufficient condition on d is that d is either 0 or 1 .
If $d=0, L=K$ would both be the 0 vector space, while $d=1 \Rightarrow[L: K]=1 \Rightarrow L=K$.
(b) Suppose $K \subset L \subset L \otimes_{K} L$. Then, by the tower of fields, we have:

$$
\begin{aligned}
{\left[L \otimes_{K} L: K\right] } & =\left[L \otimes_{K} L: L\right] \cdot[L: K] \\
\Rightarrow d^{2} & =\left[L \otimes_{K} L: L\right] \cdot d \quad \text { by part (a) } \\
\Rightarrow d & =\left[L \otimes_{K}: L\right] \\
\Rightarrow d & =\operatorname{dim}_{L}\left(L \otimes_{K} L\right)
\end{aligned}
$$

The conclusion follows if the assumption is true. $K \subset L$ is given. Show that $L \subset L \otimes_{K} L$.
Consider $L \xrightarrow{i} L \times L \xrightarrow{\tilde{i}} L \otimes_{K} L$ by $\ell \mapsto(\ell, 1) \mapsto \ell \otimes 1$.
Since inclusions are injective and the composition of injective functions is injective, we can conclude that $L \subset L \otimes_{K} L$ and invoke the tower of fields argument.
(since injective field homomorphisms is an embedding).
(c) Consider the following commutative diagram:

Let $\left(q_{1}, q_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$. Define $\phi\left(q_{1}, q_{2}\right)=q_{1} \cdot q_{2}$. Show ϕ is R - balanced:
Let $q, q_{1}, q_{2} \in \mathbb{Q}$. Then,
(c-i)

$$
\begin{aligned}
\phi\left(q_{1}+q_{2}, q\right) & =\left(q_{1}+q_{2}\right) \cdot q \\
& =q_{1} q+q_{2} q \\
& =\phi\left(q_{1}, q\right)+\phi\left(q_{2}, q\right)
\end{aligned}
$$

(c-ii)

$$
\begin{aligned}
\phi\left(q, q_{1}+q_{2}\right) & =q \cdot\left(q_{1}+q_{2}\right) \\
& =q q_{1}+q q_{2} \\
& =\phi\left(q, q_{1}\right)+\phi\left(q, q_{2}\right)
\end{aligned}
$$

(c-iii) Let $z \in \mathbb{Z}$. Then, we have

$$
\begin{aligned}
\phi\left(q_{1} z, q_{2}\right) & =\left(q_{1} z\right) q_{2} \\
& =q_{1}\left(z q_{2}\right) \quad \text { (by Associativity) } \\
& =\phi\left(q_{1}, z q_{2}\right)
\end{aligned}
$$

Hence, ϕ is R-balanced. Therefore, by the universal mapping property, we can define $\Phi: \mathbb{Q} \otimes_{Z} \mathbb{Q} \rightarrow \mathbb{Q}$ such that $\phi=\Phi \circ i$.
As shown above, by the universal mapping property, $\Phi: \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow \mathbb{Q}$ is also a group homomorphism. In order to show isomorphism, show that Φ is surjective and injective.
(c-iv) Show that $\Phi: \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow \mathbb{Q}$ is surjective.
Let q be an arbitrary element in \mathbb{Q}.. Then, consider $(1, q) \in \mathbb{Q} \times \mathbb{Q} \Rightarrow \phi(1, q)=\Phi(1 \otimes q)=q$.
Since we have found $(1 \otimes q) \in \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $q \in \mathbb{Q}$ was arbitrary, it is shown that Φ is surjective.
(c-v) Show that Φ is injective.
Let $a=q_{1} \otimes q_{2} \in \mathbb{Q} \otimes_{Z} \mathbb{Q}, b=q_{3} \otimes q_{4} \in \mathbb{Q} \otimes_{Z} \mathbb{Q}$. Then,

$$
\begin{aligned}
\Phi(a) & =\Phi(b) \\
\Phi\left(q_{1} \otimes q_{2}\right) & =\Phi\left(q_{3} \otimes q_{4}\right) \\
q_{1} \cdot q_{2} & =q_{3} \cdot q_{4} \\
\Rightarrow a & =b
\end{aligned}
$$

Therefore, Φ is an isomorphism and $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$.

