An Introduction to the Generalized Factorials Based on the Paper of Manjul Bhargava

> Nitesh Mathur University of Wisconsin-Platteville

> > October 5, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

The Generalized Factorial

Example

Research

Graduate School

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

(日)

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves

(日)

э

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves

(日) (四) (日) (日) (日)

▶ Fields Medal Recipient in 2014

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- ▶ Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles
- Professor at Princeton, Leiden University, and adjunct professor in several others.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Paper Published in 2000
- Since worked on Higher Composition Laws, 15 and 290 Theorems, and Average Rank of Elliptic Curves
- Fields Medal Recipient in 2014
- Doctoral Advisor: Andrew Wiles
- Professor at Princeton, Leiden University, and adjunct professor in several others.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Musician (Tabla Player)

ふして 山田 ふぼやえばや 山下

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

• Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$ Examples: 5! = (5)(4)(3)(2)(1) = 120

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$

- Examples: 5! = (5)(4)(3)(2)(1) = 120
- The Gamma Function

• Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$

- Examples: 5! = (5)(4)(3)(2)(1) = 120
- The Gamma Function

$$\blacktriangleright \ \Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \ dt$$

• Definition: $n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Examples: 5! = (5)(4)(3)(2)(1) = 120
- The Gamma Function

•
$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

• $\Gamma(n) = (n-1)!$

• Definition:
$$n! = \prod_{k=1}^{n} k = n(n-1)(n-2)...(3)(2)(1)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Examples: 5! = (5)(4)(3)(2)(1) = 120
- The Gamma Function

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

•
$$\Gamma(n) = (n-1)!$$

• $\Gamma(5) = 4! = 24, \Gamma(1/2) = \sqrt{\pi}$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Theorem 1

For any nonnegative integers, k and l, (k + l)! is a multiple of k!l!.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem 1

For any nonnegative integers, k and l, (k + l)! is a multiple of k!l!.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem 2 Let f be a primitive polynomial of degree k and let d(Z, f) =gcd{f(a) : a ∈ Z} Then, d(Z, f) divides k!.

Theorem 1

For any nonnegative integers, k and I, (k + I)! is a multiple of k!/!.

Theorem 2 Let f be a primitive polynomial of degree k and let $d(\mathbb{Z}, f) = \gcd\{f(a) : a \in \mathbb{Z}\}$ Then, $d(\mathbb{Z}, f)$ divides k!.

Theorem 3

Let $a_0, a_1, ..., a_n \in \mathbb{Z}$ be any n + 1 integers. Then their product of their pairwise differences

$$\prod_{i < j} (a_i - a_j)$$

is a multiple of 0!1!...n!

Theorem 1

For any nonnegative integers, k and I, (k + I)! is a multiple of k!/!.

Theorem 2 Let f be a primitive polynomial of degree k and let $d(\mathbb{Z}, f) = \gcd\{f(a) : a \in \mathbb{Z}\}$ Then, $d(\mathbb{Z}, f)$ divides k!.

Theorem 3

Let $a_0, a_1, ..., a_n \in \mathbb{Z}$ be any n + 1 integers. Then their product of their pairwise differences

$$\prod_{i < j} (a_i - a_j)$$

is a multiple of 0!1!...n!

Theorem 4 The number of polynomial functions from \mathbb{Z} to $\mathbb{Z}/n\mathbb{Z}$ is given by

$$\prod_{k=0}^{n-1} \frac{n}{\gcd(n,k!)}$$

Introduction

The Generalized Factorial

Example

Research

Graduate School

These theorems are true on \mathbb{Z} .

Is there a "Generalized Factorial Function" so that for any subset S of \mathbb{Z} , the theorems mentioned above still remain true?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $S \subset \mathbb{Z}$ and fix a prime p.

Let $S \subset \mathbb{Z}$ and fix a prime p.

► Choose $a_0 \in S$

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_0 \in S$
- Choose a₁ ∈ S that minimizes the highest power of p dividing a₁ − a₀

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_0 \in S$
- Choose a₁ ∈ S that minimizes the highest power of p dividing a₁ − a₀
- Choose an element a₂ ∈ S that minimizes the highest power of p dividing (a₂ − a₀)(a₂ − a₁)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_0 \in S$
- Choose a₁ ∈ S that minimizes the highest power of p dividing a₁ − a₀
- Choose an element a₂ ∈ S that minimizes the highest power of p dividing (a₂ − a₀)(a₂ − a₁)
- For the kth step, choose an element a_k ∈ S that minimizes the highest power of p dividing (a_k − a₀)(a_k − a₁) · … · (a_k − a_{k−1})

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $S \subset \mathbb{Z}$ and fix a prime p.

- Choose $a_0 \in S$
- Choose a₁ ∈ S that minimizes the highest power of p dividing a₁ − a₀
- Choose an element a₂ ∈ S that minimizes the highest power of p dividing (a₂ − a₀)(a₂ − a₁)
- For the kth step, choose an element a_k ∈ S that minimizes the highest power of p dividing (a_k − a₀)(a_k − a₁) · … · (a_k − a_{k−1})
- Notation: For each k, v_k(S, p) represents the highest power of p that fulfills the above expression {v₀(S, p), v₁(S, p), ..}

Introduction

The Generalized Factorial

Example

Research

Graduate School

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Let S be the set of all primes. $S=\{2,3,5,7...\}$ and fix prime p=2

• Let $a_0 = 19$

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

- ▶ Let *a*⁰ = 19
- We need to pick a₁. The highest power of p that divides 2 - a₀ = -17 is 2⁰ = 1

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

▶ Let *a*⁰ = 19

We need to pick a₁. The highest power of p that divides 2 - a₀ = -17 is 2⁰ = 1
Let's pick a₂ (a₂ - 19)(a₂ - 2). Pick

 $a_2 = 5 \Rightarrow (5 - 19)(5 - 2) = (-14)(3) = (2 \cdot -7)(3)$

The highest power of p that divides $(a_2 - 19)(a_2 - 2)$ is $2^1 = 2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

- Let $a_0 = 19$
- We need to pick a₁. The highest power of p that divides 2 - a₀ = -17 is 2⁰ = 1
- Let's pick $a_2 (a_2 19)(a_2 2)$. Pick $a_2 = 5 \Rightarrow (5 - 19)(5 - 2) = (-14)(3) = (2 \cdot -7)(3)$ The highest power of p that divides $(a_2 - 19)(a_2 - 2)$ is $2^1 = 2$.
- Similarly, for a₃, we need (a₃ − 19)(a₃ − 2)(a₃ − 5). (17 − 19)(17 − 2)(17 − 5) = (−2)(15)(2² ⋅ 3) The corresponding power here is 2³ = 8.
Example

Let S be the set of all primes. $S = \{2, 3, 5, 7...\}$ and fix prime p = 2

- ▶ Let *a*⁰ = 19
- We need to pick a₁. The highest power of p that divides 2 - a₀ = -17 is 2⁰ = 1
- Let's pick $a_2 (a_2 19)(a_2 2)$. Pick $a_2 = 5 \Rightarrow (5 - 19)(5 - 2) = (-14)(3) = (2 \cdot -7)(3)$ The highest power of p that divides $(a_2 - 19)(a_2 - 2)$ is $2^1 = 2$.

- Similarly, for a₃, we need (a₃ − 19)(a₃ − 2)(a₃ − 5). (17 − 19)(17 − 2)(17 − 5) = (−2)(15)(2² ⋅ 3) The corresponding power here is 2³ = 8.
- Similarly for the rest a_k

The p-ordering for p = 2 is as follows: {19,2,5,17,23,31,...,} and its corresponding p-sequence is as follows, {1,1,2,8,16,128,...}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Back to Theory

(4日) (個) (目) (目) (目) (の)()

Construct such a p ordering for every p (Note: Not unique)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Construct such a p ordering for every p (Note: Not unique)
- Punchline 1: The associated p-sequence of S is independent of the choice of p-ordering.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Construct such a p ordering for every p (Note: Not unique)
- Punchline 1: The associated p-sequence of S is independent of the choice of p-ordering.
- ▶ Punchline 2: Let S be any subset of Z. Then the factorial function of S, denoted by k!s is defined by

$$k!_s = \prod_p v_k(S, p)$$

Back to Example

▶ The p-ordering for the prime subset of \mathbb{Z} is as follows:

The p-ordering for the prime subset of Z is as follows:
p = 2 p-ordering: {19, 2, 5, 17, 23, 31, ..., } p-sequence is as follows, {1, 1, 2, 8, 16, 128, ...}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The p-ordering for the prime subset of Z is as follows: *p* = 2 p-ordering: {19, 2, 5, 17, 23, 31, ..., } p-sequence is as follows, {1, 1, 2, 8, 16, 128, ...} *p* = 3 p-ordering: {2, 3, 7, 5, 13, 17, 19, ...} p-sequence: {1, 1, 1, 3, 3, 9, ...}

Examples

▶ $4!_P = 48, 6!_P = 11520, ...$

Notice, one has to multiply across. Each k represents an index in each p-sequence.

	p = 2	p = 3	p = 5	p = 7	<i>p</i> = 11	 k! _P
<i>k</i> = 0	1	1	1	1	1	 1×1×1×1×1×=1
<i>k</i> = 1	1	1	1	1	1	 1×1×1×1×1×=1
k = 2	2	1	1	1	1	 2×1×1×1×1×=2
<i>k</i> = 3	8	3	1	1	1	 8×3×1×1×1× = 24
<i>k</i> = 4	16	3	1	1	1	 16×3×1×1×1× = 48
<i>k</i> = 5	128	9	5	1	1	 128×9×5×1×1× = 5760
<i>k</i> = 6	256	9	5	1	1	 256×9×5×1×1× = 11520

Table of values of $v_k(P, p)$ and $k!_P$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Consider N ⊂ Z The natural ordering of N = {1, 2, 3,} is a p-ordering of N.
 The p-sequences of N are as follows:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▶ Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3,\}$ is a p-ordering of \mathbb{N} .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▶
$$p = 2$$
: {1,1,2,2,8,8,16,16,...}

▶ Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3,\}$ is a p-ordering of \mathbb{N} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▶
$$p = 2$$
: {1, 1, 2, 2, 8, 8, 16, 16, ...}

▶
$$p = 3$$
: {1,1,1,3,3,3,9,9,9,...}

▶ Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3,\}$ is a p-ordering of \mathbb{N} .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▶
$$p = 2$$
: {1,1,2,2,8,8,16,16,...}

▶
$$p = 3$$
: {1,1,1,3,3,3,9,9,9,...}

$$\blacktriangleright \ p = 5: \ \{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 25, ..\}$$

▶ Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3,\}$ is a p-ordering of \mathbb{N} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The p-sequences of \mathbb{N} are as follows:

$$\blacktriangleright p = 2: \{1, 1, 2, 2, 8, 8, 16, 16, ...\}$$

▶
$$p = 3$$
: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$

▶
$$p = 5$$
: {1,1,1,1,1,5,5,5,5,5,5,25,..}

p = 7: {1,1,1,1,1,1,1,7,7,7,7,7,..} Check Your Results:

▶ Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3,\}$ is a p-ordering of \mathbb{N} .

The p-sequences of \mathbb{N} are as follows:

▶ p = 2: {1,1,2,2,8,8,16,16,...}

▶
$$p = 3$$
: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$

▶
$$p = 5$$
: {1,1,1,1,1,5,5,5,5,5,5,25,..}

p = 7: {1,1,1,1,1,1,1,7,7,7,7,7,..} Check Your Results:

•
$$0!_{\mathbb{N}} = 1 * 1 * 1 * 1 * 1 * 1 ... = 1$$

▶ Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3,\}$ is a p-ordering of \mathbb{N} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The p-sequences of \mathbb{N} are as follows:

▶
$$p = 2$$
: {1,1,2,2,8,8,16,16,...}

▶
$$p = 3$$
: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$

$$\blacktriangleright \ p = 5: \ \{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 25, ..\}$$

p = 7: {1,1,1,1,1,1,1,7,7,7,7,7,..} Check Your Results:

•
$$0!_{\mathbb{N}} = 1 * 1 * 1 * 1 * 1 * 1 ... = 1$$

▶
$$2!_{\mathbb{N}} = 2 * 1 * 1 * 1 * 1 ... = 2$$

▶ Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3,\}$ is a p-ordering of \mathbb{N} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The p-sequences of \mathbb{N} are as follows:

▶ p = 2: {1,1,2,2,8,8,16,16,...}

▶
$$p = 3$$
: $\{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$

$$\blacktriangleright \ p = 5: \ \{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 25, ..\}$$

- p = 7: {1,1,1,1,1,1,1,7,7,7,7,7,..} Check Your Results:
- $0!_{\mathbb{N}} = 1 * 1 * 1 * 1 * 1 * 1 ... = 1$
- ▶ $2!_{\mathbb{N}} = 2 * 1 * 1 * 1 * 1 ... = 2$
- ▶ $3!_{\mathbb{N}} = 2 * 3 * 1 * 1 * 1 ... = 6$

▶ Consider $\mathbb{N} \subset \mathbb{Z}$ The natural ordering of $\mathbb{N} = \{1, 2, 3,\}$ is a p-ordering of \mathbb{N} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

▶
$$p = 2$$
: {1,1,2,2,8,8,16,16,...}

$$\blacktriangleright p = 3: \{1, 1, 1, 3, 3, 3, 9, 9, 9, ...\}$$

$$\blacktriangleright p = 5: \{1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, ..\}$$

- p = 7: {1,1,1,1,1,1,1,7,7,7,7,7,..} Check Your Results:
- $0!_{\mathbb{N}} = 1 * 1 * 1 * 1 * 1 * 1 ... = 1$
- ▶ $2!_{\mathbb{N}} = 2 * 1 * 1 * 1 * 1 ... = 2$
- ► $3!_{\mathbb{N}} = 2 * 3 * 1 * 1 * 1 ... = 6$
- $6!_{\mathbb{N}} = 16 * 9 * 5 * 1.... = 720$

SI. No.	Set S	k!s
1	Set of natural numbers	<i>k</i> !
2	Set of even integers	2 ^{<i>k</i>} × <i>k</i> !
3	Set of integers of the form an + b	a ^k ×k!
4	Set of integers of the form 2^n	$(2^k - 1)(2^k - 2) \dots (2^k - 2^{k-1})$
5	Set of integers of the form q^n for some prime q	$(q^k-1)(q^k-2)\ldots(q^k-q^{k-1)})$
6	Set of squares of integers	(2 <i>k</i>)!/2

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

<ロト < @ ト < 差 ト < 差 ト 差 の < @ </p>

Theorem 1

For any nonnegative integers, k and l, $(k + l)!_S$ is a multiple of $k!_S l!_S$.

Theorem 1

For any nonnegative integers, k and $I, (k + I)!_S$ is a multiple of $k! \leq l! \leq \ldots$

Theorem 2 Let f be a primitive polynomial of degree k and let $d(S, f) = \gcd\{f(a) : a \in S\}$ Then, d(S, f) divides $k!_S$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem 1

For any nonnegative integers, k and $I, (k + I)!_S$ is a multiple of $k! \leq l! \leq \ldots$

Theorem 2 Let f be a primitive polynomial of degree k and let $d(S, f) = \gcd\{f(a) : a \in S\}$ Then, d(S, f) divides $k!_S$.

Theorem 3

Let $a_0, a_1, ..., a_n \in S$ be any n + 1 integers. Then their product of their pairwise differences

$$\prod_{i < j} (a_i - a_j)$$

is a multiple of $0!_{S}1!_{S}...n!_{S}$

Theorem 1

For any nonnegative integers, k and $I, (k + I)!_S$ is a multiple of $k! \leq l! \leq \ldots$

Theorem 2 Let f be a primitive polynomial of degree k and let $d(S, f) = \gcd\{f(a) : a \in S\}$ Then, d(S, f) divides $k!_S$.

Theorem 3

Let $a_0, a_1, ..., a_n \in S$ be any n + 1 integers. Then their product of their pairwise differences

$$\prod_{i < j} (a_i - a_j)$$

is a multiple of $0!_{S}1!_{S}...n!_{S}$

Theorem 4 The number of polynomial functions from S to $\mathbb{Z}/n\mathbb{Z}$ is given by

$$\prod_{k=0}^{n-1} \frac{n}{\gcd(n,k!_S)}$$

The Rest of the Paper

A bunch of proofs.

- A bunch of proofs.
- Generalization to Dedekind Rings.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- A bunch of proofs.
- Generalization to Dedekind Rings.
- Generalization to Higher Dimensions.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- A bunch of proofs.
- Generalization to Dedekind Rings.
- Generalization to Higher Dimensions.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Applications

Introduction

The Generalized Factorial

Example

Research

Graduate School

Posed Questions

For a subset S ⊂ Z, is there a natural combinatorial interpretation of k!_S.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- For a subset S ⊂ Z, is there a natural combinatorial interpretation of k!_S.
- What is the natural combinatorial interpretation for $\binom{n}{k}_{S} = \frac{n!_{S}}{k!_{S}(n-k)!_{S}}$ coefficients?
- For a subset S ⊂ Z, is there a natural combinatorial interpretation of k!_S.
- What is the natural combinatorial interpretation for $\binom{n}{k}_{S} = \frac{n!_{S}}{k!_{S}(n-k)!_{S}}$ coefficients?
- What is the "binomial theorem" for generalized binomial?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(ロ)、(型)、(E)、(E)、 E) の(()

An Algorithm to Reverse the Generalized Factorials Process

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

An Algorithm to Reverse the Generalized Factorials Process
Sequences of Generalized Factorials show up in the denominators of numerous series.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- An Algorithm to Reverse the Generalized Factorials Process
- Sequences of Generalized Factorials show up in the denominators of numerous series.
- Research Question: Given a sequence of numbers, presumably a sequence of generalized factorials for a particular set, can we figure out what set that is?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

The Generalized Factorial

Example

Research

Graduate School

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Teaching Vs Classes Vs Research

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Teaching Vs Classes Vs Research
- Classes, Advisors, and More

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Teaching Vs Classes Vs Research
- Classes, Advisors, and More
- Masters Vs PhD

Application Process

► Talk It Out with Faculty, Family, and Peers

Talk It Out with Faculty, Family, and Peers

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A PhD is a 5-6 year commitment

- Talk It Out with Faculty, Family, and Peers
- A PhD is a 5-6 year commitment
- GRE Subject Test Scores, Recommendation Letters

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Keep An Open Mind

Pure vs Applied Vs Statistics

(ロ)、(型)、(E)、(E)、 E) のQ(()

- Pure vs Applied Vs Statistics
- Academia, Industry, Government, National Labs

- Pure vs Applied Vs Statistics
- Academia, Industry, Government, National Labs

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Data Science, Teaching

- Pure vs Applied Vs Statistics
- Academia, Industry, Government, National Labs
- Data Science, Teaching
- Math Movies, YouTube Channels, Books, and More!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Questions?

Bhargava, Manjul (2000). "The Factorial Function and Generalizations" (PDF). The American Mathematical Monthly. 107 (9): 783–799.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Math Club, University of Wisconsin-Plattevile
- GAUSS, University of Iowa
- Dr. O'Neil, Jon Bolin
- Oklahoma-Arkansas MAA Section Meeting

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- University of Tulsa
- TU Journal Club