
Math 6000, Fall 2020 (Prof. Kinser), Homework 1

Nitesh Mathur

26 August 2020

Source Discussed with Zach Bryhtan after attempting myself and did proof analysis/proofreading
with him after the initial write-up. (Other Sources: Wikipedia, Dummit and Foote, Google)

Problem 1 Skills developed: working with properties of maps rather than choosing elements. This can
simplify certain kinds of proofs by not introducing extra symbols too keep track of. It is
particularly useful when you have several interacting maps.

Let f : A → B be a morphism in an arbitrary category C (so the proofs should not make
reference to “elements”). Prove each of the following:

(a) If f is a retraction, then f is an epimorphism.

(b) If f is a section, then f is a monomorphism.

(c) The morphism f is an isomorphism if and only if f is a monomorphism and a retraction.
(This is if and only if f is an epimorphism and a section; the proof is similar so don’t turn it
in.)

Defs./Theorems

1. Let C be a category. A morphism f : A→ B is a monomorphism if fg1 = fg2 ⇒ g1 = g2

for all g1, g2 : Z → A. (“left-cancellation”; if object is a set, monomorphism ⇐⇒
injection/1-1).

2. An epimorphism if g1f = g2f ⇒ g1 = g2 for all g1, g2 : B → Z. (“right-cancellation”; if
object is a set, epipmorphism ⇐⇒ surjection/onto).

3. An isomorphism if ∃ g : B → A such that{
gf = 1A

fg = 1B

(“has an inverse”; if object is a set, isomorphism ⇐⇒ bijection).

4. Retraction if ∃ g : B → A such that fg = 1B (“has right inverse”).

5. Section if ∃ g : B → A such that gf = 1A (“has left inverse”);
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Proofs

(a) We assume that f : A→ B is a retraction. Then, ∃ g : B → A such that fg = 1B.

Suppose that ∃ morphisms g1, g2 : B → Z such that g1f = g2f .

Show: g1 = g2.

g1f = g2f

⇒ g1(f ◦ g) = g2(f ◦ g) (since f is a retraction)
g1 ◦ 1B = g2 ◦ 1B

g1 = g2

Since we have shown that g1f = g2f ⇒ g1 = g2, we have shown that f is an epimorphism.

(b) We assume that f : A→ B is a section. Then, ∃ g : B → A such that gf = 1A.

Suppose that ∃g1, g2 : Z → A such that fg1 = fg2.

Show g1 = g2.

fg1 = fg2

⇒ (g ◦ f)g1 = (g ◦ f)g2 (since f is a section )
1A ◦ g1 = 1A ◦ g2

g1 = g2

Since we have shown that fg1 = fg2 ⇒ g1 = g2, we have shown that f is a monomorphism.

(c)⇒ We assume that f is an isomorphism. Then, ∃ g : B → A such that{
gf = 1A

fg = 1B
.

Suppose ∃g1, g2 : Z → A such that fg1 = fg2.

Show Show g1 = g2 and f is a retraction.

(i) Since f is an isomorphism, we know that ∃ g : B → A such that fg = 1B. Hence, f is also
a retraction by definition.

(ii) Furthermore,

fg1 = fg2
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⇒ g ◦ (fg1) = g ◦ (fg2)

(gf) ◦ g1 = (gf) ◦ g2 ( by Associativity)
1A ◦ g1 = 1A ◦ g2

g1 = g2

Since we showed that fg1 = fg2 ⇒ g1 = g2 for all such g1, g2, we have shown that f is also
a monomorphism.

∴ f isomorphism⇒ f is a retraction and a monomorphism.

(c)⇐ Suppose fg1 = fg2 ⇒ g1 = g2 for all morphisms, g1, g2 : Z → A. We also assume that
∃ g : B → A such that fg = 1B.

Show ∃ g : B → A such that gf = 1A.

fg = 1B (since f is a retraction)
⇒ fgf = 1B ◦ f

fgf = f

⇒ fgf = f ◦ 1A

Note, fgf is a map from A→ B. Hence, since fgf = f ◦ 1A, gf = 1A.

Since we have shown that gf = 1A, we have shown that f is an isomorphism.
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Problem 2 Skills developed: practice applying definition of “functor” in a more familiar setting. Cre-
ating examples to understand abstract properties.

Let Groups be the category of groups, and Rings be the category of rings with 1 (morphisms
are ring homomorphisms sending 1 to 1).

(a) Given a group G, let Ab(G) be the largest quotient of G which is abelian. Show that Ab is a
functor from Groups to itself.

(b) Show that the map from Rings to Groups, defined on objects by sending a ring R to its
group of units R×, extends to a functor between these categories. Show by example that it
is neither faithful nor full.

Defs./Theorems Note, we will use ≤ to denote subgroup, and E for normal subgroup.

1. A covariant functor F : C → D is given by:

(i) ∀A ∈ Ob(C), F (A) ∈ Ob(D)

(ii) ∀f ∈ HomC(A,B), F (f) ∈ HomD(F (A), F (B)) such that F (1A) = 1F (A).

(iii) F (gf) = F (g) · F (f) for all gf composable in C

2. A contravariant functor F : C → D is the same except reverses directions of morphisms:

i.e. F (gf) = F (f) · F (g).

3. A functorF : C → D induces maps on Hom sets. ∀A,B ∈ C,we haveFA,B : HomC(A,B)→
HomD(F (A), F (B)).

3a. F is faithful if FA,B is injective ∀A,B; (3b.) F is full if FA,B is surjective ∀A,B.

4. (D/F: Pg. 169) Let G be a group, and let A,B be nonempty subsets of G.

(a) Define [x, y] = x−1y−1xy, called the commutator of x and y.

(b) Define [A,B] =< [a, b] > |a ∈ A, b ∈ B >, the group generated by commutators of
elements from A and from B.

(c) Define G′ =< [x, y]|x, y ∈ G >, the subgroup of G generated by commutators of
elements from G, called the commutator subgroup of G.

5. D/F (Prop. 7.4) G/G′ is the largest abelian quotient of G.

(pg. 170 Proof) Suppose H E G and G/H is abelian. Then for all x, y ∈ G we have (xH)(yH) =
(yH)(xH), so

1H = (xH)−1(yH)−1(xH)(yH)

= x−1y−1xyH

= [x, y]H

Thus, [x, y] ∈ H for all x, y ∈ G so that G′ ≤ H .
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Proofs

(a) Show Show that Ab is a functor, i.e.

(1) ∀ G ∈ Groups, Ab(G) ∈ Groups.

(2) ∀φ ∈ HomGroups(G1, G2), Ab(φ) ∈ HomGroups(Ab(G1), Ab(G2)) such that Ab(1G) =
1Ab(G)

(3) Ab(φ2 ◦ φ1) = Ab(φ2) ◦ Ab(φ1) for all φ2, φ1 composable in Groups.

(a-i) Let G ∈ Groups. Let G′ be the commutator subgroup of G. Then, G/G′ is the largest
quotient of G which is Abelian as shown above.

Ab(G) = G/G′ forms a quotient, which is a group. Hence, Ab(G) ∈ Groups. and (1) is
satisfied.

(a-ii) Let G1, G2 ∈ Groups and φ ∈ HomGroups(G1, G2).

Let G′1 ≤ G1, G
′
2 ≤ G2 be corresponding commutator subgroups. Then, Ab(G1) = G1/G

′
1

and Ab(G2) = G2/G
′
2 are the largest abelian quotients respectively.

Define Ab(φ) = φ̄ ∈ HomGroups(Ab(G1), Ab(G2)) as follows:

φ̄ : Ab(G1)→ Ab(G2) by φ̄(xG′1) = φ(x)G′2

(a-iii) Show Ab(1G) = 1Ab(G).

Let 1G be the identity morphism on G, i.e. 1G ∈ HomGroups(G,G) and Ab(1G) = 1G ∈
HomGroups(G/G

′, G/G′). Then,

Ab(1G) = 1G(xG′1)

= 1G(x)G′1
= xG′1
= 1Ab(G)

∴ Ab(1G) = 1Ab(G)

(a-iv) For reference, here is the related diagram:

G1 G2

Ab(G1) = G/G′1 Ab(G2) = G/G′2

φ

Ab Ab

φ̄

Note, Ab(φ) 99K φ̄ arrow should also be there for the induced morphism.
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(a-v) Let G1, G2, G3 ∈ Groups with φ1 ∈ HomGroups(G1, G2) and φ2 ∈ HomGroups(G2, G3)
being the correponding group homomorphisms.

Let Ab(G1) = G/G′1, Ab(G2) = G/G′2 and Ab(G3) = G/G′3 be the corresponding objects
after the functor Ab is applied. The induced morphisms are as follows: Ab(φ1) = φ̄1 ∈
HomGroups(Ab(G1), Ab(G2)), Ab(φ2) = φ̄2 ∈ HomGroups(Ab(G2), Ab(G3)).

Note that Ab(φ2 ◦ φ1) ∈ HomGroups(G/G
′
1, G/G

′
3). Then, we have the following:

Ab(φ2 ◦ φ1)(xG′1) = φ2 ◦ φ1(xG′1)

= (φ2 ◦ φ1)(x)G′3
= Ab(φ2) ◦ φ1(x)G′2
= Ab(φ2) ◦ Ab(φ1)(xG′1)

Hence (3) is satisfied, and we have shown that Ab is a covariant functor.

Source (Pg. 913 Example 3 for inspiration)

(b) Let Rings and Groups be categories. Define a functor F between these two categories.

Show Show that F is a functor, i.e.

(1) ∀R ∈ Ob(Rings), F (R) ∈ Ob(Groups)
(2) ∀φ ∈ HomRings(R1, R2), F (φ) ∈ HomGroups(F (R1), F (R2)) such that F (1R1) = 1F (R1)

(3) F (φ2 ◦ φ1) = F (φ2) ◦ F (φ1) for all φ2, φ1 composable in Rings.

Proof (b-i) LetR ∈ Ob(Rings).DefineF (R) = R× to be the group of units. Then, F (R) ∈ Ob(Groups).

(b-ii) Let R1, R2 ∈ Rings and φ : R1 → R2 be a ring homomorphism with 1. (Note, F (R1) = R×1
and F (R2) = R×2 are the corresponding objects).

Define F (φ) = φ̄ = φ|R×
1

: R×1 → R×2 .

Since it is a restriction on a group of units, φ̄ is a group homomorphism.

(b-iii) Let 1R1 be the identity morphism on R1. Then,

F (1R1) = 1R1

= 1|R×
1

= 1|F (R1)

∴, F (1R1) = 1F (R1).
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(b-iv) Here is the corresponding commutative diagram:

R1 R2

F (R1) = R×1 F (R2) = R×2

φ

F F

φ̄

Note, we should have the induced morphism φ 99K φ̄ as well.

(b-v) Let φ1 ∈ HomRings(R1, R2), φ2 ∈ HomRings(R2, R3). Then:

F (φ2φ1) = φ2φ1

= (φ2φ1)|R×
1

= (φ2|R×
2
φ1)|R×

1

= (φ2|R×
2

)(φ1|R×
1

) since φ̄1, φ̄2 are group homomorphisms

= F (φ2)F (φ1)

Hence, F is a covariant functor.

Note we used the following fact from line 2 to line 3: (From wikipedia) Restricting a function
twice is the same as restricting it once, i.e. if A ⊂ B ⊂ domf, (f |B)|A = f |A.

(c) To show thatFA,B is not injective, by counterexample, we need to exhibit thatHomC(A,B) 6=
HomC(C,D), but HomD(F (A), F (B)) = HomD(F (C), F (D)).

(c - i) Consider rings R1 = Z and R2 = Z[x], the polynomial ring over Z.

Let φ1 ∈ HomRings(Z,Z), φ2 ∈ HomRings(Z[x],Z[x]).

Yet, F (φ1) = φ̄1 ∈ HomGroups(Z×,Z×) = φ̄2 = F (φ2).

∴, FR1,R2 is not injective and hence, F is not faithful.

(c-ii) To show that FA,B is not surjective, by counterexample, we need to exhibit that ∃ some map
in HomD(F (A), F (B)) such that there is no induced morphism coming from HomC(A,B).

Let φ̄ : Z× → Z× by ¯φ(1) = −1. Since we assumed that we have Rings with 1, φ(1) = 1.

Hence, the corresponding restriction map should also map φ̄(1) = 1, not −1.

∴, FR1,R2 is not surjective and hence, F is not full.
(Note: Motivation for part (c) - Zach)
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Problem 3. Skills developed: more practice with functors and getting used to passing back and forth
between equivalent definitions (abstract vs. concrete).

Recall that a group G determines a category with one object G. Let K be a field, and VecK
the category of K−vector spaces. A representation of a group G on a K−vector space V is
a group homomorphism ρ : G→ GL(V ).

(a) Given a representation ρ, define a functor Fp : G→ V ecK in a natural way.

(b) Given a functor F : G → VecK , define a representation of G on a vector space in a natural
way.

(c) Think about(write up is optional) why these two processes are “inverses” to one another, so
the concept of a representation is equivalent to this particular kind of functor. In general, a
function from any category C to VecK can be interpreted (or defined) as a representation of
the category C.

Solution

Overview Let G be a group. Define a category G with 1 object: {?} = Ob(G) and HomG(?, ?) = G.

Define category VecK with objects being vector space V , and HomVecK (V, V ) = GL(V ).

Let ρ : G → GL(V ), a representation of group G on a vector space V , be a group homo-
morphism defined as follows: For g ∈ G, ρ(g) = T : V → V ∈ GL(V ).

GL(V ) is the general linear group, the set of all bijective linear transformations from V to
V . Since GL(V ) is a group and needs to satisfy group axioms, T ∈ GL(V ) is invertible.

(a) Show To show Fρ is a functor, we need to show:

(1)For ? ∈ G, Fρ(?) = V ∈ VecK .

(2) ∀g ∈ HomG(?, ?), Fρ(g) ∈ HomVecK (Fρ(?), Fρ(?)) such that Fρ(1?) = 1Fρ(?)

(3) Fρ(g2g1) = Fρ(g2) · Fρ(G1) for all g2 ◦ g1 composable in G.

(a-i) Define Fρ(?) = V ∈ VecK .

(a-ii) Let g ∈ G = HomG(?, ?).

Define Fρ(g) = ρ(g) = T ∈ HomVecK (Fρ(?), Fρ(?))

(a-iii) Let 1? be the identity morphism in HomG(?, ?).

Then, Fρ(1?) = ρ(1?) = 1V = 1Fρ(?), the identity linear transformation on V .

∴, Fρ(1?) = 1Fρ(?)
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(a-iv) The commutative diagram is as follows:

? ?

Fp(?) = V Fp(?) = V

g

Fp Fp

T

Note, we also have the induced morphism Fp(g) 99K T .

(a-v) Let g1, g2 ∈ HomG(?, ?).

Fρ(g2g1) = ρ(g2g1)

= ρ(g2) ◦ ρ(g1) (since ρ is a group homomorphism)
= Fρ(g2) ◦ Fp(g1)

Hence, Fρ : G→ VecK is a covariant functor.

(b) (From wikipedia) A representation of a group G on a vector space V over a field K is a
group homomorphism from G to GL(V ).

Given F : G→ VecK is a functor.

For object ? ∈ G, F (?) = V ∈ VecK . For morphism g ∈ HomG(?, ?), F (g) ∈ HomVecK (V, V ).

Then we define the representation as follows: ρ : g → F (g)

Show that ρ is a group homomorphism.

Let g1, g2 ∈ G. Then,

ρ(g1g2) = F (g1g2)

= F (g1) ◦ F (g2) (since F is a functor)
= ρ(g1) ◦ ρ(g2)

Hence, ρ is a group homomorphism, and we have defined the representation in a natural way.

(Since ρ is a group homomorphism and F (g) ∈ HomVecK (V, V ), the identity will map to the
identity linear transformation. F (g) has to be invertible since V is an element of a group).

(c) These processes are ”inverses” to one another because a representation is exactly how the
functor maps morphisms to corresponding morphisms.

On the other hand, given a functor, the way morphisms are mapped happens to be the repre-
sentation because it satisfies the properties of a group homomorphism.
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