The Factorial Function and Generalization
Based on the Paper of Manjul Bhargava

Nitesh Mathur

March 9, 2018
About the Author

Paper Published in 2000
Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
Fields Medal Recipient in 2014
Doctoral Advisor: Andrew Wiles
Professor at Princeton, Leiden University, and adjunct professor in several others.
Musician (Tabla Player)
About the Author

- Paper Published in 2000
About the Author

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
About the Author

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
About the Author

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles
About the Author

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles
- Professor at Princeton, Leiden University, and adjunct professor in several others.
About the Author

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles
- Professor at Princeton, Leiden University, and adjunct professor in several others.
- Musician (Tabla Player)
Definition:

\[n! = \prod_{k=1}^{n} k = n(n-1)(n-2)\ldots(3)(2)(1) \]

Examples: \(5! = (5)(4)(3)(2)(1) = 120\)

The Gamma Function

\[\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} \, dt \]

\[\Gamma(n) = (n-1)! \]

\(\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}\)
Definition: \(n! = \prod_{k=1}^{n} k = n(n-1)(n-2)\ldots(3)(2)(1) \)
Definition: \(n! = \prod_{k=1}^{n} k = n(n - 1)(n - 2)\ldots(3)(2)(1) \)

Examples: \(5! = (5)(4)(3)(2)(1) = 120 \)
Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)\ldots(3)(2)(1)$

Examples: $5! = (5)(4)(3)(2)(1) = 120$

The Gamma Function
Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)\ldots(3)(2)(1)$

Examples: $5! = (5)(4)(3)(2)(1) = 120$

The Gamma Function

$\Gamma(z) = \int_{0}^{\infty} t^{z-1}e^{-t} \, dt$
Definition: $n! = \prod_{k=1}^{n} k = n(n - 1)(n - 2)\ldots(3)(2)(1)$

Examples: $5! = (5)(4)(3)(2)(1) = 120$

The Gamma Function

$\Gamma(z) = \int_{0}^{\infty} t^{z-1}e^{-t} \, dt$

$\Gamma(n) = (n - 1)!$
Definition: \(n! = \prod_{k=1}^{n} k = n(n-1)(n-2)\ldots(3)(2)(1) \)

Examples: \(5! = (5)(4)(3)(2)(1) = 120 \)

The Gamma Function

\(\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} \, dt \)

\(\Gamma(n) = (n-1)! \)

\(\Gamma(5) = 4! = 24, \Gamma(1/2) = \sqrt{\pi} \)
Factorial Function in Number Theory

Theorem 1
For any nonnegative integers, \(k \) and \(l \), \((k + l)! \) is a multiple of \(k! \cdot l! \).

Theorem 2
Let \(f \) be a primitive polynomial of degree \(k \) and let \(d(Z, f) = \gcd \{ f(a) : a \in \mathbb{Z} \} \). Then, \(d(Z, f) \) divides \(k! \).

Theorem 3
Let \(a_0, a_1, ..., a_n \in \mathbb{Z} \) be any \(n+1 \) integers. Then their product of their pairwise differences \(\prod_{i < j} (a_i - a_j) \) is a multiple of \(0! \cdot 1! \cdot ... \cdot n! \).

Theorem 4
The number of polynomial functions from \(\mathbb{Z} \) to \(\mathbb{Z}/n\mathbb{Z} \) is given by \(n - 1 \prod_{k=0}^{n} \gcd(n, k!) \).
Theorem 1
For any nonnegative integers, \(k \) and \(l \), \((k + l)!\) is a multiple of \(k!l!\).
Theorem 1
For any nonnegative integers, k and l, $(k + l)!$ is a multiple of $k!!$.

Theorem 2 Let f be a primitive polynomial of degree k and let $d(\mathbb{Z}, f) = \gcd\{f(a) : a \in \mathbb{Z}\}$ Then, $d(\mathbb{Z}, f)$ divides $k!$.
Theorem 1
For any nonnegative integers, \(k \) and \(l \), \((k + l)\)! is a multiple of \(k!l! \).

Theorem 2
Let \(f \) be a primitive polynomial of degree \(k \) and let \(d(\mathbb{Z}, f) = \gcd\{f(a) : a \in \mathbb{Z}\} \) Then, \(d(\mathbb{Z}, f) \) divides \(k! \).

Theorem 3
Let \(a_0, a_1, \ldots, a_n \in \mathbb{Z} \) be any \(n + 1 \) integers. Then their product of their pairwise differences

\[
\prod_{i<j}(a_i - a_j)
\]

is a multiple of \(0!1! \ldots n! \).
Theorem 1
For any nonnegative integers, \(k \) and \(l \), \((k + l)!\) is a multiple of \(k!l! \).

Theorem 2 Let \(f \) be a primitive polynomial of degree \(k \) and let
\[d(\mathbb{Z}, f) = \gcd\{f(a) : a \in \mathbb{Z}\} \] Then, \(d(\mathbb{Z}, f) \) divides \(k! \).

Theorem 3
Let \(a_0, a_1, \ldots, a_n \in \mathbb{Z} \) be any \(n + 1 \) integers. Then their product of their pairwise differences
\[
\prod_{i<j} (a_i - a_j)
\]
is a multiple of \(0!1! \ldots n! \).

Theorem 4 The number of polynomial functions from \(\mathbb{Z} \) to \(\mathbb{Z}/n\mathbb{Z} \) is given by
\[
\prod_{k=0}^{n-1} \frac{n}{\gcd(n, k!)}
\]
These theorems are true on \mathbb{Z}.

Is there a "Generalized Factorial Function" so that for any subset S of \mathbb{Z}, the theorems mentioned above still remain true?
p-Ordering

Let $S \subset \mathbb{Z}$ and fix a prime p.

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_0 \in S$
Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_0 \in S$
- Choose $a_1 \in S$ that minimizes the highest power of p dividing $a_1 - a_0$
p-Ordering

Let \(S \subset \mathbb{Z} \) and fix a prime \(p \).

- Choose \(a_0 \in S \)
- Choose \(a_1 \in S \) that minimizes the highest power of \(p \) dividing \(a_1 - a_0 \)
- Choose an element \(a_2 \in S \) that minimizes the highest power of \(p \) dividing \((a_2 - a_0)(a_2 - a_1)\)
Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_0 \in S$
- Choose $a_1 \in S$ that minimizes the highest power of p dividing $a_1 - a_0$
- Choose an element $a_2 \in S$ that minimizes the highest power of p dividing $(a_2 - a_0)(a_2 - a_1)$
- For the k^{th} step, choose an element $a_k \in S$ that minimizes the highest power of p dividing $(a_k - a_0)(a_k - a_1) \cdot \ldots \cdot (a_k - a_{k-1})$
p-Ordering

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_0 \in S$
- Choose $a_1 \in S$ that minimizes the highest power of p dividing $a_1 - a_0$
- Choose an element $a_2 \in S$ that minimizes the highest power of p dividing $(a_2 - a_0)(a_2 - a_1)$
- For the k^{th} step, choose an element $a_k \in S$ that minimizes the highest power of p dividing $(a_k - a_0)(a_k - a_1) \cdot \ldots \cdot (a_k - a_{k-1})$
- Notation: For each k, $\nu_k(S, p)$ represents the highest power of p that fulfills the above expression \{\nu_0(S, p), \nu_1(S, p), ..\}
Example

Let S be the set of all primes. $S = \{2, 3, 5, 7 \ldots\}$ and fix prime $p = 2$
Example

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime $p = 2$

- Let $a_0 = 19$
Example

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime $p = 2$

- Let $a_0 = 19$
- We need to pick a_1.
 - The highest power of p that divides $2 - a_0 = -17$ is $2^0 = 1$
Example

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime $p = 2$

- Let $a_0 = 19$

- We need to pick a_1.
 The highest power of p that divides $2 - a_0 = -17$ is $2^0 = 1$

- Let's pick a_2 $(a_2 - 19)(a_2 - 2)$. Pick $a_2 = 5 \Rightarrow (5 - 19)(5 - 2) = (-14)(3) = (2 \cdot -7)(3)$
 The highest power of p that divides $(a_2 - 19)(a_2 - 2)$ is $2^1 = 2$.
Example

Let S be the set of all primes. $S = \{2, 3, 5, 7\ldots\}$ and fix prime $p = 2$

- Let $a_0 = 19$
- We need to pick a_1.
 The highest power of p that divides $2 - a_0 = -17$ is $2^0 = 1$
- Let’s pick a_2 $(a_2 - 19)(a_2 - 2)$. Pick
 $a_2 = 5 \Rightarrow (5 - 19)(5 - 2) = (-14)(3) = (2 \cdot -7)(3)$
 The highest power of p that divides $(a_2 - 19)(a_2 - 2)$ is $2^1 = 2$.
- Similarly, for a_3, we need $(a_3 - 19)(a_3 - 2)(a_3 - 5)$. In this case, the highest power of p that divides the product above is $a_3 = 17$
 $(17 - 19)(17 - 2)(17 - 5) = (-2)(15)(2^2 \cdot 3)$ The corresponding power here is $2^3 = 8$.

Nitesh Mathur (TU)
Short title
March 9, 2018 7 / 19
Let S be the set of all primes. $S = \{2, 3, 5, 7, \ldots\}$ and fix prime $p = 2$

- Let $a_0 = 19$

- We need to pick a_1.
 The highest power of p that divides $2 - a_0 = -17$ is $2^0 = 1$

- Let's pick $a_2 (a_2 - 19)(a_2 - 2)$. Pick $a_2 = 5 \Rightarrow (5 - 19)(5 - 2) = (-14)(3) = (2 \cdot -7)(3)$
 The highest power of p that divides $(a_2 - 19)(a_2 - 2)$ is $2^1 = 2$.

- Similarly, for a_3, we need $(a_3 - 19)(a_3 - 2)(a_3 - 5)$. In this case, the highest power of p that divides the product above is $a_3 = 17$
 $(17 - 19)(17 - 2)(17 - 5) = (-2)(15)(2^2 \cdot 3)$ The corresponding power here is $2^3 = 8$.

- Similarly for the rest a_k
The p-ordering for $p = 2$ is as follows: $\{19, 2, 5, 17, 23, 31, \ldots, \}$ and its corresponding p-sequence is as follows, $\{1, 1, 2, 8, 16, 128, \ldots\}$
Construct such a p-ordering for every p (Note: Not unique)

Punchline 1: The associated p-sequence of S is independent of the choice of p-ordering.

Punchline 2: Let S be any subset of \mathbb{Z}. Then the factorial function of S, denoted by $k_!^S$ is defined by

$$k_!^S = \prod p_{v_k(S, p)}$$
Construct such a \(p \) ordering for every \(p \) (Note: Not unique)
Construct such a p ordering for every p (Note: Not unique)

Punchline 1: The associated p-sequence of S is independent of the choice of p-ordering.
Construct such a p ordering for every p (Note: Not unique)

Punchline 1: The associated p-sequence of S is independent of the choice of p-ordering.

Punchline 2 Let S be any subset of \mathbb{Z}. Then the *factorial function* of S, denoted by $k!_S$ is defined by

$$k!_S = \prod_{p} v_k(S, p)$$
The p-ordering for the prime subset of \mathbb{Z} is as follows:

\[p = 2 \]
\[
\{ 19, 2, 5, 17, 23, 31, \ldots \}
\]

\[p = 3 \]
\[
\{ 2, 3, 7, 13, 17, 19, \ldots \}
\]

\[p-sequence \]
\[
\{ 1, 1, 2, 8, 16, 128, \ldots \}
\]

\[p-sequence \]
\[
\{ 1, 1, 1, 3, 3, 9, \ldots \}
\]
The p-ordering for the prime subset of \mathbb{Z} is as follows:

$p = 2$
p-ordering:
\{19, 2, 5, 17, 23, 31, ...\}

p-sequence:
\{1, 1, 2, 8, 16, 128, ...\}

$p = 3$
p-ordering:
\{2, 3, 7, 5, 13, 17, 19, ...\}

p-sequence:
\{1, 1, 1, 3, 3, 9, ...\}
The p-ordering for the prime subset of \mathbb{Z} is as follows:

- $p = 2$
 - p-ordering: \{19, 2, 5, 17, 23, 31, \ldots, \}
 - p-sequence: \{1, 1, 2, 8, 16, 128, \ldots\}
The p-ordering for the prime subset of \mathbb{Z} is as follows:

- $p = 2$
 - p-ordering: $\{19, 2, 5, 17, 23, 31, \ldots, \}$
 - p-sequence is as follows, $\{1, 1, 2, 8, 16, 128, \ldots\}$

- $p = 3$
 - p-ordering: $\{2, 3, 7, 5, 13, 17, 19, \ldots\}$
 - p-sequence: $\{1, 1, 1, 3, 3, 9, \ldots\}$
Examples

- \(4!_p = 48, \ 6!_p = 11520, \ldots\)
- Notice, one has to multiply across. Each \(k\) represents an index in each \(p\)-sequence.

<table>
<thead>
<tr>
<th>(p = 2)</th>
<th>(p = 3)</th>
<th>(p = 5)</th>
<th>(p = 7)</th>
<th>(p = 11)</th>
<th>(k!_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k = 0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(k = 1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(k = 2)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(k = 3)</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(k = 4)</td>
<td>16</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(k = 5)</td>
<td>128</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(k = 6)</td>
<td>256</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The Natural Numbers

Consider \(N \subset \mathbb{Z} \). The natural ordering of \(N = \{1, 2, 3, \ldots\} \) is a \(p \)-ordering of \(N \).

The \(p \)-sequences of \(N \) are as follows:

- \(p = 2 \):
 \[
 \{1, 1, 2, 2, 8, 8, 16, 16, \ldots\}
 \]

- \(p = 3 \):
 \[
 \{1, 1, 1, 3, 3, 3, 9, 9, 9, \ldots\}
 \]

- \(p = 5 \):
 \[
 \{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, \ldots\}
 \]

- \(p = 7 \):
 \[
 \{1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 25, \ldots\}
 \]

Check Your Results:

- \(0! \) \(N \) = 1
- \(2! \) \(N \) = 2
- \(3! \) \(N \) = 6
- \(7! \) \(N \) = 720
Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3, \ldots\}$ is a p-ordering of \mathbb{N}.

The p-sequences of \mathbb{N} are as follows:

- $p = 2$: $\{1, 1, 2, 2, 8, 8, 16, 16, \ldots\}$
- $p = 3$: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, \ldots\}$
- $p = 5$: $\{1, 1, 1, 1, 5, 5, 5, 5, 5, 25, \ldots\}$
- $p = 7$: $\{1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, \ldots\}$

Check Your Results:

- $2!$: $\mathbb{N} = 2 \times 1 \times 1 \times 1 \times 1 \times \cdots = 2$
- $3!$: $\mathbb{N} = 2 \times 3 \times 1 \times 1 \times 1 \times \cdots = 6$
- $7!$: $\mathbb{N} = 16 \times 9 \times 5 \times 1 \times \cdots = 720$
Consider \(\mathbb{N} \subset \mathbb{Z} \) The natural ordering of \(\mathbb{N} = \{1, 2, 3, \ldots\} \) is a p-ordering of \(\mathbb{N} \).
The p-sequences of \(\mathbb{N} \) are as follows:

- \(p = 2 \): \(\{1, 1, 2, 2, 8, 8, 16, 16, \ldots\} \)
- \(p = 3 \): \(\{1, 1, 1, 3, 3, 3, 9, 9, 9, \ldots\} \)
- \(p = 5 \): \(\{1, 1, 1, 1, 5, 5, 5, 5, 5, 25, \ldots\} \)
- \(p = 7 \): \(\{1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, \ldots\} \)

Check Your Results:
- \(0! \) \(\mathbb{N} = 1 \times 1 \times 1 \times 1 \times 1 \times \ldots = 1 \)
- \(2! \) \(\mathbb{N} = 2 \times 1 \times 1 \times 1 \times 1 \times 1 \times \ldots = 2 \)
- \(3! \) \(\mathbb{N} = 2 \times 3 \times 1 \times \ldots = 6 \)
- \(7! \) \(\mathbb{N} = 16 \times 9 \times 5 \times 1 \times 1 \times \ldots = 720 \)
Consider $\mathbb{N} \subseteq \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3, \ldots\}$ is a p-ordering of \mathbb{N}.

The p-sequences of \mathbb{N} are as follows:

- $p = 2$: $\{1, 1, 2, 2, 8, 8, 16, 16, \ldots\}$
- $p = 3$: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, \ldots\}$
Consider $\mathbb{N} \subset \mathbb{Z}$. The natural ordering of $\mathbb{N} = \{1, 2, 3, \ldots\}$ is a p-ordering of \mathbb{N}.

The p-sequences of \mathbb{N} are as follows:

- $p = 2$: $\{1, 1, 2, 2, 8, 8, 16, 16, \ldots\}$
- $p = 3$: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, \ldots\}$
- $p = 7$: $\{1, 1, 1, 1, 5, 5, 5, 5, 5, 25, \ldots\}$
The Natural Numbers

- Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3, \ldots\}$ is a p-ordering of \mathbb{N}. The p-sequences of \mathbb{N} are as follows:
 - $p = 2$: $\{1, 1, 2, 2, 8, 8, 16, 16, \ldots\}$
 - $p = 3$: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, \ldots\}$
 - $p = 5$: $\{1, 1, 1, 1, 1, 5, 5, 5, 5, 25, \ldots\}$
 - $p = 7$: $\{1, 1, 1, 1, 1, 1, 7, 7, 7, 7, \ldots\}$

Check Your Results:
The Natural Numbers

- Consider \(\mathbb{N} \subset \mathbb{Z} \). The natural ordering of \(\mathbb{N} = \{1, 2, 3, \ldots\} \) is a p-ordering of \(\mathbb{N} \).

 The p-sequences of \(\mathbb{N} \) are as follows:

 - \(p = 2 \): \{1, 1, 2, 2, 8, 8, 16, 16, \ldots\}
 - \(p = 3 \): \{1, 1, 1, 3, 3, 3, 9, 9, 9, \ldots\}
 - \(p = 5 \): \{1, 1, 1, 1, 5, 5, 5, 5, 5, 25, \ldots\}
 - \(p = 7 \): \{1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, \ldots\}

 Check Your Results:

 - \(0!_{\mathbb{N}} = 1 \times 1 \times 1 \times 1 \times 1 \ldots = 1 \)
The Natural Numbers

Consider $\mathbb{N} \subset \mathbb{Z}$. The natural ordering of $\mathbb{N} = \{1, 2, 3, \ldots\}$ is a p-ordering of \mathbb{N}. The p-sequences of \mathbb{N} are as follows:

- $p = 2$: $\{1, 1, 2, 2, 8, 8, 16, 16, \ldots\}$
- $p = 3$: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, \ldots\}$
- $p = 5$: $\{1, 1, 1, 1, 1, 5, 5, 5, 5, 25, \ldots\}$
- $p = 7$: $\{1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, \ldots\}$

Check Your Results:

- $0!_{\mathbb{N}} = 1 \times 1 \times 1 \times 1 \times 1 \ldots = 1$
- $2!_{\mathbb{N}} = 2 \times 1 \times 1 \times 1 \times 1 \times 1 \ldots = 2$
Consider \(\mathbb{N} \subset \mathbb{Z} \) The natural ordering of \(\mathbb{N} = \{1, 2, 3, \ldots\} \) is a \(p \)-ordering of \(\mathbb{N} \).

The \(p \)-sequences of \(\mathbb{N} \) are as follows:

- \(p = 2 \): \(\{1, 1, 2, 2, 8, 8, 16, 16, \ldots\} \)
- \(p = 3 \): \(\{1, 1, 1, 3, 3, 3, 9, 9, 9, \ldots\} \)
- \(p = 5 \): \(\{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, \ldots\} \)
- \(p = 7 \): \(\{1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, \ldots\} \)

Check Your Results:

- \(0!_{\mathbb{N}} = 1 \times 1 \times 1 \times 1 \times 1 \ldots = 1 \)
- \(2!_{\mathbb{N}} = 2 \times 1 \times 1 \times 1 \times 1 \ldots = 2 \)
- \(3!_{\mathbb{N}} = 2 \times 3 \times 1 \times 1 \times 1 \ldots = 6 \)
The Natural Numbers

Consider \(\mathbb{N} \subseteq \mathbb{Z} \) The natural ordering of \(\mathbb{N} = \{1, 2, 3, \ldots\} \) is a p-ordering of \(\mathbb{N} \).

The p-sequences of \(\mathbb{N} \) are as follows:

- \(p = 2: \{1, 1, 2, 2, 8, 8, 16, 16, \ldots\} \)
- \(p = 3: \{1, 1, 1, 3, 3, 3, 9, 9, 9, \ldots\} \)
- \(p = : \{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, \ldots\} \)
- \(p = 7: \{1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, \ldots\} \)

Check Your Results:

- \(0!_{\mathbb{N}} = 1 \times 1 \times 1 \times 1 \times 1 \ldots = 1 \)
- \(2!_{\mathbb{N}} = 2 \times 1 \times 1 \times 1 \times 1 \ldots = 2 \)
- \(3!_{\mathbb{N}} = 2 \times 3 \times 1 \times 1 \times 1 \ldots = 6 \)
- \(7!_{\mathbb{N}} = 16 \times 9 \times 5 \times 1 \ldots = 720 \)
More Examples

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Set S</th>
<th>$k!S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set of natural numbers</td>
<td>$k!$</td>
</tr>
<tr>
<td>2</td>
<td>Set of even integers</td>
<td>$2^k \times k!$</td>
</tr>
<tr>
<td>3</td>
<td>Set of integers of the form $an + b$</td>
<td>$a^k \times k!$</td>
</tr>
<tr>
<td>4</td>
<td>Set of integers of the form 2^n</td>
<td>$(2^k - 1)(2^k - 2) \ldots (2^k - 2^{k-1})$</td>
</tr>
<tr>
<td>5</td>
<td>Set of integers of the form q^n for some prime q</td>
<td>$(q^k - 1)(q^k - 2) \ldots (q^k - q^{k-1})$</td>
</tr>
<tr>
<td>6</td>
<td>Set of squares of integers</td>
<td>$(2k)!/2$</td>
</tr>
</tbody>
</table>
Theorem 1
For any nonnegative integers, \(k\) and \(l\), \((k + l)! / S\) is a multiple of \(k! / S\) and \(l! / S\).

Theorem 2
Let \(f\) be a primitive polynomial of degree \(k\) and let \(d_{\{S, f\}} = \gcd\{f(a) : a \in S\}\)
Then, \(d_{\{S, f\}}\) divides \(k! / S\).

Theorem 3
Let \(a_0, a_1, ..., a_n \in S\) be any \(n + 1\) integers. Then their product of their pairwise differences
\[\prod_{i < j} (a_i - a_j) \]
is a multiple of \(0! / S\) and \(1! / S\) and ... and \(n! / S\).

Theorem 4
The number of polynomial functions from \(S\) to \(\mathbb{Z}/n\mathbb{Z}\) is given by
\[n - 1 \prod_{k = 0}^{n} \gcd(n, k! / S) \]
Theorem 1
For any nonnegative integers, k and l, $(k + l)!_S$ is a multiple of $k!_Sl!_S$.
Theorem 1
For any nonnegative integers, k and l, $(k + l)!_S$ is a multiple of $k!_S l!_S$.

Theorem 2 Let f be a primitive polynomial of degree k and let $d(S, f) = \gcd\{f(a) : a \in S\}$ Then, $d(S, f)$ divides $k!_S$.
Revisit Theorems

- **Theorem 1**
 For any nonnegative integers, \(k \) and \(l \), \((k + l)!_S\) is a multiple of \(k!_S/l!_S\).

- **Theorem 2** Let \(f \) be a primitive polynomial of degree \(k \) and let \(d(S, f) = \gcd \{ f(a) : a \in S \} \) Then, \(d(S, f) \) divides \(k!_S \).

- **Theorem 3**
 Let \(a_0, a_1, \ldots, a_n \in S \) be any \(n + 1 \) integers. Then their product of their pairwise differences
 \[
 \prod_{i<j}(a_i - a_j)
 \]
 is a multiple of \(0!_S 1!_S \ldots n!_S \).
• **Theorem 1**
 For any nonnegative integers, k and l, $(k + l)!_S$ is a multiple of $k!_S / l!_S$.

• **Theorem 2** Let f be a primitive polynomial of degree k and let $d(S, f) = \gcd\{f(a) : a \in S\}$ Then, $d(S, f)$ divides $k!_S$.

• **Theorem 3**
 Let $a_0, a_1, \ldots a_n \in S$ be any $n + 1$ integers. Then their product of their pairwise differences
 \[\prod_{i < j} (a_i - a_j) \]
 is a multiple of $0!_S 1!_S \ldots n!_S$

• **Theorem 4** The number of polynomial functions from S to $\mathbb{Z}/n\mathbb{Z}$ is given by
 \[\prod_{k=0}^{n-1} \frac{n}{\gcd(n, k!_S)} \]
The Rest of the Paper

A bunch of proofs.

Generalization to Dedekind Rings.

Generalization to Higher Dimensions.

Applications
A bunch of proofs.
The Rest of the Paper

- A bunch of proofs.
- Generalization to Dedekind Rings.
The Rest of the Paper

- A bunch of proofs.
- Generalization to Dedekind Rings.
- Generalization to Higher Dimensions.
The Rest of the Paper

- A bunch of proofs.
- Generalization to Dedekind Rings.
- Generalization to Higher Dimensions.
- Applications
Posed Questions

For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!^S$.

What is the natural combinatorial interpretation for

$$\binom{n}{k}^S = \frac{n!^S}{k!^S (n-k)!^S}$$

coefficients?

What is the "binomial theorem" for generalized binomial?
For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!_S$.

What is the natural combinatorial interpretation for $(n \choose k)_S = \frac{n!_S}{k!_S (n-k)!_S}$ coefficients?

What is the "binomial theorem" for generalized binomial?
Posed Questions

- For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!_S$.
- What is the natural combinatorial interpretation for
 $$(n)_S = \frac{n!_S}{k!_S(n-k)!_S}$$
 coefficients?
Posed Questions

- For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!_S$.
- What is the natural combinatorial interpretation for
 \[(n)_S = \frac{n!_S}{k!_S (n-k)!_S} \text{ coefficients?} \]
- What is the "binomial theorem" for generalized binomial?
Thank You!

- Dr. O’Neil
- Dr. Donahue
- Jon Bolin
- Journal Club
Questions?