Math 6000, Fall 2020 (Prof. Kinser), Homework 1

Nitesh Mathur

26 August 2020

Source Discussed with Zach Bryhtan after attempting myself and did proof analysis/proofreading with him after the initial write-up. (Other Sources: Wikipedia, Dummit and Foote, Google)

Problem 1 Skills developed: working with properties of maps rather than choosing elements. This can simplify certain kinds of proofs by not introducing extra symbols too keep track of. It is particularly useful when you have several interacting maps.
Let $f: A \rightarrow B$ be a morphism in an arbitrary category \mathcal{C} (so the proofs should not make reference to "elements"). Prove each of the following:
(a) If f is a retraction, then f is an epimorphism.
(b) If f is a section, then f is a monomorphism.
(c) The morphism f is an isomorphism if and only if f is a monomorphism and a retraction. (This is if and only if f is an epimorphism and a section; the proof is similar so don't turn it in.)

Defs./Theorems

1. Let \mathcal{C} be a category. A morphism $f: A \rightarrow B$ is a monomorphism if $f g_{1}=f g_{2} \Rightarrow g_{1}=g_{2}$ for all $g_{1}, g_{2}: Z \rightarrow A$. ("left-cancellation"; if object is a set, monomorphism \Longleftrightarrow injection/1-1).
2. An epimorphism if $g_{1} f=g_{2} f \Rightarrow g_{1}=g_{2}$ for all $g_{1}, g_{2}: B \rightarrow Z$. ("right-cancellation"; if object is a set, epipmorphism \Longleftrightarrow surjection/onto).
3. An isomorphism if $\exists g: B \rightarrow A$ such that
$\left\{\begin{array}{l}g f=1_{A} \\ f g=1_{B}\end{array}\right.$
("has an inverse"; if object is a set, isomorphism \Longleftrightarrow bijection).
4. Retraction if $\exists g: B \rightarrow A$ such that $f g=1_{B}$ ("has right inverse").
5. Section if $\exists g: B \rightarrow A$ such that $g f=1_{A}$ ("has left inverse");

Proofs

(a) We assume that $f: A \rightarrow B$ is a retraction. Then, $\exists g: B \rightarrow A$ such that $f g=1_{B}$.

Suppose that \exists morphisms $g_{1}, g_{2}: B \rightarrow Z$ such that $g_{1} f=g_{2} f$.
Show: $g_{1}=g_{2}$.

$$
\begin{aligned}
g_{1} f & =g_{2} f \\
\Rightarrow g_{1}(f \circ g) & =g_{2}(f \circ g) \quad(\text { since } f \text { is a retraction }) \\
g_{1} \circ 1_{B} & =g_{2} \circ 1_{B} \\
g_{1} & =g_{2}
\end{aligned}
$$

Since we have shown that $g_{1} f=g_{2} f \Rightarrow g_{1}=g_{2}$, we have shown that f is an epimorphism.
(b) We assume that $f: A \rightarrow B$ is a section. Then, $\exists g: B \rightarrow A$ such that $g f=1_{A}$.

Suppose that $\exists g_{1}, g_{2}: Z \rightarrow A$ such that $f g_{1}=f g_{2}$.
Show $g_{1}=g_{2}$.

$$
\begin{aligned}
f g_{1} & =f g_{2} \\
\Rightarrow(g \circ f) g_{1} & =(g \circ f) g_{2} \quad(\text { since } f \text { is a section }) \\
1_{A} \circ g_{1} & =1_{A} \circ g_{2} \\
g_{1} & =g_{2}
\end{aligned}
$$

Since we have shown that $f g_{1}=f g_{2} \Rightarrow g_{1}=g_{2}$, we have shown that f is a monomorphism.
(c) \Rightarrow We assume that f is an isomorphism. Then, $\exists g: B \rightarrow A$ such that

$$
\left\{\begin{array}{l}
g f=1_{A} \\
f g=1_{B}
\end{array}\right.
$$

Suppose $\exists g_{1}, g_{2}: Z \rightarrow A$ such that $f g_{1}=f g_{2}$.
Show Show $g_{1}=g_{2}$ and f is a retraction.
(i) Since f is an isomorphism, we know that $\exists g: B \rightarrow A$ such that $f g=1_{B}$. Hence, f is also a retraction by definition.
(ii) Furthermore,

$$
f g_{1}=f g_{2}
$$

$$
\begin{aligned}
\Rightarrow g \circ\left(f g_{1}\right) & =g \circ\left(f g_{2}\right) \\
(g f) \circ g_{1} & =(g f) \circ g_{2} \quad(\text { by Associativity }) \\
1_{A} \circ g_{1} & =1_{A} \circ g_{2} \\
g_{1} & =g_{2}
\end{aligned}
$$

Since we showed that $f g_{1}=f g_{2} \Rightarrow g_{1}=g_{2}$ for all such g_{1}, g_{2}, we have shown that f is also a monomorphism.
$\therefore f$ isomorphism $\Rightarrow f$ is a retraction and a monomorphism.
$(\mathbf{c}) \Leftarrow$ Suppose $f g_{1}=f g_{2} \Rightarrow g_{1}=g_{2}$ for all morphisms, $g_{1}, g_{2}: Z \rightarrow A$. We also assume that $\exists g: B \rightarrow A$ such that $f g=1_{B}$.

Show $\exists g: B \rightarrow A$ such that $g f=1_{A}$.

$$
\begin{aligned}
f g & =1_{B} \quad(\text { since } f \text { is a retraction }) \\
\Rightarrow f g f & =1_{B} \circ f \\
f g f & =f \\
\Rightarrow f g f & =f \circ 1_{A}
\end{aligned}
$$

Note, $f g f$ is a map from $A \rightarrow B$. Hence, since $f g f=f \circ 1_{A}, g f=1_{A}$.
Since we have shown that $g f=1_{A}$, we have shown that f is an isomorphism.

Problem 2 Skills developed: practice applying definition of "functor" in a more familiar setting. Creating examples to understand abstract properties.
Let Groups be the category of groups, and Rings be the category of rings with 1 (morphisms are ring homomorphisms sending 1 to 1).
(a) Given a group G, let $A b(G)$ be the largest quotient of G which is abelian. Show that $A b$ is a functor from Groups to itself.
(b) Show that the map from Rings to Groups, defined on objects by sending a ring R to its group of units R^{\times}, extends to a functor between these categories. Show by example that it is neither faithful nor full.
Defs./Theorems Note, we will use \leq to denote subgroup, and \unlhd for normal subgroup.

1. A covariant functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is given by:
(i) $\forall A \in O b(\mathcal{C}), F(A) \in O b(\mathcal{D})$
(ii) $\forall f \in \operatorname{Hom}_{\mathcal{C}}(A, B), F(f) \in \operatorname{Hom}_{\mathcal{D}}(F(A), F(B))$ such that $F\left(1_{A}\right)=1_{F(A)}$.
(iii) $F(g f)=F(g) \cdot F(f)$ for all $g f$ composable in \mathcal{C}
2. A contravariant functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is the same except reverses directions of morphisms: i.e. $F(g f)=F(f) \cdot F(g)$.
3. A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ induces maps on Hom sets. $\forall A, B \in \mathcal{C}$, we have $F_{A, B}: \operatorname{Hom}_{\mathcal{C}}(A, B) \rightarrow$ $\operatorname{Hom}_{\mathcal{D}}(F(A), F(B))$.

3a. F is faithful if $F_{A, B}$ is injective $\forall A, B$; (3b.) F is full if $F_{A, B}$ is surjective $\forall A, B$.
4. (D/F: Pg. 169) Let G be a group, and let A, B be nonempty subsets of G.
(a) Define $[x, y]=x^{-1} y^{-1} x y$, called the commutator of x and y.
(b) Define $[A, B]=<[a, b]>\mid a \in A, b \in B>$, the group generated by commutators of elements from A and from B.
(c) Define $G^{\prime}=<[x, y] \mid x, y \in G>$, the subgroup of G generated by commutators of elements from G, called the commutator subgroup of G.
5. D/F (Prop. 7.4) G / G^{\prime} is the largest abelian quotient of G.
(pg. 170 Proof) Suppose $H \unlhd G$ and G / H is abelian. Then for all $x, y \in G$ we have $(x H)(y H)=$ $(y H)(x H)$, so

$$
\begin{aligned}
1 H & =(x H)^{-1}(y H)^{-1}(x H)(y H) \\
& =x^{-1} y^{-1} x y H \\
& =[x, y] H
\end{aligned}
$$

Thus, $[x, y] \in H$ for all $x, y \in G$ so that $G^{\prime} \leq H$.

Proofs

(a) Show Show that $A b$ is a functor, i.e.
(1) $\forall G \in$ Groups, $A b(G) \in$ Groups.
(2) $\forall \phi \in \operatorname{Hom}_{\text {Groups }}\left(G_{1}, G_{2}\right), A b(\phi) \in \operatorname{Hom}_{\text {Groups }}\left(A b\left(G_{1}\right), A b\left(G_{2}\right)\right)$ such that $A b\left(1_{G}\right)=$ $1_{A b(G)}$
(3) $A b\left(\phi_{2} \circ \phi_{1}\right)=A b\left(\phi_{2}\right) \circ A b\left(\phi_{1}\right)$ for all ϕ_{2}, ϕ_{1} composable in Groups.
(a-i) Let $G \in$ Groups. Let G^{\prime} be the commutator subgroup of G. Then, G / G^{\prime} is the largest quotient of G which is Abelian as shown above.
$A b(G)=G / G^{\prime}$ forms a quotient, which is a group. Hence, $A b(G) \in$ Groups. and (1) is satisfied.
(a-ii) Let $G_{1}, G_{2} \in \mathbf{G r o u p s}$ and $\phi \in \operatorname{Hom}_{\text {Groups }}\left(G_{1}, G_{2}\right)$.
Let $G_{1}^{\prime} \leq G_{1}, G_{2}^{\prime} \leq G_{2}$ be corresponding commutator subgroups. Then, $A b\left(G_{1}\right)=G_{1} / G_{1}^{\prime}$ and $A b\left(G_{2}\right)=G_{2} / G_{2}^{\prime}$ are the largest abelian quotients respectively.
Define $A b(\phi)=\bar{\phi} \in \operatorname{Hom}_{\text {Groups }}\left(A b\left(G_{1}\right), A b\left(G_{2}\right)\right)$ as follows:

$$
\bar{\phi}: A b\left(G_{1}\right) \rightarrow A b\left(G_{2}\right) \quad \text { by } \bar{\phi}\left(x G_{1}^{\prime}\right)=\phi(x) G_{2}^{\prime}
$$

(a-iii) Show $A b\left(1_{G}\right)=1_{A b(G)}$.
Let 1_{G} be the identity morphism on G, i.e. $1_{G} \in \operatorname{Hom}_{\text {Groups }}(G, G)$ and $A b\left(1_{G}\right)=\overline{1_{G}} \in$ $\operatorname{Hom}_{\text {Groups }}\left(G / G^{\prime}, G / G^{\prime}\right)$. Then,

$$
\begin{aligned}
A b\left(1_{G}\right) & =\overline{1_{G}}\left(x G_{1}^{\prime}\right) \\
& =1_{G}(x) G_{1}^{\prime} \\
& =x G_{1}^{\prime} \\
& =1_{A b(G)}
\end{aligned}
$$

$\therefore A b\left(1_{G}\right)=1_{A b(G)}$
(a-iv) For reference, here is the related diagram:

Note, $A b(\phi) \longrightarrow \bar{\phi}$ arrow should also be there for the induced morphism.
$(\mathbf{a}-\mathbf{v})$ Let $G_{1}, G_{2}, G_{3} \in \mathbf{G r o u p s}$ with $\phi_{1} \in \operatorname{Hom}_{\mathbf{G r o u p s}}\left(G_{1}, G_{2}\right)$ and $\phi_{2} \in \operatorname{Hom}_{\text {Groups }}\left(G_{2}, G_{3}\right)$ being the correponding group homomorphisms.
Let $A b\left(G_{1}\right)=G / G_{1}^{\prime}, A b\left(G_{2}\right)=G / G_{2}^{\prime}$ and $A b\left(G_{3}\right)=G / G_{3}^{\prime}$ be the corresponding objects after the functor $A b$ is applied. The induced morphisms are as follows: $A b\left(\phi_{1}\right)=\bar{\phi}_{1} \in$ $\operatorname{Hom}_{\text {Groups }}\left(A b\left(G_{1}\right), A b\left(G_{2}\right)\right), A b\left(\phi_{2}\right)=\bar{\phi}_{2} \in \operatorname{Hom}_{\text {Groups }}\left(A b\left(G_{2}\right), A b\left(G_{3}\right)\right)$.
Note that $A b\left(\phi_{2} \circ \phi_{1}\right) \in \operatorname{Hom}_{\text {Groups }}\left(G / G_{1}^{\prime}, G / G_{3}^{\prime}\right)$. Then, we have the following:

$$
\begin{aligned}
A b\left(\phi_{2} \circ \phi_{1}\right)\left(x G_{1}^{\prime}\right) & =\overline{\phi_{2} \circ \phi_{1}}\left(x G_{1}^{\prime}\right) \\
& =\left(\phi_{2} \circ \phi_{1}\right)(x) G_{3}^{\prime} \\
& =A b\left(\phi_{2}\right) \circ \phi_{1}(x) G_{2}^{\prime} \\
& =A b\left(\phi_{2}\right) \circ A b\left(\phi_{1}\right)\left(x G_{1}^{\prime}\right)
\end{aligned}
$$

Hence (3) is satisfied, and we have shown that $A b$ is a covariant functor.
Source (Pg. 913 Example 3 for inspiration)
(b) Let Rings and Groups be categories. Define a functor F between these two categories.

Show Show that F is a functor, i.e.
(1) $\forall R \in O b$ (Rings), $F(R) \in O b$ (Groups)
(2) $\forall \phi \in \operatorname{Hom}_{\text {Rings }}\left(R_{1}, R_{2}\right), F(\phi) \in \operatorname{Hom}_{\text {Groups }}\left(F\left(R_{1}\right), F\left(R_{2}\right)\right)$ such that $F\left(1_{R_{1}}\right)=1_{F\left(R_{1}\right)}$
(3) $F\left(\phi_{2} \circ \phi_{1}\right)=F\left(\phi_{2}\right) \circ F\left(\phi_{1}\right)$ for all ϕ_{2}, ϕ_{1} composable in Rings.

Proof (b-i) Let $R \in O b$ (Rings). Define $F(R)=R^{\times}$to be the group of units. Then, $F(R) \in O b$ (Groups).
(b-ii) Let $R_{1}, R_{2} \in$ Rings and $\phi: R_{1} \rightarrow R_{2}$ be a ring homomorphism with 1. (Note, $F\left(R_{1}\right)=R_{1}^{\times}$ and $F\left(R_{2}\right)=R_{2}^{\times}$are the corresponding objects).
Define $F(\phi)=\bar{\phi}=\left.\phi\right|_{R_{1}^{\times}}: R_{1}^{\times} \rightarrow R_{2}^{\times}$.
Since it is a restriction on a group of units, $\bar{\phi}$ is a group homomorphism.
(b-iii) Let $1_{R_{1}}$ be the identity morphism on R_{1}. Then,

$$
\begin{aligned}
F\left(1_{R_{1}}\right) & =\overline{1_{R_{1}}} \\
& =\left.1\right|_{R_{1}^{\times}} \\
& =\left.1\right|_{F\left(R_{1}\right)}
\end{aligned}
$$

$\therefore F\left(1_{R_{1}}\right)=1_{F\left(R_{1}\right)}$.
(b-iv) Here is the corresponding commutative diagram:

Note, we should have the induced morphism $\phi \rightarrow \bar{\phi}$ as well.
(b-v) Let $\phi_{1} \in \operatorname{Hom}_{\text {Rings }}\left(R_{1}, R_{2}\right), \phi_{2} \in \operatorname{Hom}_{\text {Rings }}\left(R_{2}, R_{3}\right)$. Then:

$$
\begin{aligned}
F\left(\phi_{2} \phi_{1}\right) & =\overline{\phi_{2} \phi_{1}} \\
& =\left.\left(\phi_{2} \phi_{1}\right)\right|_{R_{1}^{\times}} \\
& =\left.\left(\left.\phi_{2}\right|_{R_{2}^{\times}} \phi_{1}\right)\right|_{R_{1}^{\times}} \\
& =\left(\left.\phi_{2}\right|_{R_{2}^{\times}}\right)\left(\left.\phi_{1}\right|_{R_{1}^{\times}}\right) \quad \text { since } \bar{\phi}_{1}, \bar{\phi}_{2} \text { are group homomorphisms } \\
& =F\left(\phi_{2}\right) F\left(\phi_{1}\right)
\end{aligned}
$$

Hence, F is a covariant functor.
Note we used the following fact from line 2 to line 3: (From wikipedia) Restricting a function twice is the same as restricting it once, i.e. if $A \subset B \subset \operatorname{dom} f,\left.\left(\left.f\right|_{B}\right)\right|_{A}=\left.f\right|_{A}$.
(c) To show that $F_{A, B}$ is not injective, by counterexample, we need to exhibit that $\operatorname{Hom}_{\mathcal{C}}(A, B) \neq$ $\operatorname{Hom}_{\mathcal{C}}(C, D)$, but $\operatorname{Hom}_{\mathcal{D}}(F(A), F(B))=\operatorname{Hom}_{\mathcal{D}}(F(C), F(D))$.
(c-i) Consider rings $R_{1}=\mathbb{Z}$ and $R_{2}=\mathbb{Z}[x]$, the polynomial ring over \mathbb{Z}.
Let $\phi_{1} \in \operatorname{Hom}_{\text {Rings }}(\mathbb{Z}, \mathbb{Z}), \phi_{2} \in \operatorname{Hom}_{\text {Rings }}(\mathbb{Z}[x], \mathbb{Z}[x])$.
Yet, $F\left(\phi_{1}\right)=\bar{\phi}_{1} \in \operatorname{Hom}_{\text {Groups }}\left(\mathbb{Z}^{\times}, \mathbb{Z}^{\times}\right)=\bar{\phi}_{2}=F\left(\phi_{2}\right)$.
$\therefore, F_{R_{1}, R_{2}}$ is not injective and hence, F is not faithful.
(c-ii) To show that $F_{A, B}$ is not surjective, by counterexample, we need to exhibit that \exists some map in $\operatorname{Hom}_{\mathcal{D}}(F(A), F(B))$ such that there is no induced morphism coming from $\operatorname{Hom}_{\mathcal{C}}(A, B)$.
Let $\bar{\phi}: \mathbb{Z}^{\times} \rightarrow \mathbb{Z}^{\times}$by $\phi \overline{(1)}=-1$. Since we assumed that we have Rings with $1, \phi(1)=1$.
Hence, the corresponding restriction map should also map $\bar{\phi}(1)=1$, not -1 .
$\therefore, F_{R_{1}, R_{2}}$ is not surjective and hence, F is not full.
(Note: Motivation for part (c) - Zach)

Problem 3. Skills developed: more practice with functors and getting used to passing back and forth between equivalent definitions (abstract vs. concrete).

Recall that a group G determines a category with one object \mathbf{G}. Let K be a field, and $\mathbf{V e c}_{K}$ the category of K-vector spaces. A representation of a group G on a K-vector space V is a group homomorphism $\rho: G \rightarrow G L(V)$.
(a) Given a representation ρ, define a functor $F_{p}: \mathbf{G} \rightarrow V e c_{K}$ in a natural way.
(b) Given a functor $F: \mathbf{G} \rightarrow \mathbf{V e c}_{K}$, define a representation of G on a vector space in a natural way.
(c) Think about(write up is optional) why these two processes are "inverses" to one another, so the concept of a representation is equivalent to this particular kind of functor. In general, a function from any category \mathcal{C} to $\mathbf{V e c}_{K}$ can be interpreted (or defined) as a representation of the category \mathcal{C}.

Solution

Overview Let G be a group. Define a category \mathbf{G} with 1 object: $\{\star\}=O b(\mathbf{G})$ and $\operatorname{Hom}_{\mathbf{G}}(\star, \star)=G$.
Define category $\mathbf{V e c}_{K}$ with objects being vector space V, and $H o m_{\mathbf{V e c}_{K}}(V, V)=G L(V)$.
Let $\rho: G \rightarrow G L(V)$, a representation of group G on a vector space V, be a group homomorphism defined as follows: For $g \in G, \rho(g)=T: V \rightarrow V \in G L(V)$.
$G L(V)$ is the general linear group, the set of all bijective linear transformations from V to V. Since $G L(V)$ is a group and needs to satisfy group axioms, $T \in G L(V)$ is invertible.
(a) Show To show F_{ρ} is a functor, we need to show:
(1)For $\star \in \mathbf{G}, F_{\rho}(\star)=V \in \mathbf{V e c}_{K}$.
(2) $\forall g \in \operatorname{Hom}_{\mathbf{G}}(\star, \star), F_{\rho}(g) \in \operatorname{Hom}_{\mathbf{V e c}_{K}}\left(F_{\rho}(\star), F_{\rho}(\star)\right)$ such that $F_{\rho}\left(1_{\star}\right)=1_{F_{\rho}(\star)}$
(3) $F_{\rho}\left(g_{2} g_{1}\right)=F_{\rho}\left(g_{2}\right) \cdot F_{\rho}\left(G_{1}\right)$ for all $g_{2} \circ g_{1}$ composable in \mathbf{G}.
(a-i) Define $F_{\rho}(\star)=V \in \mathbf{V e c}_{K}$.
(a-ii) Let $g \in G=\operatorname{Hom}_{\mathbf{G}}(\star, \star)$.
Define $F_{\rho}(g)=\rho(g)=T \in \operatorname{Hom}_{\mathbf{V e c}_{K}}\left(F_{\rho}(\star), F_{\rho}(\star)\right)$
(a-iii) Let 1_{\star} be the identity morphism in $\operatorname{Hom}_{\mathbf{G}}(\star, \star)$.
Then, $F_{\rho}\left(1_{\star}\right)=\rho\left(1_{\star}\right)=1_{V}=1_{F_{\rho}(\star)}$, the identity linear transformation on V.
$\therefore, F_{\rho}\left(1_{\star}\right)=1_{F_{\rho}(\star)}$
(a-iv) The commutative diagram is as follows:

Note, we also have the induced morphism $F_{p}(g) \rightarrow T$.
(a-v) Let $g_{1}, g_{2} \in \operatorname{Hom}_{\mathbf{G}}(\star, \star)$.

$$
\begin{aligned}
F_{\rho}\left(g_{2} g_{1}\right) & =\rho\left(g_{2} g_{1}\right) \\
& =\rho\left(g_{2}\right) \circ \rho\left(g_{1}\right) \quad \text { (since } \rho \text { is a group homomorphism) } \\
& =F_{\rho}\left(g_{2}\right) \circ F_{p}\left(g_{1}\right)
\end{aligned}
$$

Hence, $F_{\rho}: \mathbf{G} \rightarrow \mathbf{V e c}_{K}$ is a covariant functor.
(b) (From wikipedia) A representation of a group G on a vector space V over a field K is a group homomorphism from G to $G L(V)$.

Given $F: \mathbf{G} \rightarrow \mathbf{V e c}_{K}$ is a functor.
For object $\star \in \mathbf{G}, F(\star)=V \in \mathbf{V e c}_{K}$. For morphism $g \in \operatorname{Hom}_{\mathbf{G}}(\star, \star), F(g) \in \operatorname{Hom}_{\mathbf{V e c}_{K}}(V, V)$.
Then we define the representation as follows: $\rho: g \rightarrow F(g)$
Show that ρ is a group homomorphism.
Let $g_{1}, g_{2} \in G$. Then,

$$
\begin{aligned}
\rho\left(g_{1} g_{2}\right) & =F\left(g_{1} g_{2}\right) \\
& =F\left(g_{1}\right) \circ F\left(g_{2}\right) \quad(\text { since } F \text { is a functor }) \\
& =\rho\left(g_{1}\right) \circ \rho\left(g_{2}\right)
\end{aligned}
$$

Hence, ρ is a group homomorphism, and we have defined the representation in a natural way. (Since ρ is a group homomorphism and $F(g) \in H_{\operatorname{Vec}_{K}}(V, V)$, the identity will map to the identity linear transformation. $F(g)$ has to be invertible since V is an element of a group).
(c) These processes are "inverses" to one another because a representation is exactly how the functor maps morphisms to corresponding morphisms.
On the other hand, given a functor, the way morphisms are mapped happens to be the representation because it satisfies the properties of a group homomorphism.

