The Factorial Function and Generalization Based on the Paper of Manjul Bhargava

Nitesh Mathur

March 9, 2018

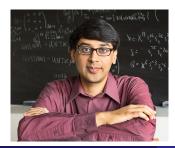
Nitesh Mathur (TU) Short title March 9, 2018 1 / 19

Nitesh Mathur (TU) Short title March 9, 2018 2 / 19

• Paper Published in 2000

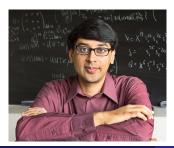


- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves



- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles



- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles
- Professor at Princeton, Leiden University, and adjunct professor in several others.

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles
- Professor at Princeton, Leiden University, and adjunct professor in several others.
- Musician (Tabla Player)



• Definition:
$$n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$$

◆ロト ◆個ト ◆差ト ◆差ト 差 りゅう

Nitesh Mathur (TU) Short title March 9, 2018 3 / 19

- Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$
- Examples: 5! = (5)(4)(3)(2)(1) = 120

- Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$
- Examples: 5! = (5)(4)(3)(2)(1) = 120
- The Gamma Function

Nitesh Mathur (TU) Short title March 9, 2018 3 / 19

- Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$
- Examples: 5! = (5)(4)(3)(2)(1) = 120
- The Gamma Function
- $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$

- Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$
- Examples: 5! = (5)(4)(3)(2)(1) = 120
- The Gamma Function
- $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$
- $\Gamma(n) = (n-1)!$

- Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$
- Examples: 5! = (5)(4)(3)(2)(1) = 120
- The Gamma Function
- $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$
- $\Gamma(n) = (n-1)!$
- $\Gamma(5) = 4! = 24, \Gamma(1/2) = \sqrt{\pi}$

Theorem 1

For any nonnegative integers, k and l, (k + l)! is a multiple of k!l!.

Nitesh Mathur (TU) Short title March 9, 2018 4 / 19

- Theorem 1 For any nonnegative integers, k and l, (k + l)! is a multiple of k!l!.
- Theorem 2 Let f be a primitive polynomial of degree k and let $d(\mathbb{Z}, f) = \gcd\{f(a) : a \in \mathbb{Z}\}$ Then, $d(\mathbb{Z}, f)$ divides k!.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Theorem 1

For any nonnegative integers, k and l, (k + l)! is a multiple of k!/!.

- Theorem 2 Let f be a primitive polynomial of degree k and let $d(\mathbb{Z}, f) = \gcd\{f(a) : a \in \mathbb{Z}\}$ Then, $d(\mathbb{Z}, f)$ divides k!.
- Theorem 3

Let $a_0, a_1, ... a_n \in \mathbb{Z}$ be any n+1 integers. Then their product of their pairwise differences

$$\prod_{i < j} (a_i - a_j)$$

is a multiple of 0!1!...n!

- Theorem 1 For any nonnegative integers, k and l, (k + l)! is a multiple of k!/!.
- **Theorem 2** Let f be a primitive polynomial of degree k and let $d(\mathbb{Z}, f) = \gcd\{f(a) : a \in \mathbb{Z}\}$ Then, $d(\mathbb{Z}, f)$ divides k!.
- Theorem 3

Let $a_0, a_1, ... a_n \in \mathbb{Z}$ be any n+1 integers. Then their product of their pairwise differences

$$\prod_{i < j} (a_i - a_j)$$

is a multiple of 0!1!...n!

• **Theorem 4** The number of polynomial functions from \mathbb{Z} to $\mathbb{Z}/n\mathbb{Z}$ is given by

$$\prod_{k=0}^{n-1} \frac{n}{\gcd(n, k!)}$$

Motivation

These theorems are true on \mathbb{Z} .

Is there a "Generalized Factorial Function" so that for any subset S of \mathbb{Z} , the theorems mentioned above still remain true?

Let $S \subset \mathbb{Z}$ and fix a prime p.

Nitesh Mathur (TU) Short title March 9, 2018 6 / 19

Let $S \subset \mathbb{Z}$ and fix a prime p.

• Choose $a_0 \in S$

Nitesh Mathur (TU) Short title March 9, 2018 6 / 19

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_0 \in S$
- Choose $a_1 \in S$ that minimizes the highest power of p dividing $a_1 a_0$

Nitesh Mathur (TU) Short title March 9, 2018 6 / 19

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_0 \in S$
- ullet Choose $a_1 \in S$ that minimizes the highest power of p dividing $a_1 a_0$
- Choose an element $a_2 \in S$ that minimizes the highest power of p dividing $(a_2 a_0)(a_2 a_1)$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_0 \in S$
- Choose $a_1 \in S$ that minimizes the highest power of p dividing $a_1 a_0$
- Choose an element $a_2 \in S$ that minimizes the highest power of p dividing $(a_2 a_0)(a_2 a_1)$
- For the k^{th} step, choose an element $a_k \in S$ that minimizes the highest power of p dividing $(a_k a_0)(a_k a_1) \cdot ... \cdot (a_k a_{k-1})$

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_0 \in S$
- Choose $a_1 \in S$ that minimizes the highest power of p dividing $a_1 a_0$
- Choose an element $a_2 \in S$ that minimizes the highest power of p dividing $(a_2 a_0)(a_2 a_1)$
- For the k^{th} step, choose an element $a_k \in S$ that minimizes the highest power of p dividing $(a_k a_0)(a_k a_1) \cdot ... \cdot (a_k a_{k-1})$
- Notation: For each k, $v_k(S, p)$ represents the highest power of p that fulfills the above expression $\{v_0(S, p), v_1(S, p), ...\}$

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Nitesh Mathur (TU) Short title March 9, 2018 7 / 19

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

• Let $a_0 = 19$

Nitesh Mathur (TU) Short title March 9, 2018 7 / 19

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

- Let $a_0 = 19$
- We need to pick a_1 . The highest power of p that divides $2 - a_0 = -17$ is $2^0 = 1$

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 2 9 9 9 0 0

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

- Let $a_0 = 19$
- We need to pick a_1 . The highest power of p that divides $2 - a_0 = -17$ is $2^0 = 1$
- Let's pick $a_2 (a_2 19)(a_2 2)$. Pick $a_2 = 5 \Rightarrow (5 19)(5 2) = (-14)(3) = (2 \cdot -7)(3)$ The highest power of p that divides $(a_2 - 19)(a_2 - 2)$ is $2^1 = 2$.

7 / 19

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

- Let $a_0 = 19$
- We need to pick a_1 . The highest power of p that divides $2 - a_0 = -17$ is $2^0 = 1$
- Let's pick $a_2 (a_2 19)(a_2 2)$. Pick $a_2 = 5 \Rightarrow (5 19)(5 2) = (-14)(3) = (2 \cdot -7)(3)$ The highest power of p that divides $(a_2 - 19)(a_2 - 2)$ is $2^1 = 2$.
- Similarly, for a_3 , we need $(a_3-19)(a_3-2)(a_3-5)$. In this case, the highest power of p that divides the product above is $a_3=17$ $(17-19)(17-2)(17-5)=(-2)(15)(2^2\cdot 3)$ The corresponding power here is $2^3=8$.

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

- Let $a_0 = 19$
- We need to pick a_1 . The highest power of p that divides $2 - a_0 = -17$ is $2^0 = 1$
- Let's pick $a_2 (a_2 19)(a_2 2)$. Pick $a_2 = 5 \Rightarrow (5 19)(5 2) = (-14)(3) = (2 \cdot -7)(3)$ The highest power of p that divides $(a_2 - 19)(a_2 - 2)$ is $2^1 = 2$.
- Similarly, for a_3 , we need $(a_3-19)(a_3-2)(a_3-5)$. In this case, the highest power of p that divides the product above is $a_3=17$ $(17-19)(17-2)(17-5)=(-2)(15)(2^2\cdot 3)$ The corresponding power here is $2^3=8$.
- Similarly for the rest a_k

Examples Continued

• The p-ordering for p=2 is as follows: $\{19,2,5,17,23,31,...,\}$ and its corresponding p-sequence is as follows, $\{1,1,2,8,16,128,...\}$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Back to Theory

Back to Theory

• Construct such a *p* ordering for every *p* (Note: Not unique)

Back to Theory

- Construct such a *p* ordering for every *p* (Note: Not unique)
- **Punchline 1**: The associated p-sequence of *S* is independent of the choice of p-ordering.

9 / 19

Back to Theory

- Construct such a *p* ordering for every *p* (Note: Not unique)
- **Punchline 1**: The associated p-sequence of *S* is independent of the choice of p-ordering.
- **Punchline 2** Let S be any subset of \mathbb{Z} . Then the *factorial function* of S, denoted by $k!_S$ is defined by

$$k!_s = \prod_p v_k(S, p)$$

Nitesh Mathur (TU)

 \bullet The p-ordering for the prime subset of $\mathbb Z$ is as follows:

Nitesh Mathur (TU) Short title March 9, 2018 10 / 19

- The p-ordering for the prime subset of \mathbb{Z} is as follows:
- p=2 p-ordering: $\{19,2,5,17,23,31,...,\}$ p-sequence is as follows, $\{1,1,2,8,16,128,...\}$

- ullet The p-ordering for the prime subset of $\mathbb Z$ is as follows:
- p=2 p-ordering: $\{19,2,5,17,23,31,...,\}$ p-sequence is as follows, $\{1,1,2,8,16,128,...\}$
- p = 3 p-ordering: $\{2, 3, 7, 5, 13, 17, 19, ...\}$ p-sequence: $\{1, 1, 1, 3, 3, 9, ...\}$

Examples

- $4!_P = 48, 6!_p = 11520, ...$
- Notice, one has to multiply across. Each *k* represents an index in each p-sequence.

Table of values of $v_k(P, p)$ and $k!_P$

	p = 2	p = 3	p = 5	p = 7	p = 11	 <i>k</i> ! _₽
<i>κ</i> = 0	1	1	1	1	1	 1x1x1x1x1x=1
<i>k</i> = 1	1	1	1	1	1	 1×1×1×1×1× = 1
k = 2	2	1	1	1	1	 2×1×1×1×1× = 2
k = 3	8	3	1	1	1	 8x3x1x1x1x = 24
k = 4	16	3	1	1	1	 16×3×1×1×1× = 48
k = 5	128	9	5	1	1	 128×9×5×1×1× = 5760
κ = 6	256	9	5	1	1	 256×9×5×1×1× = 11520

Nitesh Mathur (TU)

• Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1,2,3,....\}$ is a p-ordering of \mathbb{N} .

The p-sequences of $\ensuremath{\mathbb{N}}$ are as follows:

Nitesh Mathur (TU)

• Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1,2,3,....\}$ is a p-ordering of \mathbb{N} . The p-sequences of \mathbb{N} are as follows:

• p = 2: $\{1, 1, 2, 2, 8, 8, 16, 16, ...\}$

• Consider $\mathbb{N}\subset\mathbb{Z}$ The natural ordering of $\mathbb{N}=\{1,2,3,....\}$ is a p-ordering of $\mathbb{N}.$

- p = 2: $\{1, 1, 2, 2, 8, 8, 16, 16, ...\}$
- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$

• Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1,2,3,....\}$ is a p-ordering of $\mathbb{N}.$

- p = 2: $\{1, 1, 2, 2, 8, 8, 16, 16, ...\}$
- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$
- $\bullet \ p = \ : \ \{1,1,1,1,1,5,5,5,5,5,5,25,..\}$

• Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1,2,3,....\}$ is a p-ordering of \mathbb{N} .

- p = 2: $\{1, 1, 2, 2, 8, 8, 16, 16, ...\}$
- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$
- $p = : \{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 25, ..\}$
- p = 7: {1,1,1,1,1,1,7,7,7,7,7,...} Check Your Results:

• Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1,2,3,....\}$ is a p-ordering of $\mathbb{N}.$

- p = 2: $\{1, 1, 2, 2, 8, 8, 16, 16, ...\}$
- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$
- $p = : \{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 25, ..\}$
- p = 7: {1,1,1,1,1,1,7,7,7,7,7,...} Check Your Results:
- $0!_{\mathbb{N}} = 1 * 1 * 1 * 1 * 1 ... = 1$

• Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1,2,3,....\}$ is a p-ordering of $\mathbb{N}.$

- p = 2: $\{1, 1, 2, 2, 8, 8, 16, 16, ...\}$
- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$
- $\bullet \ p = \ : \ \{1,1,1,1,1,5,5,5,5,5,5,25,..\}$
- p = 7: {1,1,1,1,1,1,7,7,7,7,7,..} Check Your Results:
- $0!_{\mathbb{N}} = 1 * 1 * 1 * 1 * 1 ... = 1$
- $2!_{\mathbb{N}} = 2 * 1 * 1 * 1 * 1 ... = 2$

• Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1,2,3,....\}$ is a p-ordering of \mathbb{N} .

- p = 2: $\{1, 1, 2, 2, 8, 8, 16, 16, ...\}$
- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$
- $\bullet \ p = \ : \ \{1,1,1,1,1,5,5,5,5,5,5,25,..\}$
- p = 7: {1,1,1,1,1,1,7,7,7,7,7,...} Check Your Results:
- $0!_{\mathbb{N}} = 1 * 1 * 1 * 1 * 1 ... = 1$
- $2!_{\mathbb{N}} = 2 * 1 * 1 * 1 * 1 ... = 2$
- $3!_{\mathbb{N}} = 2 * 3 * 1 * 1 * 1 \dots = 6$

• Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1,2,3,....\}$ is a p-ordering of $\mathbb{N}.$

- p = 2: $\{1, 1, 2, 2, 8, 8, 16, 16, ...\}$
- p = 3: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$
- $p = : \{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 25, ..\}$
- p = 7: {1,1,1,1,1,1,7,7,7,7,7,...} Check Your Results:
- $0!_{\mathbb{N}} = 1 * 1 * 1 * 1 * 1 ... = 1$
- $2!_{\mathbb{N}} = 2 * 1 * 1 * 1 * 1 ... = 2$
- $3!_{\mathbb{N}} = 2 * 3 * 1 * 1 * 1 ... = 6$
- $7!_{\mathbb{N}} = 16 * 9 * 5 * 1.... = 720$

More Examples

SI. No.	Set S	k!s
1	Set of natural numbers	k!
2	Set of even integers	2 ^k ×k!
3	Set of integers of the form an + b	a ^k ×k!
4	Set of integers of the form 2 ⁿ	$(2^k - 1)(2^k - 2) \dots (2^k - 2^{k-1})$
5	Set of integers of the form q^n for some prime q	$(q^{k}-1)(q^{k}-2)\dots(q^{k}-q^{k-1})$
6	Set of squares of integers	(2k)!/2

• Theorem 1

For any nonnegative integers, k and l, $(k+l)!_S$ is a multiple of $k!_S l!_S$.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

- Theorem 1 For any nonnegative integers, k and l, $(k+l)!_S$ is a multiple of $k!_S l!_S$.
- Theorem 2 Let f be a primitive polynomial of degree k and let $d(S, f) = \gcd\{f(a) : a \in S\}$ Then, d(S, f) divides $k!_S$.

Theorem 1

For any nonnegative integers, k and l, $(k+l)!_S$ is a multiple of $k!_S l!_S$.

- **Theorem 2** Let f be a primitive polynomial of degree k and let $d(S, f) = \gcd\{f(a) : a \in S\}$ Then, d(S, f) divides $k!_S$.
- Theorem 3

Let $a_0, a_1, ... a_n \in S$ be any n+1 integers. Then their product of their pairwise differences

$$\prod_{i < j} (a_i - a_j)$$

is a multiple of $0!_{S}1!_{S}...n!_{S}$

- Theorem 1 For any nonnegative integers, k and l, $(k+l)!_S$ is a multiple of $k!_S l!_S$.
- **Theorem 2** Let f be a primitive polynomial of degree k and let $d(S, f) = \gcd\{f(a) : a \in S\}$ Then, d(S, f) divides $k!_S$.
- Theorem 3

Let $a_0, a_1, ... a_n \in S$ be any n+1 integers. Then their product of their pairwise differences

$$\prod_{i < j} (a_i - a_j)$$

is a multiple of $0!_{S}1!_{S}...n!_{S}$

• **Theorem 4** The number of polynomial functions from S to $\mathbb{Z}/n\mathbb{Z}$ is given by

$$\prod_{k=0}^{n-1} \frac{n}{\gcd(n, k!_S)}$$

Nitesh Mathur (TU) Short title March 9, 2018 15 / 19

A bunch of proofs.

Nitesh Mathur (TU) Short title March 9, 2018 15 / 19

- A bunch of proofs.
- Generalization to Dedekind Rings.

- A bunch of proofs.
- Generalization to Dedekind Rings.
- Generalization to Higher Dimensions.

- A bunch of proofs.
- Generalization to Dedekind Rings.
- Generalization to Higher Dimensions.
- Applications

• For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!_S$.

- For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!_S$.
- What is the natural combinatorial interpretation for

$$\binom{n}{k}_S = \frac{n!_S}{k!_S(n-k)!_S}$$
 coefficients?

- For a subset $S \subset \mathbb{Z}$, is there a natural combinatorial interpretation of $k!_S$.
- What is the natural combinatorial interpretation for $\binom{n}{k}_S = \frac{n!_S}{k!_S(n-k)!_S}$ coefficients?
- What is the "binomial theorem" for generalized binomial?

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Sources

Bhargava, Manjul (2000). "The Factorial Function and Generalizations" (PDF). The American Mathematical Monthly. 107 (9): 783–799.

Thank You!

- Dr. O'Neil
- Dr. Donahue
- Jon Bolin
- Journal Club

Questions?