# Navier Stokes and the Millennium Problem 

Based on the paper of Charles L. Fefferman

Nitesh Mathur
Dr. Lihe Wang

May 10, 2021

## Table of Contents

Introduction and Derivation

The Millennium Problem

Progress

Why Do We Care?

## Why Do We Care?



## Why Do We Care?



## Why Do We Care?



## Fluids



## Fluids



## Fluids



## Fluids



Navier Stokes Equations - Overview

## Navier Stokes Equations - Overview

- Basically, we are surrounded by fluids


## Navier Stokes Equations - Overview

- Basically, we are surrounded by fluids
- Describe and predict fluid flows


## Navier Stokes Equations - Overview

- Basically, we are surrounded by fluids
- Describe and predict fluid flows
- Conservation of momemtum and conservation of mass for Newtonian fluids


## Navier Stokes Equations - Overview

- Basically, we are surrounded by fluids
- Describe and predict fluid flows
- Conservation of momemtum and conservation of mass for Newtonian fluids
- Newton's 2nd Law


## Navier Stokes Equations - Overview

- Basically, we are surrounded by fluids
- Describe and predict fluid flows
- Conservation of momemtum and conservation of mass for Newtonian fluids
- Newton's 2nd Law
- Viscosity taken into account (as opposted to Euler's equations for inviscid flow)


## Navier Stokes Equations - Overview

- Basically, we are surrounded by fluids
- Describe and predict fluid flows
- Conservation of momemtum and conservation of mass for Newtonian fluids
- Newton's 2nd Law
- Viscosity taken into account (as opposted to Euler's equations for inviscid flow)
- Air currents, ocean currents, water flow, video games, etc.


## The Equation

## The Equation

$$
\begin{align*}
\nabla \cdot u & =0 \\
\rho \frac{d u}{d t} & =-\nabla p+\mu \nabla^{2} u+\mathbf{F} \tag{1}
\end{align*}
$$

## The Equation

$$
\begin{align*}
\nabla \cdot u & =0 \\
\rho \frac{d u}{d t} & =-\nabla p+\mu \nabla^{2} u+\mathbf{F} \tag{1}
\end{align*}
$$

- Newtonian (shear vs viscosity), incompressible, isothermal (no loss or gain of heat)

Let us break it down further - I

## Let us break it down further - I

- $u$ is the velocity vector field and first equation states that mass is conserved within the fluid.


## Let us break it down further - I

- $u$ is the velocity vector field and first equation states that mass is conserved within the fluid.
- Divergence of vector field explains how little or how much a point acts as a source for a fluid.


## Part II - Derivation

## Part II - Derivation

- $F=m a$


## Part II - Derivation

- $F=m a$
- Consider $\rho$ be the density and $\rho=m / v$.


## Part II - Derivation

- $F=m a$
- Consider $\rho$ be the density and $\rho=m / v$.
- Since $u$ is the velocity vector field, $\frac{d u}{d t}$ represents the acceleration.


## Part II - Derivation

- $F=m a$
- Consider $\rho$ be the density and $\rho=m / v$.
- Since $u$ is the velocity vector field, $\frac{d u}{d t}$ represents the acceleration.
- Now, we can substitute to get $\rho \frac{d u}{d t}=\sum F$.

What forces are acting on it?

## What forces are acting on it?

- Internal vs External forces


## What forces are acting on it?

- Internal vs External forces
- Internal: (1) Pressure (high to low pressure) represented by $-\nabla p$.


## What forces are acting on it?

- Internal vs External forces
- Internal: (1) Pressure (high to low pressure) represented by $-\nabla p$.
- Viscosity (friction) $\mu \nabla^{2} u$.


## What forces are acting on it?

- Internal vs External forces
- Internal: (1) Pressure (high to low pressure) represented by $-\nabla p$.
- Viscosity (friction) $\mu \nabla^{2} u$.
- F - external force (If gravity is the only external force, then $F=\rho g$.


## Table of Contents

## Introduction and Derivation

The Millennium Problem

Progress

## The Official Millennium Problem - Charles Fefferman

## The Official Millennium Problem - Charles Fefferman

- Given a position $x \in \mathbb{R}^{n}$, equations solves for unknown velocity vector $u(x, t)=\left(u_{i}(x, t)\right)_{1 \leq i \leq n} \in \mathbb{R}^{n}$. and pressure $p(x, t) \in \mathbb{R}$.


## The Official Millennium Problem - Charles Fefferman

- Given a position $x \in \mathbb{R}^{n}$, equations solves for unknown velocity vector $u(x, t)=\left(u_{i}(x, t)\right)_{1 \leq i \leq n} \in \mathbb{R}^{n}$. and pressure $p(x, t) \in \mathbb{R}$.
- Restrict to incompressible fluids filling all of $\mathbb{R}^{n}$.


## The Official Millennium Problem - Charles Fefferman

- Given a position $x \in \mathbb{R}^{n}$, equations solves for unknown velocity vector $u(x, t)=\left(u_{i}(x, t)\right)_{1 \leq i \leq n} \in \mathbb{R}^{n}$. and pressure $p(x, t) \in \mathbb{R}$.
- Restrict to incompressible fluids filling all of $\mathbb{R}^{n}$.

$$
\begin{array}{rr}
\frac{\partial}{\partial t} u_{i}+\sum_{j=1}^{n} u_{j} \frac{\partial u_{i}}{\partial x_{j}}=\nu \Delta u_{i}-\frac{\partial p}{\partial x_{i}}+f_{i}(x, t) & \left(x \in \mathbb{R}^{n}, t \geq 0\right) \\
\operatorname{div} u & =\sum_{i=1}^{n} \frac{\partial u_{i}}{\partial x_{i}}=0 \tag{2}
\end{array} \quad\left(x \in \mathbb{R}^{n}, t \geq 0\right)
$$

## The Official Millennium Problem - Charles Fefferman

- Given a position $x \in \mathbb{R}^{n}$, equations solves for unknown velocity vector $u(x, t)=\left(u_{i}(x, t)\right)_{1 \leq i \leq n} \in \mathbb{R}^{n}$. and pressure $p(x, t) \in \mathbb{R}$.
- Restrict to incompressible fluids filling all of $\mathbb{R}^{n}$.

$$
\begin{array}{rr}
\frac{\partial}{\partial t} u_{i}+\sum_{j=1}^{n} u_{j} \frac{\partial u_{i}}{\partial x_{j}}=\nu \Delta u_{i}-\frac{\partial p}{\partial x_{i}}+f_{i}(x, t) & \left(x \in \mathbb{R}^{n}, t \geq 0\right) \\
\operatorname{div} u & =\sum_{i=1}^{n} \frac{\partial u_{i}}{\partial x_{i}}=0 \tag{2}
\end{array} \quad\left(x \in \mathbb{R}^{n}, t \geq 0\right)
$$

- With initial conditions $u(x, 0)=u^{o}(x), \quad\left(x \in \mathbb{R}^{n}\right)$


## Constraints

## Constraints

- We want $u(x, t)$ does not grow large as $|x| \rightarrow \infty$ for physical relevance. Hence, we restrict:


## Constraints

- We want $u(x, t)$ does not grow large as $|x| \rightarrow \infty$ for physical relevance. Hence, we restrict:

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} u^{o}(x)\right| \leq C_{\alpha} K(1+|x|)^{-K} \quad \text { on } \mathbb{R}^{n}, \text { for any } \alpha \text { and } K \tag{3}
\end{equation*}
$$

## Constraints

- We want $u(x, t)$ does not grow large as $|x| \rightarrow \infty$ for physical relevance. Hence, we restrict:

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} u^{o}(x)\right| \leq C_{\alpha} K(1+|x|)^{-K} \quad \text { on } \mathbb{R}^{n}, \text { for any } \alpha \text { and } K \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{t}^{m} f(x, t)\right| \leq C_{\alpha m K}(1+|x|+t)^{-K} \quad \text { on } \mathbb{R}^{n} \times[0, \infty) \text { for any } \alpha, m, K \tag{4}
\end{equation*}
$$

## Constraints

- We want $u(x, t)$ does not grow large as $|x| \rightarrow \infty$ for physical relevance. Hence, we restrict:

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} u^{o}(x)\right| \leq C_{\alpha} K(1+|x|)^{-K} \quad \text { on } \mathbb{R}^{n}, \text { for any } \alpha \text { and } K \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{t}^{m} f(x, t)\right| \leq C_{\alpha m K}(1+|x|+t)^{-K} \quad \text { on } \mathbb{R}^{n} \times[0, \infty) \text { for any } \alpha, m, K \tag{4}
\end{equation*}
$$

- Only accept solution if it satisfies

$$
\begin{equation*}
p, u \in C^{\infty}\left(\mathbb{R}^{n} \times[0, \infty)\right) \tag{5}
\end{equation*}
$$

## Periodic Solutions

## Periodic Solutions

$$
\int_{\mathbb{R}^{n}}|u(x, t)|^{2} d x<C \quad \text { for all } t \geq 0 \quad \text { (bounded energy) }
$$

## Periodic Solutions

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|u(x, t)|^{2} d x<C \quad \text { for all } t \geq 0 \quad \text { (bounded energy) } \tag{6}
\end{equation*}
$$

- Alternatively, to rule out problems at infinity, look at spatially periodic solutions:

$$
u^{o}\left(x+e_{j}\right)=u^{o}(x), \quad f\left(x+e_{j}, t\right)=f(x, t) \quad \text { for } 1 \leq j \leq n(7)
$$

Alternate Solution

## Alternate Solution

- In place of (3) and (4), assume $u^{\circ}$ is smooth and $\left|\partial_{x}^{\alpha} \partial_{t}^{m} f(x, t)\right| \leq C_{\alpha m K}(1+|t|)^{-K} \quad$ on $\mathbb{R}^{3} \times[0, \infty)$ for any $\alpha, m, K$. (8)


## Alternate Solution

- In place of (3) and (4), assume $u^{\circ}$ is smooth and

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{t}^{m} f(x, t)\right| \leq C_{\alpha m K}(1+|t|)^{-K} \quad \text { on } \mathbb{R}^{3} \times[0, \infty) \text { for any } \alpha, m, K \tag{8}
\end{equation*}
$$

- We then accept solution that are physically relevant if it satisfies:

$$
\begin{equation*}
u(x, t)=u\left(x+e_{j}, t\right) \quad \text { on } \mathbb{R}^{3} \times[0, \infty) \text { for } 1 \leq j \leq n \tag{9}
\end{equation*}
$$

## Alternate Solution

- In place of (3) and (4), assume $u^{\circ}$ is smooth and

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{t}^{m} f(x, t)\right| \leq C_{\alpha m K}(1+|t|)^{-K} \quad \text { on } \mathbb{R}^{3} \times[0, \infty) \text { for any } \alpha, m, K \tag{8}
\end{equation*}
$$

- We then accept solution that are physically relevant if it satisfies:

$$
\begin{equation*}
u(x, t)=u\left(x+e_{j}, t\right) \quad \text { on } \mathbb{R}^{3} \times[0, \infty) \text { for } 1 \leq j \leq n \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
p, u \in C^{\infty}\left(\mathbb{R}^{n} \times[0, \infty)\right) \tag{10}
\end{equation*}
$$

## The Crux

A. Existence and smoothness of Navier-Stokes solutions on $\mathbb{R}^{3}$. Take $\nu>0$ and $n=3$. Let $u^{\circ}(x)$ be any smooth, divergence-free vector field satisfying (3). Take $f(x, t)$ to be identically zero. Then there exist smooth functions $p(x, t), u_{i}(x, t)$ on $\mathbb{R}^{3} \times[0, \infty)$ that satisfy (2), (5), (6)

## The Crux

A. Existence and smoothness of Navier-Stokes solutions on $\mathbb{R}^{3}$. Take $\nu>0$ and $n=3$. Let $u^{o}(x)$ be any smooth, divergence-free vector field satisfying (3). Take $f(x, t)$ to be identically zero. Then there exist smooth functions $p(x, t), u_{i}(x, t)$ on $\mathbb{R}^{3} \times[0, \infty)$ that satisfy (2), (5), (6)
B. Existence and smoothness of Navier-Stokes equations in $\mathbb{R}^{3} / \mathbb{Z}^{3}$. Take $\nu>0$ and $n=3$. Let $u^{o}(x)$ be any smooth, divergence-free vector field satisfying (7) and take $f(x, t)$ be identically zero. Then there exist smooth functions $p(x, t), u_{i}(x, t)$ on $\mathbb{R}^{3} \times[0, \infty)$ that satisfy (2), (9), (10).

## Continued

C. Breakdown of Navier-Stokes solutions on $\mathbb{R}^{3}$. Take $\nu>0$ and $n=3$. Then there exist a smooth, divergence-free vector field $u^{o}(x)$ on $\mathbb{R}^{3}$ and a smooth $f(x, t)$ on $\mathbb{R}^{3} \times[0, \infty)$ satisfying (3), (4), for where there exist no solutions $(p, u)$ of (2), (5), (6) on $\mathbb{R}^{3} \times[0, \infty)$.

## Continued

C. Breakdown of Navier-Stokes solutions on $\mathbb{R}^{3}$. Take $\nu>0$ and $n=3$. Then there exist a smooth, divergence-free vector field $u^{\circ}(x)$ on $\mathbb{R}^{3}$ and a smooth $f(x, t)$ on $\mathbb{R}^{3} \times[0, \infty)$ satisfying (3), (4), for where there exist no solutions $(p, u)$ of (2), (5), (6) on $\mathbb{R}^{3} \times[0, \infty)$.
D. Breakdown of Navier-Stokes Solutions on $\mathbb{R}^{3} / \mathbb{Z}^{3}$. Take $\nu>0$ and $n=3$. Then there exist a smooth, divergence-free vector field $u^{\circ}(x)$ on $\mathbb{R}^{3}$ and a smooth $f(x, t)$ on $\mathbb{R}^{3} \times[0, \infty)$ satisfying (7), (8) for which there exist no solutions $(p, u)$ of (2), (9), (10) on $\mathbb{R}^{3} \times[0, \infty)$.

## Table of Contents

## Introduction and Derivation

The Millennium Problem

Progress

Results so far

## Results so far

- In 2D, solutions known for (A), (B) via Ladyzhenskaya


## Results so far

- In 2D, solutions known for (A), (B) via Ladyzhenskaya
- In 3D, (A), (B) hold provided $u^{\circ}$ satisfies smallness condition


## Results so far

- In 2D, solutions known for (A), (B) via Ladyzhenskaya
- In 3D, (A), (B) hold provided $u^{\circ}$ satisfies smallness condition
- For $u^{\circ}$ not small, $(A),(B)$ hold if $[0, \infty)$ replaced by finite interval $[0, T)$. ("blowup time")

Issues

## Issues

- If there is a solution with finite blowup time $T$, then velocity becomes unbounded near the blowup time.


## Issues

- If there is a solution with finite blowup time $T$, then velocity becomes unbounded near the blowup time.
- For Euler equation $(\nu=0)$, Beale-Kato-Majda condition is satisfied.

Weak Solutions

## Weak Solutions

- Leray (1934) - showed that N-S in 3D have weak solutions with suitable growth properties.


## Weak Solutions

- Leray (1934) - showed that N-S in 3D have weak solutions with suitable growth properties.
- Uniqueness not known. (for Euler, uniqueness is false)


## Weak Solutions

- Leray (1934) - showed that N-S in 3D have weak solutions with suitable growth properties.
- Uniqueness not known. (for Euler, uniqueness is false)
- Scheffer and Schnirelman exhibited weak solutions of Euler on $\mathbb{R}^{2} \times \mathbb{R}$ with compact support.


## Weak Solutions

- Leray (1934) - showed that N-S in 3D have weak solutions with suitable growth properties.
- Uniqueness not known. (for Euler, uniqueness is false)
- Scheffer and Schnirelman exhibited weak solutions of Euler on $\mathbb{R}^{2} \times \mathbb{R}$ with compact support.
- Caffarelli-Kohn-Nirenberg improved Scheffer's results


## Latest Work

## Latest Work

- Escauriaza-Seregin-Sverak blowup criterion (2003)


## Latest Work

- Escauriaza-Seregin-Sverak blowup criterion (2003)
- Seregin (2012), Phuc (2015), Gallagher-Koch-Planchon (2016), Albritton (2016) blowup criteria


## Latest Work

- Escauriaza-Seregin-Sverak blowup criterion (2003)
- Seregin (2012), Phuc (2015), Gallagher-Koch-Planchon (2016), Albritton (2016) blowup criteria
- Terrance Tao (2016) - finite time blowup result of an averaged version of the 3D N-S


## Latest Work

- Escauriaza-Seregin-Sverak blowup criterion (2003)
- Seregin (2012), Phuc (2015), Gallagher-Koch-Planchon (2016), Albritton (2016) blowup criteria
- Terrance Tao (2016) - finite time blowup result of an averaged version of the 3D N-S
- Buckmaster and Vicol (2019) - Weak solutions of 3D N-S equations not unique in the class of weak solutions with finite kinetic energy.


## Latest Work

- Escauriaza-Seregin-Sverak blowup criterion (2003)
- Seregin (2012), Phuc (2015), Gallagher-Koch-Planchon (2016), Albritton (2016) blowup criteria
- Terrance Tao (2016) - finite time blowup result of an averaged version of the 3D N-S
- Buckmaster and Vicol (2019) - Weak solutions of 3D N-S equations not unique in the class of weak solutions with finite kinetic energy.
- Numerical work


## The End

- Thank You!
- Questions?

