
Math 6000, Fall 2020 (Prof. Kinser), Homework 2

Nitesh Mathur

7 September 2020

Source Discussed solutions with Zach after thinking about the hw myself and then did proof analysis
of each other’s paper after we had written our own initial drafts.

Problem 1. Skills developed: Interpreting and testing an abstract definition in familiar settings.

In each category below, decide whether there exists a free object on arbitrary set X . If so,
prove it by constructing the free object and demonstrating the definition holds. If not, choose
a specific set X and prove that no free object on X can exist.

Each category below is a familiar concrete category. So just treat the objects as having
underlying sets as you usually would, without writing U for the “underlying set” functor

(a) The category Sets of all sets.

(b) The category Fields of all fields.

(c) The category Rings of comm. rings with 1(6= 0) and homomorphisms which preserve 1.

(d) The category Top of topological spaces and continuous functions.

Defs/Theorems 1. Given a set X , object A ∈ C and morphisms of sets i : X → A. We say that A is a free
object on X (and X is a basis of A) if it satisfies the following universal property:

1a. Given any map of sets g : X → B where B ∈ C, there exists unique morphism f : A → B
such that diagram commutes (i.e. ∃!f such that g = f ◦ i)

B A

X

f

i
g

2. The discrete topology is the finest topology that can be given on a set, i.e., it defines all the
subsets as open sets. In particular, each singleton is an open set in the discrete topology.

3. A field homomorphism φ : F → F ′ is identically 0 or injective.

3b. If there is a homomorphism between two fields, then they have the same characteristic.
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(a) Yes, there does exist a free object on arbitrary set X in the category of Sets.
Since every object in a category has an identity morphism, X ∈ Ob(Sets) has an identity
morphism, namely 1X ∈ HomSets(X,X).

Let A be an object in Sets. Consider A = X . Then, i : X → A is precisely the identity
morphism 1X : X → X .

Hence, given g : X → B ∈ Sets, there exists a unique morphism f : X → B such that
g = f ◦ 1X (since the identity is unique, f has to be unique).

∴, in Sets, A = X is the free object on X and f = g is the unique morphism from A to B.

Here is the corresponding commutative diagram:

B A = X

X

f

1X
g=f

(b) Claim: Free object on X 6= ∅ does not exist in a category of Fields.

By way of contradiction, suppose we have i : X → A with A free on X . Let A be a field of
characteristic p.

Let g : X → B, be the given morphism, where B is a field of characteristic q 6= p.

Then, there should be a unique morphism f : A → B such that g = f ◦ i. This is precisely
the contradiction since f is a homomorphism between fields, and A and B have different
characteristic.

(Note, if the category is a field of a fixed characteristic, there may be a free object if the
arbitrary set X = ∅, but this is not true generally).

(c) Yes, there does exist a free object on arbitrary set X in the category of Rings.

Consider the polynomial ring Z[x]. By definition, it is the set of all formal sums anxn +
an−1x

n−1 + ....+ a1x+ a0 with n ≥ 0 and each ai ∈ Z.

Let X be any arbitrary set and let i : X → A. Given a g : X → B, we want to show there is
a unique morphism f : A→ B.

Since A and B are both rings and we assume that homomorphism preserves 1, f(1) = 1.
Hence, g = f ◦ i exists.

Now, suppose there is another such ring homomorphsim f̂ : A → B. Then, we have
f ◦ i = g = f̂ ◦ i⇒ f ◦ i = f̂ ◦ i⇒ f = f̂ . Hence, f is a unique morphism.

(Credit: The motivation for this problem came entirely from discussion with Zach).

Here is the corresponding commutative diagram:

B A = Z[x]

X

f

ig
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(d) Yes, there does exist a free object on arbitrary set X in the category of Top.

Suppose A = (X, τ) is endowed with the discrete topology. Let (B, τ2) ∈ Ob(Top).
We assert that A is a free object. Suppose V ⊂ B is an open set. Consider f−1(V ) ⊂ A.
Since every subset of A is open, f−1(V ) ⊂ A is open.

Since the preimage of an open set is open, f is continuous. In particular, g = f ◦ i.
Now, suppose there exists another map f such that g = f ◦ i.
Then f ◦ i = f ◦ i⇒ f = f .

Here is the corresponding commutative diagram:

(B, τ2) A = (X, τ)

X

f

i
g

3



Problem 2. Skills developed: Construction of a categorical equivalence, and practice with matrix rings
and modules.

Let K be a field, and K−Mod the category of K−modules (i.e. vector spaces). Let
R = Mat2×2(K) be the ring of 2 × 2 matrices over K, and R−Mod the category of left
R−modules. We will show thatK−Mod andR−Mod are equivalent categories, despite that
fact that K and R are clearly not isomorphic rings.

(a) Define a map on objects F : K − Mod → R − Mod by sending a vector space V to the
R−modules V ⊕V , where R acts on (v1, v2) ∈ V ⊕V by the standard matrix multiplication
formula: [

a b
c d

] [
v1
v2

]
=

[
av1 + bv2
cv1 + dv2

]
Show how to make F a functor in the most natural way.

(b) Let e be the primitive idempotent in R, for concreteness let’s take e = [ 1 0
0 0 ]. Check (but

don’t turn in) that the ring eRe is isomorphic to the field K, where a ∈ K is identified with
the matrix [ a 0

0 0 ]. Also check that eM is a left eRe−module, and thus can be considered as a
K- vector space. Therefore, we can define a map on objects G : R−Mod→ K −Mod by
sending an R−module M to eM . Show how to make G a functor in the most natural way.

(c) It is easy to see that GF isomorphic to the identity functor on K −Mod. (Check this but
don’t turn it in.) On the other hand, FG is not exactly the identity functor, but FG(M) 'M
for all M ∈ R − Mod Show that the functor FG is isomorphic to the identity functor on
R−mod. This shows that R−mod and K −mod are equivalent categories.

This generalizes to n × n matrices over arbitrary rings with essentially the same proof. In
general, two rings S1, S2 such that the categories S1-mod and S2-mod are equivalent are
said to be “Morita equivalent” rings.

Defs/Theorems 1. Let R be a ring (not necessarily commutative nor with 1). A left R-module or a left-module
over R is a set M together with

(1) a binary operation + on M under which M is an abelian group, and

(2) an action of R on M (that is, a map R×M →M) denoted by rm, for all r ∈ R and for
all m ∈M which satisfies:

(a) (r + s)m = rm+ sm, for all r, s ∈ R,m ∈M .

(b) (rs)m = r(sm), for all r, s ∈ R,m ∈M , and

(c) r(m+ n) = rm+ rn, for all r ∈ R,m, n ∈M .

If the ring R has a 1 we impose the additional axiom:

(d) 1m = m, for all m ∈M .
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2. Suppose V and W are vector spaces over the field K. The cartesian product V ×W can be
given the structure of a vector space over K by defining the operations componentwise:

(i) (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2)

(ii) α(v, w) = (αv, αw).

for v, v1, v2 ∈ V,w,w1, w2 ∈ W, and α ∈ K.

The resulting vector space is called the direct sum of V and W and is usually denoted by
V
⊕

W .

3. (Pg. 327, Prop 10.2.2 D and F) Let M,N, and L be R−modules.

(1) A map φ : M → N is an R−module homomorphism iff φ(rx + y) = rφ(x) + φ(y) for
all x, y ∈M and all r ∈ R.

(2) Let φ, ψ be elements of HomR(M,n). Define φ+ ψ by

(φ+ ψ)(m) = φ(m) + ψ(m) for all m ∈M

Then φ + ψ ∈ HomR(M,N) and with this operation HomR(M,n) is an abelian group. If
R is a commutative ring then for r ∈ R define rφ by

(rφ)(m) = r(φ(m)) for all m ∈M

.

Proof (a)

Show Show that F is a functor, i.e.

(1) ∀ V ∈ Ob(K −Mod), F (R) ∈ Ob(R−Mod)

(2) ∀ φ ∈ HomK−Mod(V1, V2), F (φ) ∈ HomR−Mod(F (V1), F (V2)) such that F (1V1) =
1F (V1).

(3) F (φ2 ◦ φ1) = F (φ2) ◦ F (φ1) for all φ2, φ1 composable in K −Mod.

(a-i) Let V ∈ Ob(K − Mod). Define F (V ) = V
⊕

V to be the direct sum. Then, F (V ) ∈
Ob(R−Mod) since it is also a vector space.

(a-ii) Let V,W ∈ K −Mod and T ∈ HomK−Mod(V,W ) be a linear transformation.

Let V
⊕

V and W
⊕

W be the corresponding objects after the functor has been applied.
Then, φ : V

⊕
V → W

⊕
W is a R−module homomorphism.

Let v1, v2 ∈ V ⇒ (v1, v2) ∈ V
⊕

V . Then, define induced map as follows:

F (T )(v1, v2) = φ(v1, v2) = (T (v1), T (v2)) ∈ W
⊕

W
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Check Verify that φ is indeed a R−module homomorphism.

Let r =
[
a b
c d

]
∈ R, and let x = (v1, v2), y = (v1, v2) ∈ V

⊕
V . Then, we have:

φ(rx+ y) = φ(

[
a b
c d

] [
v1
v2

]
+

[
v1
v2

]
)

= φ(

[
av1 + bv2
cv1 + dv2

]
) +

[
v1
v2

]
)

=

[
T (av1 + bv2 + v1)
T (cv1 + dv2 + v2

]
=

[
aT (v1) + bT (v2)
cT (v1) + dT (v2)

]
+

[
T (v1)
T (v2)

]
=

[
a b
c d

] [
T (v1)
T (v2)

]
) +

[
T (v1)
T (v2)

]
follows from linearity of T

=

[
a b
c d

]
φ(

[
v1
v2

]
) + φ(

[
v1
v2

]
)

= rφ(x) + φ(y)

(a-iii) Let 1V be the identity morphism on V (in this case, it is the identity linear transformation).

Let v1, v2 ∈ V and φ ∈ HomR−Mod(V
⊕

V, V
⊕

V ). Then,

F (1V )(v1, v2) = φ(v1, v2)

= (1V (v1), 1V (v2))

= (v1, v2)

∴ F (1V ) = 1F (V ).

(a-iv) Here is the corresponding commutative diagram:

V W

F (V ) = V
⊕

V F (W ) = W
⊕

W

T

F F

φ

Note, there should also be an induced morphism from T 99K φ.

(a-v) Let T1 ∈ HomK−Mod(V,W ), T2 ∈ HomK−Mod(W,X). Let φ1 ∈ HomR−Mod(V
⊕

V,W
⊕

W ), φ2 ∈
HomR−Mod(W

⊕
W,X

⊕
X) be the corresponding morphisms. Then,
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F (T2 ◦ T1)(v1, v2) = (T2(T1(v1)), T2(T1(v2))

= F (T2) ◦ (T1(v1), T1(v2))
= F (T2) ◦ F (T1)(v1, v2)

Hence, F is a covariant functor.

(b) Recall e in a Ring is idempotent if e2 = e. A primitive idempotent is an idempotent e such
that eR is indecomposable, i.e. we cannot have eR = eR1

⊕
eR2 with eR1, eR2 6= 0.

Let R−Mod and K −Mod be categories and G : R−Mod→ K −Mod.

Show Show that G is a functor i.e.

(1) ∀M ∈ Ob(R−Mod), G(M) ∈ Ob(K −Mod).

(2) ∀ φ ∈ HomR−Mod(M1,M2), G(φ) ∈ HomK−Mod(G(M1), G(M2)) such that G(1M1) =
1G(M1).

(3) G(φ2 ◦ φ1) = G(φ2) ◦G(φ) for all φ2, φ1 composable in R−Mod.

(b-i) Let M ∈ R − Mod. Then, define G(M) = eM where e = [ 1 0
0 0 ]is primitive idempotent.

Then, eM ∈ K −Mod.

(b-ii) Let M1,M2 ∈ R−Mod and φ ∈ HomR−Mod(M1,M2) be a R−module homomorphism.

Note, G(M1) = eM1 and G(M2) = eM2 are corresponding objects.

Define G(φ) = φ where φ(eM1) = eφ(M1).

Check (Note we have checked that eM is a left eRe-module and eRe is isomorphic to the field K.)

Verify that φ is an eRe-module homomorphism.

Let m1,m2 ∈M,R1 ∈ R. Then, we have

1.

φ(em1 + em2) = φ(em1) + φ(em2) since φ is an R-module homomorphism
= eφ(m1) + eφ(m2)

= m1 +m2

2. (Note an element in eRe looks like eR1e for R1 ∈ R). Then, we also have

φ(eR1e(em)) = eR1e(eφ(m))

= eR1eφ(em)

Hence, φ is an eRe-module homomorphism.
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(b-iii) Let 1M1 be the identity morphism on M1. Then,

G(1M1)(eM1) = 1M1(eM1)

= e1M1(M1)

= eM1

∴, G(1M1) = 1G(M1).

(b-iv) Here is the corresponding diagram:

M1 M2

G(M1) = eM1 G(M2) = eM2

φ

G G

φ

Note, there should also be an induced morphism φ 99K φ.

(b-v) Let φ1 ∈ HomR−Mod(M1,M2), φ2 ∈ HomR−Mod(M2,M3). Then,

G(φ2 ◦ φ1)(eM1) = φ2 ◦ φ1(eM1)

= e(φ2(φ1(M1))

= φ2(eφ1(M1))

= φ2 ◦ φ1(eM1)

= G(φ2) ◦G(φ1)(eM1)

Hence, G is a covariant functor.

(c) Recall that F : K −Mod→ R−Mod and G : R−Mod→ K −Mod.

Then, FG : R−Mod→ R−Mod. We need to show that FG is isomorphic to the identity
functor on R−Mod.

Consider a natural transformation η : FG→ 1R−Mod

From Class One can check that a morphism η : FG→ 1R−Mod is an isomorphism ⇐⇒

ηM : FG(M)→ 1R−Mod(M)

is an isomorphism for all all M ∈ Ob(R−Mod).

Let M ∈ R−Mod. Then, we have the following:
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G(M) = eM

F (G(M)) = F (eM)

= eM
⊕

eM

= e(M
⊕

M)

On the other hand, 1R−Mod(M) =M .

Show Show that e(M
⊕

M) ∼= M . Consider φ : e(M
⊕

M)→M by ψ(e(m1,m2)) = m, where

e =

[
1 0
0 0

]
. Show that ψ is (i) 1-1, (ii) onto, and (iii) preserves homomorphisms.

(i)

ψ(e(m1,m2)) = ψ(e(m1,m2)

⇒
[
1 0
0 0

]
·
[
m1

m2

]
=

[
1 0
0 0

]
·
[
m1

m2

]
⇒ m1 = m1

(Note, we also have 0m2 = 0m2 = 0). Hence, ψ is 1-1.

(ii) Let c be an arbitrary element of M . Then, we can find elements c, c ∈ M
⊕

M such that

ψ(e(c, c)) =

[
1 0
0 0

]
·
[
c
c

]
= c.

Since c was arbitrary, we have shown that ψ is onto.

(iii) Show that ψ is a homomorphism.

1. Let (x1, x2), (y1, y2) ∈M
⊕

M . Then,

ψ(e((x1, x2) + (y1, y2)) = ψ(e(x1 + y1, x2 + y2))

=

[
1 0
0 0

] [
x1 + y1
x2 + y2

]
= x1 + y1

= ψ(e(x1, x2)) + ψ(e(y1, y2))

2. Let r =
[
a b
c d

]
. Then,

ψ(r · e(x1, x2)) =
[
a b
c d

]
·
[
1 0
0 0

]
⇒
[
a 0
0 0

]
·
[
x1
x2

]
= ax1 =

[
a b
c d

]
· ψ(e(x1, x2))

Conclude ∴, ψ is a R−Mod homomorphism and we have shown that e(M
⊕

M) ∼= M).
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