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Factorial Function in Number Theory

▶ Definition: n! =
∏n

k=1 k = n(n − 1)(n − 2)...(3)(2)(1)

▶ Examples: 5! = (5)(4)(3)(2)(1) = 120

▶ The Gamma Function

▶ Γ(z) =
∫∞
0 tz−1e−t dt

▶ Γ(n) = (n − 1)!

▶ Γ(5) = 4! = 24, Γ(1/2) =
√
π
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Factorial Function in Number Theory

▶ Theorem 1
For any nonnegative integers, k and l , (k + l)! is a multiple of
k!l!.

▶ Theorem 2 Let f be a primitive polynomial of degree k and
let d(Z, f ) =gcd{f (a) : a ∈ Z} Then, d(Z, f ) divides k!.

▶ Theorem 3
Let a0, a1, ...an ∈ Z be any n + 1 integers. Then their product
of their pairwise differences∏

i<j

(ai − aj)

is a multiple of 0!1!...n!
▶ Theorem 4 The number of polynomial functions from Z to

Z/nZ is given by
n−1∏
k=0

n

gcd(n, k!)
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Motivation

These theorems are true on Z.

Is there a ”Generalized Factorial Function” so that for any subset
S of Z, the theorems mentioned above still remain true?



p-Ordering

Let S ⊂ Z and fix a prime p.

▶ Choose a0 ∈ S

▶ Choose a1 ∈ S that minimizes the highest power of p dividing
a1 − a0

▶ Choose an element a2 ∈ S that minimizes the highest power
of p dividing (a2 − a0)(a2 − a1)

▶ For the kth step, choose an element ak ∈ S that minimizes the
highest power of p dividing (ak − a0)(ak − a1) · ... · (ak − ak−1)

▶ Notation: For each k , vk(S , p) represents the highest power of
p that fulfills the above expression {v0(S , p), v1(S , p), ..}
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Example

Let S be the set of all primes. S = {2, 3, 5, 7...} and fix prime
p = 2

▶ Let a0 = 19

▶ We need to pick a1.
The highest power of p that divides 2− a0 = −17 is 20 = 1

▶ Let’s pick a2 (a2 − 19)(a2 − 2). Pick
a2 = 5 ⇒ (5− 19)(5− 2) = (−14)(3) = (2 · −7)(3)
The highest power of p that divides (a2 − 19)(a2 − 2) is
21 = 2.

▶ Similarly, for a3, we need (a3 − 19)(a3 − 2)(a3 − 5) .
(17− 19)(17− 2)(17− 5) = (−2)(15)(22 · 3) The
corresponding power here is 23 = 8.

▶ Similarly for the rest ak
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Examples Continued

▶ The p-ordering for p = 2 is as follows:
{19, 2, 5, 17, 23, 31, ..., } and its corresponding p-sequence is
as follows, {1, 1, 2, 8, 16, 128, ...}



Back to Theory

▶ Construct such a p ordering for every p (Note: Not unique)

▶ Punchline 1: The associated p-sequence of S is independent
of the choice of p-ordering.

▶ Punchline 2: Let S be any subset of Z. Then the factorial
function of S , denoted by k!S is defined by

k!s =
∏
p

vk(S , p)
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Back to Example

▶ The p-ordering for the prime subset of Z is as follows:

▶ p = 2
p-ordering: {19, 2, 5, 17, 23, 31, ..., }
p-sequence is as follows, {1, 1, 2, 8, 16, 128, ...}

▶ p = 3
p-ordering: {2, 3, 7, 5, 13, 17, 19, ...}
p-sequence: {1, 1, 1, 3, 3, 9, ...}
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Examples

▶ 4!P = 48, 6!P = 11520, ...

▶ Notice, one has to multiply across. Each k represents an index
in each p-sequence.



The Natural Numbers

▶ Consider N ⊂ Z The natural ordering of N = {1, 2, 3, ....} is a
p-ordering of N.
The p-sequences of N are as follows:

▶ p = 2: {1, 1, 2, 2, 8, 8, 16, 16, ...}
▶ p = 3: {1, 1, 1, 3, 3, 3, 9, 9, 9, ...}
▶ p = 5: {1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, ..}
▶ p = 7: {1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, ..}

Check Your Results:

▶ 0!N = 1 ∗ 1 ∗ 1 ∗ 1 ∗ 1... = 1

▶ 2!N = 2 ∗ 1 ∗ 1 ∗ 1 ∗ 1... = 2

▶ 3!N = 2 ∗ 3 ∗ 1 ∗ 1 ∗ 1... = 6

▶ 6!N = 16 ∗ 9 ∗ 5 ∗ 1.... = 720
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Revisit Theorems

▶ Theorem 1
For any nonnegative integers, k and l , (k + l)!S is a multiple
of k!S l!S .

▶ Theorem 2 Let f be a primitive polynomial of degree k and
let d(S , f ) =gcd{f (a) : a ∈ S} Then, d(S , f ) divides k!S .

▶ Theorem 3
Let a0, a1, ...an ∈ S be any n + 1 integers. Then their product
of their pairwise differences∏

i<j

(ai − aj)

is a multiple of 0!S1!S ...n!S
▶ Theorem 4 The number of polynomial functions from S to

Z/nZ is given by
n−1∏
k=0

n

gcd(n, k!S)
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▶ What is the natural combinatorial interpretation for

(nk)S =
n!S

k!S(n − k)!S
coefficients?

▶ What is the ”binomial theorem” for generalized binomial?
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Questions?



Sources

Bhargava, Manjul (2000). ”The Factorial Function and
Generalizations” (PDF). The American Mathematical Monthly.

107 (9): 783–799.
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▶ TU Journal Club
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