Math 6000, Fall 2020 (Prof. Kinser), Homework 2

Nitesh Mathur

7 September 2020

Source Discussed solutions with Zach after thinking about the hw myself and then did proof analysis of each other's paper after we had written our own initial drafts.

Problem 1. Skills developed: Interpreting and testing an abstract definition in familiar settings.
In each category below, decide whether there exists a free object on arbitrary set X. If so, prove it by constructing the free object and demonstrating the definition holds. If not, choose a specific set X and prove that no free object on X can exist.

Each category below is a familiar concrete category. So just treat the objects as having underlying sets as you usually would, without writing U for the "underlying set" functor
(a) The category Sets of all sets.
(b) The category Fields of all fields.
(c) The category Rings of comm. rings with $1(\neq 0)$ and homomorphisms which preserve 1 .
(d) The category Top of topological spaces and continuous functions.

Defs/Theorems 1. Given a set X, object $A \in \mathcal{C}$ and morphisms of sets $i: X \rightarrow A$. We say that A is a free object on X (and X is a basis of A) if it satisfies the following universal property:

1a. Given any map of sets $g: X \rightarrow B$ where $B \in \mathcal{C}$, there exists unique morphism $f: A \rightarrow B$ such that diagram commutes (i.e. $\exists!f$ such that $g=f \circ i$)

2. The discrete topology is the finest topology that can be given on a set, i.e., it defines all the subsets as open sets. In particular, each singleton is an open set in the discrete topology.
3. A field homomorphism $\phi: F \rightarrow F^{\prime}$ is identically 0 or injective.

3b. If there is a homomorphism between two fields, then they have the same characteristic.
(a) Yes, there does exist a free object on arbitrary set X in the category of Sets.

Since every object in a category has an identity morphism, $X \in \mathrm{Ob}$ (Sets) has an identity morphism, namely $1_{X} \in \operatorname{Hom}_{\text {Sets }}(X, X)$.
Let A be an object in Sets. Consider $A=X$. Then, $i: X \rightarrow A$ is precisely the identity morphism $1_{X}: X \rightarrow X$.
Hence, given $g: X \rightarrow B \in$ Sets, there exists a unique morphism $f: X \rightarrow B$ such that $g=f \circ 1_{X}$ (since the identity is unique, f has to be unique).
\therefore, in Sets, $A=X$ is the free object on X and $f=g$ is the unique morphism from A to B.
Here is the corresponding commutative diagram:

(b) Claim: Free object on $X \neq \emptyset$ does not exist in a category of Fields.

By way of contradiction, suppose we have $i: X \rightarrow A$ with A free on X. Let A be a field of characteristic p.
Let $g: X \rightarrow B$, be the given morphism, where B is a field of characteristic $q \neq p$.
Then, there should be a unique morphism $f: A \rightarrow B$ such that $g=f \circ i$. This is precisely the contradiction since f is a homomorphism between fields, and A and B have different characteristic.
(Note, if the category is a field of a fixed characteristic, there may be a free object if the arbitrary set $X=\emptyset$, but this is not true generally).
(c) Yes, there does exist a free object on arbitrary set X in the category of Rings.

Consider the polynomial ring $\mathbb{Z}[x]$. By definition, it is the set of all formal sums $a_{n} x^{n}+$ $a_{n-1} x^{n-1}+\ldots .+a_{1} x+a_{0}$ with $n \geq 0$ and each $a_{i} \in \mathbb{Z}$.
Let X be any arbitrary set and let $i: X \rightarrow A$. Given a $g: X \rightarrow B$, we want to show there is a unique morphism $f: A \rightarrow B$.
Since A and B are both rings and we assume that homomorphism preserves $1, f(1)=1$. Hence, $g=f \circ i$ exists.
Now, suppose there is another such ring homomorphsim $\hat{f}: A \rightarrow B$. Then, we have $f \circ i=g=\hat{f} \circ i \Rightarrow f \circ i=\hat{f} \circ i \Rightarrow f=\hat{f}$. Hence, f is a unique morphism.
(Credit: The motivation for this problem came entirely from discussion with Zach).
Here is the corresponding commutative diagram:

(d) Yes, there does exist a free object on arbitrary set X in the category of Top.

Suppose $A=(X, \tau)$ is endowed with the discrete topology. Let $\left(B, \tau_{2}\right) \in O b(\mathbf{T o p})$.
We assert that A is a free object. Suppose $V \subset B$ is an open set. Consider $f^{-1}(V) \subset A$. Since every subset of A is open, $f^{-1}(V) \subset A$ is open.
Since the preimage of an open set is open, f is continuous. In particular, $g=f \circ i$.
Now, suppose there exists another map \bar{f} such that $g=\bar{f} \circ i$.
Then $f \circ i=\bar{f} \circ i \Rightarrow f=\bar{f}$.
Here is the corresponding commutative diagram:

Problem 2. Skills developed: Construction of a categorical equivalence, and practice with matrix rings and modules.

Let K be a field, and $K-\operatorname{Mod}$ the category of K-modules (i.e. vector spaces). Let $R=M a t_{2 \times 2}(K)$ be the ring of 2×2 matrices over K, and $R-$ Mod the category of left R-modules. We will show that $K-\operatorname{Mod}$ and $R-$ Mod are equivalent categories, despite that fact that K and R are clearly not isomorphic rings.
(a) Define a map on objects $F: K-\operatorname{Mod} \rightarrow R-\operatorname{Mod}$ by sending a vector space V to the R-modules $V \oplus V$, where R acts on $\left(v_{1}, v_{2}\right) \in V \oplus V$ by the standard matrix multiplication formula:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
a v_{1}+b v_{2} \\
c v_{1}+d v_{2}
\end{array}\right]
$$

Show how to make F a functor in the most natural way.
(b) Let e be the primitive idempotent in R, for concreteness let's take $e=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Check (but don't turn in) that the ring $e R e$ is isomorphic to the field K, where $a \in K$ is identified with the matrix $\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$. Also check that $e M$ is a left $e R e-$ module, and thus can be considered as a K - vector space. Therefore, we can define a map on objects $G: R-\operatorname{Mod} \rightarrow K-\operatorname{Mod}$ by sending an R-module M to $e M$. Show how to make G a functor in the most natural way.
(c) It is easy to see that $G F$ isomorphic to the identity functor on $K-$ Mod. (Check this but don't turn it in.) On the other hand, $F G$ is not exactly the identity functor, but $F G(M) \simeq M$ for all $M \in R-\operatorname{Mod}$ Show that the functor $F G$ is isomorphic to the identity functor on $R-\bmod$. This shows that $R-\bmod$ and $K-\bmod$ are equivalent categories.
This generalizes to $n \times n$ matrices over arbitrary rings with essentially the same proof. In general, two rings S_{1}, S_{2} such that the categories $S_{1}-\bmod$ and $S_{2}-\bmod$ are equivalent are said to be "Morita equivalent" rings.

Defs/Theorems 1. Let R be a ring (not necessarily commutative nor with 1). A left R-module or a left-module over R is a set M together with
(1) a binary operation + on M under which M is an abelian group, and
(2) an action of R on M (that is, a map $R \times M \rightarrow M$) denoted by $r m$, for all $r \in R$ and for all $m \in M$ which satisfies:
(a) $(r+s) m=r m+s m$, for all $r, s \in R, m \in M$.
(b) $(r s) m=r(s m)$, for all $r, s \in R, m \in M$, and
(c) $r(m+n)=r m+r n$, for all $r \in R, m, n \in M$.

If the ring R has a 1 we impose the additional axiom:
(d) $1 m=m$, for all $m \in M$.
2. Suppose V and W are vector spaces over the field K. The cartesian product $V \times W$ can be given the structure of a vector space over K by defining the operations componentwise:
(i) $\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right)$
(ii) $\alpha(v, w)=(\alpha v, \alpha w)$.
for $v, v_{1}, v_{2} \in V, w, w_{1}, w_{2} \in W$, and $\alpha \in K$.
The resulting vector space is called the direct sum of V and W and is usually denoted by $V \bigoplus W$.
3. (Pg. 327, Prop 10.2.2 D and F) Let M, N, and L be R-modules.
(1) A map $\phi: M \rightarrow N$ is an R-module homomorphism iff $\phi(r x+y)=r \phi(x)+\phi(y)$ for all $x, y \in M$ and all $r \in R$.
(2) Let ϕ, ψ be elements of $\operatorname{Hom}_{R}(M, n)$. Define $\phi+\psi$ by

$$
(\phi+\psi)(m)=\phi(m)+\psi(m) \text { for all } m \in M
$$

Then $\phi+\psi \in \operatorname{Hom}_{R}(M, N)$ and with this operation $\operatorname{Hom}_{R}(M, n)$ is an abelian group. If R is a commutative ring then for $r \in R$ define $r \phi$ by

$$
(r \phi)(m)=r(\phi(m)) \quad \text { for all } m \in M
$$

Proof (a)

Show Show that F is a functor, i.e.
(1) $\forall V \in O b(K-\operatorname{Mod}), F(R) \in O b(R-\operatorname{Mod})$
(2) $\forall \phi \in \operatorname{Hom}_{K-\operatorname{Mod}}\left(V_{1}, V_{2}\right), F(\phi) \in \operatorname{Hom}_{R-\operatorname{Mod}}\left(F\left(V_{1}\right), F\left(V_{2}\right)\right)$ such that $F\left(1_{V_{1}}\right)=$ $1_{F\left(V_{1}\right)}$.
(3) $F\left(\phi_{2} \circ \phi_{1}\right)=F\left(\phi_{2}\right) \circ F\left(\phi_{1}\right)$ for all ϕ_{2}, ϕ_{1} composable in $K-\operatorname{Mod}$.
(a-i) Let $V \in O b(K-\operatorname{Mod})$. Define $F(V)=V \bigoplus V$ to be the direct sum. Then, $F(V) \in$ $O b(R-\operatorname{Mod})$ since it is also a vector space.
(a-ii) Let $V, W \in K-\operatorname{Mod}$ and $T \in \operatorname{Hom}_{K-\operatorname{Mod}}(V, W)$ be a linear transformation.
Let $V \bigoplus V$ and $W \bigoplus W$ be the corresponding objects after the functor has been applied. Then, $\phi: V \bigoplus V \rightarrow W \bigoplus W$ is a R-module homomorphism.
Let $v_{1}, v_{2} \in V \Rightarrow\left(v_{1}, v_{2}\right) \in V \bigoplus V$. Then, define induced map as follows:

$$
F(T)\left(v_{1}, v_{2}\right)=\phi\left(v_{1}, v_{2}\right)=\left(T\left(v_{1}\right), T\left(v_{2}\right)\right) \in W \bigoplus W
$$

Check Verify that ϕ is indeed a R-module homomorphism.
Let $r=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in R$, and let $x=\left(v_{1}, v_{2}\right), y=\left(\overline{v_{1}}, \overline{v_{2}}\right) \in V \bigoplus V$. Then, we have:

$$
\begin{aligned}
\phi(r x+y) & =\phi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]+\left[\begin{array}{l}
\overline{v_{1}} \\
\overline{v_{2}}
\end{array}\right]\right) \\
& \left.=\phi\left(\left[\begin{array}{l}
a v_{1}+b v_{2} \\
c v_{1}+d v_{2}
\end{array}\right]\right)+\left[\begin{array}{l}
\overline{v_{1}} \\
\overline{v_{2}}
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
T\left(a v_{1}+b v_{2}+\overline{v_{1}}\right) \\
T\left(c v_{1}+d v_{2}+\overline{v_{2}}\right.
\end{array}\right] \\
& =\left[\begin{array}{l}
a T\left(v_{1}\right)+b T\left(v_{2}\right) \\
c T\left(v_{1}\right)+d T\left(v_{2}\right)
\end{array}\right]+\left[\begin{array}{l}
T\left(\overline{v_{1}}\right) \\
T\left(\overline{v_{2}}\right)
\end{array}\right] \\
& \left.=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
T\left(v_{1}\right) \\
T\left(v_{2}\right)
\end{array}\right]\right)+\left[\begin{array}{l}
T\left(\overline{v_{1}}\right) \\
T\left(\overline{v_{2}}\right)
\end{array}\right] \quad \text { follows from linearity of } T \\
& =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \phi\left(\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right)+\phi\left(\left[\begin{array}{l}
\overline{v_{1}} \\
\overline{v_{2}}
\end{array}\right]\right) \\
& =r \phi(x)+\phi(y)
\end{aligned}
$$

(a-iii) Let 1_{V} be the identity morphism on V (in this case, it is the identity linear transformation).
Let $v_{1}, v_{2} \in V$ and $\phi \in \operatorname{Hom}_{R-\operatorname{Mod}}(V \bigoplus V, V \bigoplus V)$. Then,

$$
\begin{aligned}
F\left(1_{V}\right)\left(v_{1}, v_{2}\right) & =\phi\left(v_{1}, v_{2}\right) \\
& =\left(1_{V}\left(v_{1}\right), 1_{V}\left(v_{2}\right)\right) \\
& =\left(v_{1}, v_{2}\right)
\end{aligned}
$$

$\therefore F\left(1_{V}\right)=1_{F(V)}$.
(a-iv) Here is the corresponding commutative diagram:

Note, there should also be an induced morphism from $T \rightarrow \phi$.
(a-v) Let $T_{1} \in \operatorname{Hom}_{K-\operatorname{Mod}}(V, W), T_{2} \in \operatorname{Hom}_{K-\mathrm{Mod}}(W, X)$. Let $\phi_{1} \in \operatorname{Hom}_{R-\mathrm{Mod}}(V \bigoplus V, W \bigoplus W), \phi_{2} \in$ $H o m_{R-\mathrm{Mod}}(W \bigoplus W, X \bigoplus X)$ be the corresponding morphisms. Then,

$$
\begin{aligned}
F\left(T_{2} \circ T_{1}\right)\left(v_{1}, v_{2}\right) & =\left(T_{2}\left(T_{1}\left(v_{1}\right)\right), T_{2}\left(T_{1}\left(v_{2}\right)\right)\right. \\
& =F\left(T_{2}\right) \circ\left(T_{1}\left(v_{1}\right), T_{1}\left(v_{2}\right)\right) \\
& =F\left(T_{2}\right) \circ F\left(T_{1}\right)\left(v_{1}, v_{2}\right)
\end{aligned}
$$

Hence, F is a covariant functor.
(b) Recall e in a Ring is idempotent if $e^{2}=e$. A primitive idempotent is an idempotent e such that $e R$ is indecomposable, i.e. we cannot have $e R=e R_{1} \bigoplus e R_{2}$ with $e R_{1}, e R_{2} \neq 0$.
Let $R-\operatorname{Mod}$ and $K-\operatorname{Mod}$ be categories and $G: R-\operatorname{Mod} \rightarrow K-\operatorname{Mod}$.
Show Show that G is a functor i.e.
(1) $\forall M \in O b(R-\operatorname{Mod}), G(M) \in O b(K-\operatorname{Mod})$.
(2) $\forall \phi \in \operatorname{Hom}_{R-\mathrm{Mod}}\left(M_{1}, M_{2}\right), G(\phi) \in \operatorname{Hom}_{K-\mathrm{Mod}}\left(G\left(M_{1}\right), G\left(M_{2}\right)\right)$ such that $G\left(1_{M_{1}}\right)=$ $1_{G\left(M_{1}\right)}$.
(3) $G\left(\phi_{2} \circ \phi_{1}\right)=G\left(\phi_{2}\right) \circ G(\phi)$ for all ϕ_{2}, ϕ_{1} composable in R - Mod.
(b-i) Let $M \in R$ - Mod. Then, define $G(M)=e M$ where $e=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is primitive idempotent. Then, $e M \in K-$ Mod.
(b-ii) Let $M_{1}, M_{2} \in R-\operatorname{Mod}$ and $\phi \in \operatorname{Hom}_{R-\mathrm{Mod}}\left(M_{1}, M_{2}\right)$ be a R-module homomorphism.
Note, $G\left(M_{1}\right)=e M_{1}$ and $G\left(M_{2}\right)=e M_{2}$ are corresponding objects.
Define $G(\phi)=\bar{\phi}$ where $\bar{\phi}\left(e M_{1}\right)=e \phi\left(M_{1}\right)$.
Check (Note we have checked that $e M$ is a left $e R e$-module and $e R e$ is isomorphic to the field K.)
Verify that $\bar{\phi}$ is an $e R e$-module homomorphism.
Let $m_{1}, m_{2} \in M, R_{1} \in R$. Then, we have
1.

$$
\begin{aligned}
\bar{\phi}\left(e m_{1}+e m_{2}\right) & =\phi\left(e m_{1}\right)+\phi\left(e m_{2}\right) \quad \text { since } \phi \text { is an R-module homomorphism } \\
& =e \phi\left(m_{1}\right)+e \phi\left(m_{2}\right) \\
& =\overline{m_{1}}+\overline{m_{2}}
\end{aligned}
$$

2. (Note an element in $e R e$ looks like $e R_{1} e$ for $R_{1} \in R$). Then, we also have

$$
\begin{aligned}
\bar{\phi}\left(e R_{1} e(e m)\right) & =e R_{1} e(e \phi(m)) \\
& =e R_{1} e \bar{\phi}(e m)
\end{aligned}
$$

Hence, $\bar{\phi}$ is an $e R e$-module homomorphism.
(b-iii) Let $1_{M_{1}}$ be the identity morphism on M_{1}. Then,

$$
\begin{aligned}
G\left(1_{M_{1}}\right)\left(e M_{1}\right) & =\overline{1_{M_{1}}}\left(e M_{1}\right) \\
& =e 1_{M_{1}}\left(M_{1}\right) \\
& =e M_{1}
\end{aligned}
$$

$$
\therefore G\left(1_{M_{1}}\right)=1_{G\left(M_{1}\right)} .
$$

(b-iv) Here is the corresponding diagram:

Note, there should also be an induced morphism $\phi \rightarrow \bar{\phi}$.
(b-v) Let $\phi_{1} \in \operatorname{Hom}_{R-\mathrm{Mod}}\left(M_{1}, M_{2}\right), \phi_{2} \in \operatorname{Hom}_{R-\mathrm{Mod}}\left(M_{2}, M_{3}\right)$. Then,

$$
\begin{aligned}
G\left(\phi_{2} \circ \phi_{1}\right)\left(e M_{1}\right) & =\overline{\phi_{2} \circ \phi_{1}}\left(e M_{1}\right) \\
& =e\left(\phi_{2}\left(\phi_{1}\left(M_{1}\right)\right)\right. \\
& =\overline{\phi_{2}}\left(e \phi_{1}\left(M_{1}\right)\right) \\
& =\overline{\phi_{2}} \circ \overline{\phi_{1}}\left(e M_{1}\right) \\
& =G\left(\phi_{2}\right) \circ G\left(\phi_{1}\right)\left(e M_{1}\right)
\end{aligned}
$$

Hence, G is a covariant functor.
(c) Recall that $F: K-\operatorname{Mod} \rightarrow R-\operatorname{Mod}$ and $G: R-\operatorname{Mod} \rightarrow K-\operatorname{Mod}$.

Then, $F G: R-\operatorname{Mod} \rightarrow R-\operatorname{Mod}$. We need to show that $F G$ is isomorphic to the identity functor on R - Mod.

Consider a natural transformation $\eta: F G \rightarrow 1_{R-\text { Mod }}$
From Class One can check that a morphism $\eta: F G \rightarrow 1_{R-\mathrm{Mod}}$ is an isomorphism \Longleftrightarrow

$$
\eta_{M}: F G(M) \rightarrow 1_{R-\mathrm{Mod}}(M)
$$

is an isomorphism for all all $M \in \operatorname{Ob}(R-\operatorname{Mod})$.
Let $M \in R-$ Mod. Then, we have the following:

$$
\begin{aligned}
G(M) & =e M \\
F(G(M)) & =F(e M) \\
& =e M \bigoplus e M \\
& =e(M \bigoplus M)
\end{aligned}
$$

On the other hand, $1_{R-\mathrm{Mod}}(M)=M$.
Show Show that $e(M \bigoplus M) \cong M$. Consider $\phi: e(M \bigoplus M) \rightarrow M$ by $\psi\left(e\left(m_{1}, m_{2}\right)\right)=m$, where $e=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Show that ψ is (i) $1-1$, (ii) onto, and (iii) preserves homomorphisms.
(i)

$$
\begin{aligned}
\psi\left(e\left(m_{1}, m_{2}\right)\right) & =\psi\left(e\left(\overline{m_{1}}, \overline{m_{2}}\right)\right. \\
\Rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right] & =\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\overline{m_{1}} \\
\overline{m_{2}}
\end{array}\right] \\
\Rightarrow m_{1} & =\overline{m_{1}}
\end{aligned}
$$

(Note, we also have $0 m_{2}=0 \overline{m_{2}}=0$). Hence, ψ is 1-1.
(ii) Let c be an arbitrary element of M. Then, we can find elements $c, \bar{c} \in M \bigoplus M$ such that $\psi(e(c, \bar{c}))=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \cdot\left[\begin{array}{l}c \\ \bar{c}\end{array}\right]=c$.
Since c was arbitrary, we have shown that ψ is onto.
(iii) Show that ψ is a homomorphism.

1. Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in M \bigoplus M$. Then,

$$
\begin{aligned}
\psi\left(e\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)\right. & =\psi\left(e\left(x_{1}+y_{1}, x_{2}+y_{2}\right)\right) \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2}
\end{array}\right] \\
& =x_{1}+y_{1} \\
& =\psi\left(e\left(x_{1}, x_{2}\right)\right)+\psi\left(e\left(y_{1}, y_{2}\right)\right)
\end{aligned}
$$

2. Let $r=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then,
$\psi\left(r \cdot e\left(x_{1}, x_{2}\right)\right)=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \Rightarrow\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=a x_{1}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot \psi\left(e\left(x_{1}, x_{2}\right)\right)$
Conclude \therefore, ψ is a $R-\operatorname{Mod}$ homomorphism and we have shown that $e(M \bigoplus M) \cong M)$.
