
Math 6000, Fall 2020 (Prof. Kinser), Homework 3

Nitesh Mathur

18 September 2020

Source Discussed solutions with Zach after thinking about the hw myself and then did proof analysis
of each other’s paper after we had written our own initial drafts.

Problem 1. Skills developed: practice with categories defined by compound constructions.

Fix a homomorphism of groups f : A → B. Let C be the category whose objects are pairs
(X,φ) such that φ : X → A is a group homomorphism satisfying fφ = 0. A morphism
(X,φ) → (Y, ψ) in C is given by a group homomorphism g : X → Y satisfying φ = ψg.
Prove that C has a terminal object by explicitly describing it.

Edit Typo: the symbol ”0” has no meaning the general context of groups. The defining condition
for objects in this category should be that the composition is the trivial homomorphism,
instead of 0.

Defs/Theorems

1. An object I in a category C is initial if for every X ∈ C, ∃!I → X in C (This does not
necessary mean there exists one).

2. A terminal object is defined dually (initial object in Cop).

3. Let f : G→ H be a group homomorphism. The kernel of f is the set K such that

K = {x ∈ G : f(x) = e}

Proof Let e be the identity in B.

Let (X,φ), (Y, ψ) ∈ C ⇒ φ : X → A is a group homomorphism satisfying fφ = e and
ψ : Y → A is a group homomorphism satisfying fψ = e.

We also have φ = ψg, where g : X → Y is a group homomorphisms. Then,

fφ = e

⇒ f(ψg) = e

Since we are dealing with group homomorphisms and compositions, the terminal object will
consist of a group and a group homomorphism mapping to the identity. In particular,
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(i) Consider T = ker(A) E A and define φ : T → A be the inclusion morphism. We assert
that(T, φ) is the terminal object in C.

(ii) Check that (T, φ) is an object in C. Consider the following:

fφ(T ) = f(T ) (since φ is just the inclusion )
= e

So, φ : T → A is a group homomorphism satisfying fφ = e.

Hence (T, φ) ∈ C.

(ii) A morphism (X,φ) → (T, φ) is given by a group homomorphism g : X → T defined by
g = φ|ker(A).

We have g : X → T, φ : T → A. Then,

φ ◦ g = φ ◦ φ|ker(A)
= φ

(iii) Let (X,φ) be an arbitrary object in C. Now show that (X,φ)→ (T, φ) is unique.

Let g : X → T . Suppose there is another morphism g2 : X → T .

By definition, g2 satisfies φ = φ ◦ g2.
Then, we have the following:

φ ◦ g2 = φ = φ ◦ g
⇒ fφ ◦ g2 = fφ = fφ ◦ g

fφ︸︷︷︸
e

◦g2 = e = fφ︸︷︷︸
e

◦g

⇒ g2 = g

Therefore, g : X → T is unique, and (T, φ) is the terminal object we are looking for.
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Problem 2. Skills developed: practice with functors and fundamentals of modules

Let R be a ring, and M ∈ R−Mod. Define,

Tor(M) = {m ∈M |rm = 0 for some nonzero r ∈ R}.

(a) Prove that if R is an integral domain ( a commutative ring with no zero divisors), then
Tor(M) is a submodule of M , called the torsion submodule.

(b) Prove that Tor : R−Mod→ R−Mod is a functor when R is an integral domain.

(c) Let R be the ring of 2× 2 matrices over a field. Show that Tor(R) is not a submodule of R

Hint: you don’t even have to specify the field because you will only need the elements 0 and
1.

Defs/Theorems

1. Submodule Criterion Let R be a ring and let M be an R−module. A subset N of M is a
submodule of m iff

(1) N 6= ∅
2) x+ ry ∈ N for all r ∈ R and for all x, y ∈ N .

Proof(a) We will employ the submodule criterion for this problem.

(a-i) Show that Tor(M) 6= ∅.
By definition, a module M is an Abelian group under addition. Hence, it has an additive
identity 0. Therefore, for any r ∈ R, r · 0 = 0⇒ Tor(M) 6= ∅.

(a-ii) Let x, y ∈ Tor(M).

x, y ∈ Tor(M)⇒ r · x = 0, s · y = 0, for some nonzero r, s ∈ R respectively.

Show Let R be an integral domain (and hence a commutative ring).

For r′ ∈ R, we will show x− r′y ∈ Tor(M). Multiply rs to the left of x− r′y to get:

rs(x− r′y) = rsx− rsr′y
= srx− rr′sy (since we are in a commutative ring )
= s(rx) = rr′(sy)

= s · 0− rr′ · 0 (by assumption,rx = 0, sy = 0)

= 0

Since r, s ∈ R, by closure, rs ∈ R.

Let r̃ = rs ∈ R and m̃ = x− r′y.
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We have shown that r̃m̃ = 0 for some nonzero r̃ ∈ R⇒ x− r′y ∈ Tor(M).

Hence, by the submodule criterion, Tor(M ) is a submodule of M .

(Source: Did a similar problem in last year’s hw)

(b) Show Show that Tor(M) is a functor, i.e.

(1) ∀M ∈ Ob(R−Mod),Tor(M) ∈ Ob(R−Mod)

(2) ∀ φ ∈ HomR−Mod(M,N),Tor(φ) ∈ HomR−Mod(Tor(M),Tor(N)) such that Tor(1M) =
1Tor(M).

(3) Tor(φ2 ◦ φ1) = Tor(φ2) ◦ Tor(φ1) for all φ2, φ1 composable in R−Mod.

(b-i) Let M ∈ R −Mod. In part (a), we showed that Tor(M ) is a submodule M since R is an
integral domain. In particular, Tor(M ) ∈ R−Mod.

(b-ii) Let φ :M → N to be a R−module homomorphism. In particular φ(rx+y) = rφ(x)+φ(y)
for all x, y ∈M and all r ∈ R.

Then, define the induced morphism, Tor(φ) as follows:

Tor(φ) = φ|Tor(M) : Tor(M)→ Tor(N)

(b-iii) Let 1M be the identity module homomorphism on M . Show Tor(1M) = 1Tor(M).

Tor(1M) = 1M |Tor(M)

= 1Tor(M)

∴,Tor(1M) = 1Tor(M).

(b-iv) Here is the related commutative diagram:

M N

Tor(M) Tor(N)

φ

Tor(φ)

Note, there should be an arrow indicating the induced morphism, φ 99K Tor(φ).

(b-v) Let φ1 :M → N, φ2 : N → O be R−module homomorphisms. Then,

Tor(φ2φ1) = (φ2φ1)|Tor(M)

= (φ2|Tor(N)φ1)|Tor(M) (retricting twice is same as restricting once)
= (φ2|Tor(N))(φ1)|Tor(M) (since φ1, φ2 are module homomorphisms)
= Tor(φ2)Tor(φ1)

Hence, Tor is a covariant functor.
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(c) We need to find a counterexample. First note that matrices are abelian groups, under addition.
So any submodule would contain 0, and therefore,will be nonempty.

Hence, we need to then see if we can pick x, y ∈ 2×2 matrices such that for all r ∈ R, x+ry
is not in the submodule.

Let r, s ∈ R.

Consider r =
[
0 0
0 1

]
, x =

[
1 0
0 0

]
Then, r · x =

[
0 0
0 0

]
⇒ r ∈ Tor(R).

Now, take s =
[
1 0
0 0

]
, y =

[
0 0
0 1

]
. Then, s · y =

[
0 0
0 0

]
⇒ s ∈ Tor(R).

Then, r + s =

[
0 0
0 1

]
+

[
1 0
0 0

]
=

[
1 0
0 1

]
6∈ Tor(R).

The final assertion follows since multiplying by the identity would get the same r back,
unless r was 0, but that would be a contradiction (since we assume r ∈ R is nonzero).

Hence, Tor(R) is not a submodule of R if R is the ring of 2× 2 matrix.
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Problem 3. Skills developed: practice with functors and fundamentals of modules.

Fix a ring homomorphism φ : R→ S, and let M be a left S−module Recall from class that
M can also be considered a left R−module by restriction of scalars: r · m = φ(r)m for
r ∈ R,m ∈ M . The notations S(M) and RM can be used to clarify whether M is being
considered as an S− or R−module at any given point, but it is always the same set (this is
OK since φ is fixed, otherwise φ needs to be in the notation if several ring homomorphisms
R→ S are relevant). Prove that φ induces a functor φ∗ : S −Mod→ R−Mod.

Hint: φ∗ doesn’t do anything to elements of a module, it just sends SM to )RM , and it
doesn’t do anything to morphisms, they are the same maps of sets. The only thing to check
is that if f :M → N is an S−module homomorphism, then φ∗(f) is actually an R−module
homomorphism.

Proof We are given that φ : R → S is a ring homomorphism and a left S− module can be
considered as a left R−module via r ·m = φ(r) ·m.

Let f : M → N be a S−module homomorphism. Since f is a S−module homomorphism,
we know that

f(sx+ y) = sf(x) + f(y)

for all x, y ∈M and all s ∈ S.

Show Show φ∗ is a functor, i.e.

(a) ∀ SM ∈ Ob(S −Mod), φ∗(SM) = RM ∈ Ob(R−Mod)

(b) ∀ f ∈ Hom(SM, SN), φ∗(f) ∈ Hom(φ∗(SM), φ∗(SN)) such that φ ∗ (1
SM) = 1φ∗(SM)

(c) φ∗(f2 ◦ f1) = φ∗(f2) ◦ φ∗(f1)

(a) Let SM be a left S− module. Define the mapping of objects as φ∗(SM) = RM , which is a
left R−module.

(b-i) (By the hint, since φ∗ does not do anything to morphisms) φ∗(f) = f .

Show We want to show that φ∗(f) : φ∗(SM)→ φ∗(SN) is an R− module homomorphism (where
the corresponding objects are RM and RN respectively).

(b-ii) Let r ∈ R, x, y ∈ RM . Then, we have the following:

φ ∗ (f)(rx+ y) = f(rx+ y)

= f(φ(r)x+ y) (restriction of scalars) r · x = φ(r) · x
= f(φ(r)x) + f(y) since f is a S-module homomorphism
= φ(r)f(x) + f(y)

= rφ∗(f)(x) + φ∗(f)y
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Hence, φ∗(f) is a R−module homomorphism.

(Note, in the second equality we applied the restriction of scalars and think in terms of left
S−module. Since we assumed that f is a S−module homomorphism, we could break it up
as we did above).

(b-iii) Let 1
S
M be the identity module homomorphism on SM . Show that φ∗(1

SM) = 1φ∗(SM)

φ∗(1
SM)(r ·m) = 1

SM(φ(r) ·m)

= φ(r) ·m
= r ·m

∴, φ∗(1
SM) = 1φ∗(SM)

(b-iv) Here is the related commutative diagram:

SM SN

φ∗(SM) = RM φ∗(SN) = RN

f

φ∗(f)=f

(c) Let f1 : SM → SN, f2 : SN → SO. Let r ∈ R,m ∈ RM . Then,

φ∗(f2 ◦ f1)(r ·m) = (f2 ◦ f1)(φ(r) ·m))

= φ(r)(f2 ◦ f1)(m))

= φ∗(r(f2(f1(m)))

= φ∗(f2(rf1(m))

= φ∗((f2) ◦ f1(φ(r) ·m))

= φ∗((f2) ◦ φ∗(f1))(r ·m)

Hence, φ∗ is a covariant functor.
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