The Factorial Function and Generalization
 Based on the Paper of Manjul Bhargava

Nitesh Mathur

March 9, 2018

About the Author

About the Author

- Paper Published in 2000

About the Author

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves

About the Author

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014

About the Author

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles

About the Author

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles
- Professor at Princeton, Leiden University, and adjunct professor in several others.

About the Author

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles
- Professor at Princeton, Leiden University, and adjunct professor in several others.
- Musician (Tabla Player)

Introduction

Introduction

- Definition: $n!=\prod_{k=1}^{n} k=n(n-1)(n-2) \ldots(3)(2)(1)$

Introduction

- Definition: $n!=\prod_{k=1}^{n} k=n(n-1)(n-2) \ldots(3)(2)(1)$
- Examples: $5!=(5)(4)(3)(2)(1)=120$

Introduction

- Definition: $n!=\prod_{k=1}^{n} k=n(n-1)(n-2) \ldots(3)(2)(1)$
- Examples: $5!=(5)(4)(3)(2)(1)=120$
- The Gamma Function

Introduction

- Definition: $n!=\prod_{k=1}^{n} k=n(n-1)(n-2) \ldots(3)(2)(1)$
- Examples: $5!=(5)(4)(3)(2)(1)=120$
- The Gamma Function
- $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$

Introduction

- Definition: $n!=\prod_{k=1}^{n} k=n(n-1)(n-2) \ldots(3)(2)(1)$
- Examples: $5!=(5)(4)(3)(2)(1)=120$
- The Gamma Function
- $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$
- $\Gamma(n)=(n-1)$!

Introduction

- Definition: $n!=\prod_{k=1}^{n} k=n(n-1)(n-2) \ldots(3)(2)(1)$
- Examples: $5!=(5)(4)(3)(2)(1)=120$
- The Gamma Function
- $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$
- $\Gamma(n)=(n-1)$!
- $\Gamma(5)=4!=24, \Gamma(1 / 2)=\sqrt{\pi}$

Factorial Function in Number Theory

Factorial Function in Number Theory

- Theorem 1

For any nonnegative integers, k and $I,(k+I)$! is a multiple of $k!/!$.

Factorial Function in Number Theory

- Theorem 1

For any nonnegative integers, k and $I,(k+I)$! is a multiple of $k!/!$.

- Theorem 2 Let f be a primitive polynomial of degree k and let $d(\mathbb{Z}, f)=\operatorname{gcd}\{f(a): a \in \mathbb{Z}\}$ Then, $d(\mathbb{Z}, f)$ divides $k!$.

Factorial Function in Number Theory

- Theorem 1

For any nonnegative integers, k and $I,(k+I)$! is a multiple of $k!/!$.

- Theorem 2 Let f be a primitive polynomial of degree k and let $d(\mathbb{Z}, f)=\operatorname{gcd}\{f(a): a \in \mathbb{Z}\}$ Then, $d(\mathbb{Z}, f)$ divides $k!$.
- Theorem 3

Let $a_{0}, a_{1}, \ldots a_{n} \in \mathbb{Z}$ be any $n+1$ integers. Then their product of their pairwise differences

$$
\prod_{i<j}\left(a_{i}-a_{j}\right)
$$

is a multiple of 0 ! 1 !...n!

Factorial Function in Number Theory

- Theorem 1

For any nonnegative integers, k and $I,(k+I)$! is a multiple of $k!/!$.

- Theorem 2 Let f be a primitive polynomial of degree k and let $d(\mathbb{Z}, f)=\operatorname{gcd}\{f(a): a \in \mathbb{Z}\}$ Then, $d(\mathbb{Z}, f)$ divides $k!$.
- Theorem 3

Let $a_{0}, a_{1}, \ldots a_{n} \in \mathbb{Z}$ be any $n+1$ integers. Then their product of their pairwise differences

$$
\prod_{i<j}\left(a_{i}-a_{j}\right)
$$

is a multiple of 0 ! 1 !...n!

- Theorem 4 The number of polynomial functions from \mathbb{Z} to $\mathbb{Z} / n \mathbb{Z}$ is given by

$$
\prod_{k=0}^{n-1} \frac{n}{\operatorname{gcd}(n, k!)}
$$

Motivation

These theorems are true on \mathbb{Z}.
Is there a "Generalized Factorial Function" so that for any subset S of \mathbb{Z}, the theorems mentioned above still remain true?

p-Ordering

Let $S \subset \mathbb{Z}$ and fix a prime p.

p-Ordering

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_{0} \in S$

p-Ordering

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_{0} \in S$
- Choose $a_{1} \in S$ that minimizes the highest power of p dividing $a_{1}-a_{0}$

p-Ordering

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_{0} \in S$
- Choose $a_{1} \in S$ that minimizes the highest power of p dividing $a_{1}-a_{0}$
- Choose an element $a_{2} \in S$ that minimizes the highest power of p dividing $\left(a_{2}-a_{0}\right)\left(a_{2}-a_{1}\right)$

p-Ordering

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_{0} \in S$
- Choose $a_{1} \in S$ that minimizes the highest power of p dividing $a_{1}-a_{0}$
- Choose an element $a_{2} \in S$ that minimizes the highest power of p dividing $\left(a_{2}-a_{0}\right)\left(a_{2}-a_{1}\right)$
- For the $k^{\text {th }}$ step, choose an element $a_{k} \in S$ that minimizes the highest power of p dividing $\left(a_{k}-a_{0}\right)\left(a_{k}-a_{1}\right) \cdot \ldots \cdot\left(a_{k}-a_{k-1}\right)$

p-Ordering

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_{0} \in S$
- Choose $a_{1} \in S$ that minimizes the highest power of p dividing $a_{1}-a_{0}$
- Choose an element $a_{2} \in S$ that minimizes the highest power of p dividing $\left(a_{2}-a_{0}\right)\left(a_{2}-a_{1}\right)$
- For the $k^{\text {th }}$ step, choose an element $a_{k} \in S$ that minimizes the highest power of p dividing $\left(a_{k}-a_{0}\right)\left(a_{k}-a_{1}\right) \cdot \ldots \cdot\left(a_{k}-a_{k-1}\right)$
- Notation: For each $k, v_{k}(S, p)$ represents the highest power of p that fulfills the above expression $\left\{v_{0}(S, p), v_{1}(S, p), ..\right\}$

Example

Let S be the set of all primes. $S=\{2,3,5,7 \ldots\}$ and fix prime $p=2$

Example

Let S be the set of all primes. $S=\{2,3,5,7 \ldots\}$ and fix prime $p=2$

- Let $a_{0}=19$

Example

Let S be the set of all primes. $S=\{2,3,5,7 \ldots\}$ and fix prime $p=2$

- Let $a_{0}=19$
- We need to pick a_{1}.

The highest power of p that divides $2-a_{0}=-17$ is $2^{0}=1$

Example

Let S be the set of all primes. $S=\{2,3,5,7 \ldots\}$ and fix prime $p=2$

- Let $a_{0}=19$
- We need to pick a_{1}.

The highest power of p that divides $2-a_{0}=-17$ is $2^{0}=1$

- Let's pick $a_{2}\left(a_{2}-19\right)\left(a_{2}-2\right)$. Pick
$a_{2}=5 \Rightarrow(5-19)(5-2)=(-14)(3)=(2 \cdot-7)(3)$
The highest power of p that divides $\left(a_{2}-19\right)\left(a_{2}-2\right)$ is $2^{1}=2$.

Example

Let S be the set of all primes. $S=\{2,3,5,7 \ldots\}$ and fix prime $p=2$

- Let $a_{0}=19$
- We need to pick a_{1}.

The highest power of p that divides $2-a_{0}=-17$ is $2^{0}=1$

- Let's pick $a_{2}\left(a_{2}-19\right)\left(a_{2}-2\right)$. Pick $a_{2}=5 \Rightarrow(5-19)(5-2)=(-14)(3)=(2 \cdot-7)(3)$
The highest power of p that divides $\left(a_{2}-19\right)\left(a_{2}-2\right)$ is $2^{1}=2$.
- Similarly, for a_{3}, we need $\left(a_{3}-19\right)\left(a_{3}-2\right)\left(a_{3}-5\right)$. In this case, the highest power of p that divides the product above is $a_{3}=17$ $(17-19)(17-2)(17-5)=(-2)(15)\left(2^{2} \cdot 3\right)$ The corresponding power here is $2^{3}=8$.

Example

Let S be the set of all primes. $S=\{2,3,5,7 \ldots\}$ and fix prime $p=2$

- Let $a_{0}=19$
- We need to pick a_{1}.

The highest power of p that divides $2-a_{0}=-17$ is $2^{0}=1$

- Let's pick $a_{2}\left(a_{2}-19\right)\left(a_{2}-2\right)$. Pick
$a_{2}=5 \Rightarrow(5-19)(5-2)=(-14)(3)=(2 \cdot-7)(3)$
The highest power of p that divides $\left(a_{2}-19\right)\left(a_{2}-2\right)$ is $2^{1}=2$.
- Similarly, for a_{3}, we need $\left(a_{3}-19\right)\left(a_{3}-2\right)\left(a_{3}-5\right)$. In this case, the highest power of p that divides the product above is $a_{3}=17$ $(17-19)(17-2)(17-5)=(-2)(15)\left(2^{2} \cdot 3\right)$ The corresponding power here is $2^{3}=8$.
- Similarly for the rest a_{k}

Examples Continued

- The p-ordering for $p=2$ is as follows: $\{19,2,5,17,23,31, \ldots$,$\} and$ its corresponding p-sequence is as follows, $\{1,1,2,8,16,128, \ldots\}$

Back to Theory

Back to Theory

- Construct such a p ordering for every p (Note: Not unique)

Back to Theory

- Construct such a p ordering for every p (Note: Not unique)
- Punchline 1: The associated p-sequence of S is independent of the choice of p-ordering.

Back to Theory

- Construct such a p ordering for every p (Note: Not unique)
- Punchline 1: The associated p-sequence of S is independent of the choice of p-ordering.
- Punchline 2 Let S be any subset of \mathbb{Z}. Then the factorial function of S, denoted by $k!_{s}$ is defined by

$$
k!_{s}=\prod_{p} v_{k}(S, p)
$$

Back to Example

Back to Example

- The p -ordering for the prime subset of \mathbb{Z} is as follows:

Back to Example

- The p -ordering for the prime subset of \mathbb{Z} is as follows:
- $p=2$
p-ordering: $\{19,2,5,17,23,31, \ldots$, p-sequence is as follows, $\{1,1,2,8,16,128, \ldots\}$

Back to Example

- The p -ordering for the prime subset of \mathbb{Z} is as follows:
- $p=2$
p-ordering: $\{19,2,5,17,23,31, \ldots$,
p-sequence is as follows, $\{1,1,2,8,16,128, \ldots\}$
- $p=3$
p-ordering: $\{2,3,7,5,13,17,19, \ldots\}$
p-sequence: $\{1,1,1,3,3,9, \ldots\}$

Examples

- $4!_{p}=48,6!_{p}=11520, \ldots$
- Notice, one has to multiply across. Each k represents an index in each p-sequence.

Table of values of $v_{k}(P, p)$ and $k!_{p}$

	$\boldsymbol{p}=\mathbf{2}$	$\boldsymbol{p = 3}$	$\boldsymbol{p = 5}$	$\boldsymbol{p = 7}$	$\boldsymbol{p}=\mathbf{1 1}$	\ldots	$\boldsymbol{k} \boldsymbol{l}_{p}$
$k=0$	1	1	1	1	1	\ldots	$1 \times 1 \times 1 \times 1 \times 1 \times \ldots=1$
$k=1$	1	1	1	1	1	\ldots	$1 \times 1 \times 1 \times 1 \times 1 \times \ldots=1$
$k=2$	2	1	1	1	1	\ldots	$2 \times 1 \times 1 \times 1 \times 1 \times \ldots=2$
$k=3$	8	3	1	1	1	\ldots	$8 \times 3 \times 1 \times 1 \times 1 \times \ldots=24$
$k=4$	16	3	1	1	1	\ldots	$16 \times 3 \times 1 \times 1 \times 1 \times \ldots=48$
$k=5$	128	9	5	1	1	\ldots	$128 \times 9 \times 5 \times 1 \times 1 \times \ldots=5760$
$k=6$	256	9	5	1	1	\ldots	$256 \times 9 \times 5 \times 1 \times 1 \times \ldots=11520$

The Natural Numbers

The Natural Numbers

- Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N}=\{1,2,3, \ldots$.$\} is a$ p-ordering of \mathbb{N}.
The p-sequences of \mathbb{N} are as follows:

The Natural Numbers

- Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N}=\{1,2,3, \ldots$.$\} is a$ p-ordering of \mathbb{N}.
The p-sequences of \mathbb{N} are as follows:
- $p=2:\{1,1,2,2,8,8,16,16, \ldots\}$

The Natural Numbers

- Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N}=\{1,2,3, \ldots$.$\} is a$ p-ordering of \mathbb{N}.
The p-sequences of \mathbb{N} are as follows:
- $p=2:\{1,1,2,2,8,8,16,16, \ldots\}$
- $p=3:\{1,1,1,3,3,3,9,9,9, \ldots\}$

The Natural Numbers

- Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N}=\{1,2,3, \ldots$.$\} is a$ p-ordering of \mathbb{N}.
The p-sequences of \mathbb{N} are as follows:
- $p=2:\{1,1,2,2,8,8,16,16, \ldots\}$
- $p=3:\{1,1,1,3,3,3,9,9,9, \ldots\}$
- $\mathrm{p}=:\{1,1,1,1,1,5,5,5,5,5,25, .$.

The Natural Numbers

- Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N}=\{1,2,3, \ldots$.$\} is a$ p-ordering of \mathbb{N}.
The p-sequences of \mathbb{N} are as follows:
- $p=2:\{1,1,2,2,8,8,16,16, \ldots\}$
- $p=3:\{1,1,1,3,3,3,9,9,9, \ldots\}$
- $\mathrm{p}=:\{1,1,1,1,1,5,5,5,5,5,25, .$.
- $\mathrm{p}=7:\{1,1,1,1,1,1,1,7,7,7,7,7, .$.

Check Your Results:

The Natural Numbers

- Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N}=\{1,2,3, \ldots$.$\} is a$ p-ordering of \mathbb{N}.
The p-sequences of \mathbb{N} are as follows:
- $p=2:\{1,1,2,2,8,8,16,16, \ldots\}$
- $p=3:\{1,1,1,3,3,3,9,9,9, \ldots\}$
- $\mathrm{p}=:\{1,1,1,1,1,5,5,5,5,5,25, .$.
- $p=7:\{1,1,1,1,1,1,1,7,7,7,7,7, .$.

Check Your Results:

- $0!_{\mathbb{N}}=1 * 1 * 1 * 1 * 1 \ldots=1$

The Natural Numbers

- Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N}=\{1,2,3, \ldots$.$\} is a$ p-ordering of \mathbb{N}.
The p-sequences of \mathbb{N} are as follows:
- $p=2:\{1,1,2,2,8,8,16,16, \ldots\}$
- $p=3:\{1,1,1,3,3,3,9,9,9, \ldots\}$
- $\mathrm{p}=:\{1,1,1,1,1,5,5,5,5,5,25, .$.
- $\mathrm{p}=7:\{1,1,1,1,1,1,1,7,7,7,7,7, .$.

Check Your Results:

- $0!_{\mathbb{N}}=1 * 1 * 1 * 1 * 1 \ldots=1$
- $2!_{\mathbb{N}}=2 * 1 * 1 * 1 * 1 \ldots=2$

The Natural Numbers

- Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N}=\{1,2,3, \ldots$.$\} is a$ p-ordering of \mathbb{N}.
The p-sequences of \mathbb{N} are as follows:
- $p=2:\{1,1,2,2,8,8,16,16, \ldots\}$
- $p=3:\{1,1,1,3,3,3,9,9,9, \ldots\}$
- $\mathrm{p}=:\{1,1,1,1,1,5,5,5,5,5,25, .$.
- $\mathrm{p}=7:\{1,1,1,1,1,1,1,7,7,7,7,7, .$.

Check Your Results:

- $0!_{\mathbb{N}}=1 * 1 * 1 * 1 * 1 \ldots=1$
- $2!_{\mathbb{N}}=2 * 1 * 1 * 1 * 1 \ldots=2$
- $3!_{\mathbb{N}}=2 * 3 * 1 * 1 * 1 \ldots=6$

The Natural Numbers

- Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N}=\{1,2,3, \ldots$.$\} is a$ p-ordering of \mathbb{N}.
The p-sequences of \mathbb{N} are as follows:
- $p=2:\{1,1,2,2,8,8,16,16, \ldots\}$
- $p=3:\{1,1,1,3,3,3,9,9,9, \ldots\}$
- $\mathrm{p}=:\{1,1,1,1,1,5,5,5,5,5,25, .$.
- $\mathrm{p}=7:\{1,1,1,1,1,1,1,7,7,7,7,7, .$.

Check Your Results:

- $0!_{\mathbb{N}}=1 * 1 * 1 * 1 * 1 \ldots=1$
- $2!_{\mathbb{N}}=2 * 1 * 1 * 1 * 1 \ldots=2$
- $3!_{\mathbb{N}}=2 * 3 * 1 * 1 * 1 \ldots=6$
- $7!_{\mathbb{N}}=16 * 9 * 5 * 1 \ldots=720$

More Examples

SI. No.	Set S	$\boldsymbol{k}!_{S}$
1	Set of natural numbers	$k!$
2	Set of even integers	$2^{k} \times k!$
3	Set of integers of the form $a n+b$	$a^{k} \times k!$
4	Set of integers of the form 2^{n}	$\left(2^{k}-1\right)\left(2^{k}-2\right) \ldots\left(2^{k}-2^{k-1)}\right)$
5	Set of integers of the form q^{n} for some prime q	$\left(q^{k}-1\right)\left(q^{k}-2\right) \ldots\left(q^{k}-q^{k-1)}\right)$
6	Set of squares of integers	$(2 k)!/ 2$

Revisit Theorems

Revisit Theorems

- Theorem 1

For any nonnegative integers, k and $I,(k+I)!_{s}$ is a multiple of $k!_{S} I!_{s}$.

Revisit Theorems

- Theorem 1

For any nonnegative integers, k and $I,(k+I)!_{S}$ is a multiple of $k!_{S} I!_{S}$.

- Theorem 2 Let f be a primitive polynomial of degree k and let $d(S, f)=\operatorname{gcd}\{f(a): a \in S\}$ Then, $d(S, f)$ divides $k!_{S}$.

Revisit Theorems

- Theorem 1

For any nonnegative integers, k and $I,(k+I)!_{S}$ is a multiple of $k!_{S} I!_{S}$.

- Theorem 2 Let f be a primitive polynomial of degree k and let $d(S, f)=\operatorname{gcd}\{f(a): a \in S\}$ Then, $d(S, f)$ divides $k!_{S}$.
- Theorem 3

Let $a_{0}, a_{1}, \ldots a_{n} \in S$ be any $n+1$ integers. Then their product of their pairwise differences

$$
\prod_{i<j}\left(a_{i}-a_{j}\right)
$$

is a multiple of $0!_{S} 1!_{S} \ldots n!_{S}$

Revisit Theorems

- Theorem 1

For any nonnegative integers, k and $I,(k+I)!_{s}$ is a multiple of $k!_{S} I!_{s}$.

- Theorem 2 Let f be a primitive polynomial of degree k and let $d(S, f)=\operatorname{gcd}\{f(a): a \in S\}$ Then, $d(S, f)$ divides $k!_{S}$.
- Theorem 3

Let $a_{0}, a_{1}, \ldots a_{n} \in S$ be any $n+1$ integers. Then their product of their pairwise differences

$$
\prod_{i<j}\left(a_{i}-a_{j}\right)
$$

is a multiple of $0!_{S} 1!_{S} \ldots n!_{S}$

- Theorem 4 The number of polynomial functions from S to $\mathbb{Z} / n \mathbb{Z}$ is given by

$$
\prod_{k=0}^{n-1} \frac{n}{\operatorname{gcd}\left(n, k!_{S}\right)}
$$

The Rest of the Paper

The Rest of the Paper

- A bunch of proofs.

The Rest of the Paper

- A bunch of proofs.
- Generalization to Dedekind Rings.

The Rest of the Paper

- A bunch of proofs.
- Generalization to Dedekind Rings.
- Generalization to Higher Dimensions.

The Rest of the Paper

- A bunch of proofs.
- Generalization to Dedekind Rings.
- Generalization to Higher Dimensions.
- Applications

Posed Questions

Posed Questions

- For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!_{S}$.

Posed Questions

- For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!s$.
- What is the natural combinatorial interpretation for
$\binom{n}{k}_{S}=\frac{n!_{S}}{k!_{S}(n-k)!_{S}}$ coefficients?

Posed Questions

- For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!s$.
- What is the natural combinatorial interpretation for
$\binom{n}{k}_{S}=\frac{n!_{S}}{k!_{S}(n-k)!_{S}}$ coefficients?
- What is the "binomial theorem" for generalized binomial?

Sources

Bhargava, Manjul (2000). "The Factorial Function and Generalizations" (PDF). The American Mathematical Monthly. 107 (9): 783-799.

Thank You!

- Dr. O'Neil
- Dr. Donahue
- Jon Bolin
- Journal Club

Questions?

