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Navier Stokes Equations - Overview

I Basically, we are surrounded by fluids

I Describe and predict fluid flows

I Conservation of momemtum and conservation of mass for
Newtonian fluids

I Newton’s 2nd Law

I Viscosity taken into account (as opposted to Euler’s equations
for inviscid flow)

I Air currents, ocean currents, water flow, video games, etc.
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The Equation

I
∇ · u = 0

ρ
du

dt
= −∇p + µ∇2u + F

(1)

I Newtonian (shear vs viscosity), incompressible, isothermal (no
loss or gain of heat)
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Let us break it down further - I

I u is the velocity vector field and first equation states that
mass is conserved within the fluid.

I Divergence of vector field explains how little or how much a
point acts as a source for a fluid.
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Part II - Derivation

I F = ma

I Consider ρ be the density and ρ = m/v .

I Since u is the velocity vector field,
du

dt
represents the

acceleration.

I Now, we can substitute to get ρ
du

dt
=

∑
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What forces are acting on it?

I Internal vs External forces

I Internal: (1) Pressure (high to low pressure) represented by
−∇p.

I Viscosity (friction) µ∇2u.

I F - external force (If gravity is the only external force, then
F = ρg .



What forces are acting on it?

I Internal vs External forces

I Internal: (1) Pressure (high to low pressure) represented by
−∇p.

I Viscosity (friction) µ∇2u.

I F - external force (If gravity is the only external force, then
F = ρg .



What forces are acting on it?

I Internal vs External forces

I Internal: (1) Pressure (high to low pressure) represented by
−∇p.

I Viscosity (friction) µ∇2u.

I F - external force (If gravity is the only external force, then
F = ρg .



What forces are acting on it?

I Internal vs External forces

I Internal: (1) Pressure (high to low pressure) represented by
−∇p.

I Viscosity (friction) µ∇2u.

I F - external force (If gravity is the only external force, then
F = ρg .



What forces are acting on it?

I Internal vs External forces

I Internal: (1) Pressure (high to low pressure) represented by
−∇p.

I Viscosity (friction) µ∇2u.

I F - external force (If gravity is the only external force, then
F = ρg .



Table of Contents

Introduction and Derivation

The Millennium Problem

Progress



The Official Millennium Problem - Charles Fefferman

I Given a position x ∈ Rn, equations solves for unknown
velocity vector u(x , t) = (ui (x , t))1≤i≤n ∈ Rn. and pressure
p(x , t) ∈ R.

I Restrict to incompressible fluids filling all of Rn.

I

∂

∂t
ui +

n∑
j=1

uj
∂ui
∂xj

= ν∆ui −
∂p

∂xi
+ fi (x , t) (x ∈ Rn, t ≥ 0)

divu =
n∑

i=1

∂ui
∂xi

= 0 (x ∈ Rn, t ≥ 0)

(2)

I With initial conditions u(x , 0) = uo(x), (x ∈ Rn)



The Official Millennium Problem - Charles Fefferman

I Given a position x ∈ Rn, equations solves for unknown
velocity vector u(x , t) = (ui (x , t))1≤i≤n ∈ Rn. and pressure
p(x , t) ∈ R.

I Restrict to incompressible fluids filling all of Rn.

I

∂

∂t
ui +

n∑
j=1

uj
∂ui
∂xj

= ν∆ui −
∂p

∂xi
+ fi (x , t) (x ∈ Rn, t ≥ 0)

divu =
n∑

i=1

∂ui
∂xi

= 0 (x ∈ Rn, t ≥ 0)

(2)

I With initial conditions u(x , 0) = uo(x), (x ∈ Rn)



The Official Millennium Problem - Charles Fefferman

I Given a position x ∈ Rn, equations solves for unknown
velocity vector u(x , t) = (ui (x , t))1≤i≤n ∈ Rn. and pressure
p(x , t) ∈ R.

I Restrict to incompressible fluids filling all of Rn.

I

∂

∂t
ui +

n∑
j=1

uj
∂ui
∂xj

= ν∆ui −
∂p

∂xi
+ fi (x , t) (x ∈ Rn, t ≥ 0)

divu =
n∑

i=1

∂ui
∂xi

= 0 (x ∈ Rn, t ≥ 0)

(2)

I With initial conditions u(x , 0) = uo(x), (x ∈ Rn)



The Official Millennium Problem - Charles Fefferman

I Given a position x ∈ Rn, equations solves for unknown
velocity vector u(x , t) = (ui (x , t))1≤i≤n ∈ Rn. and pressure
p(x , t) ∈ R.

I Restrict to incompressible fluids filling all of Rn.

I

∂

∂t
ui +

n∑
j=1

uj
∂ui
∂xj

= ν∆ui −
∂p

∂xi
+ fi (x , t) (x ∈ Rn, t ≥ 0)

divu =
n∑

i=1

∂ui
∂xi

= 0 (x ∈ Rn, t ≥ 0)

(2)

I With initial conditions u(x , 0) = uo(x), (x ∈ Rn)



The Official Millennium Problem - Charles Fefferman

I Given a position x ∈ Rn, equations solves for unknown
velocity vector u(x , t) = (ui (x , t))1≤i≤n ∈ Rn. and pressure
p(x , t) ∈ R.

I Restrict to incompressible fluids filling all of Rn.

I

∂

∂t
ui +

n∑
j=1

uj
∂ui
∂xj

= ν∆ui −
∂p

∂xi
+ fi (x , t) (x ∈ Rn, t ≥ 0)

divu =
n∑

i=1

∂ui
∂xi

= 0 (x ∈ Rn, t ≥ 0)

(2)

I With initial conditions u(x , 0) = uo(x), (x ∈ Rn)



Constraints

I We want u(x , t) does not grow large as |x | → ∞ for physical
relevance. Hence, we restrict:

I

|∂αx uo(x)| ≤ CαK (1 + |x |)−K on Rn, for any α and K (3)

I

|∂αx ∂mt f (x , t)| ≤ CαmK (1+|x |+t)−K on Rn×[0,∞) for any α,m,K .
(4)

I Only accept solution if it satisfies

p, u ∈ C∞(Rn × [0,∞)) (5)
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Periodic Solutions

I
ˆ
Rn

|u(x , t)|2 dx < C for all t ≥ 0 (bounded energy) (6)

I Alternatively, to rule out problems at infinity, look at spatially
periodic solutions:

uo(x+ej) = uo(x), f (x+ej , t) = f (x , t) for 1 ≤ j ≤ n (7)
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Alternate Solution

I In place of (3) and (4), assume uo is smooth and

|∂αx ∂mt f (x , t)| ≤ CαmK (1+|t|)−K on R3×[0,∞) for any α,m,K .
(8)

I We then accept solution that are physically relevant if it
satisfies:

u(x , t) = u(x + ej , t) on R3 × [0,∞) for 1 ≤ j ≤ n (9)

I
p, u ∈ C∞(Rn × [0,∞)) (10)
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The Crux

A. Existence and smoothness of Navier-Stokes solutions on
R3. Take ν > 0 and n = 3. Let uo(x) be any smooth,
divergence-free vector field satisfying (3). Take f (x , t) to be
identically zero. Then there exist smooth functions
p(x , t), ui (x , t) on R3 × [0,∞) that satisfy (2), (5), (6)

B. Existence and smoothness of Navier-Stokes equations in
R3/Z3. Take ν > 0 and n = 3. Let uo(x) be any smooth,
divergence-free vector field satisfying (7) and take f (x , t) be
identically zero. Then there exist smooth functions
p(x , t), ui (x , t) on R3 × [0,∞) that satisfy (2), (9), (10).
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Continued

C. Breakdown of Navier-Stokes solutions on R3. Take ν > 0
and n = 3. Then there exist a smooth, divergence-free vector
field uo(x) on R3 and a smooth f (x , t) on R3 × [0,∞)
satisfying (3), (4), for where there exist no solutions (p, u)
of (2), (5), (6) on R3 × [0,∞).

D. Breakdown of Navier-Stokes Solutions on R3/Z3. Take
ν > 0 and n = 3. Then there exist a smooth, divergence-free
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Results so far

I In 2D, solutions known for (A), (B) via Ladyzhenskaya

I In 3D, (A), (B) hold provided uo satisfies smallness condition

I For uo not small, (A), (B) hold if [0,∞) replaced by finite
interval [0,T ). (“blowup time”)
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Issues

I If there is a solution with finite blowup time T , then velocity
becomes unbounded near the blowup time.

I For Euler equation (ν = 0), Beale-Kato-Majda condition is
satisfied.
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Weak Solutions

I Leray (1934) - showed that N-S in 3D have weak solutions
with suitable growth properties.

I Uniqueness not known. (for Euler, uniqueness is false)

I Scheffer and Schnirelman exhibited weak solutions of Euler on
R2 × R with compact support.

I Caffarelli-Kohn-Nirenberg improved Scheffer’s results
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Latest Work

I Escauriaza-Seregin-Sverak blowup criterion (2003)

I Seregin (2012), Phuc (2015), Gallagher-Koch-Planchon
(2016), Albritton (2016) blowup criteria

I Terrance Tao (2016) - finite time blowup result of an
averaged version of the 3D N-S

I Buckmaster and Vicol (2019) - Weak solutions of 3D N-S
equations not unique in the class of weak solutions with finite
kinetic energy.

I Numerical work
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The End

I Thank You!

I Questions?
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