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1 Introduction

Monday, 25 August 2021

1.1 Banach & C∗ algebras

Suppose A is a Banach Algebra over C with algebraic structure (A,+, ·, λ) (assume unital i.e.
1 ∈ A). Furthermore, it is an algebra with a topology on it (induced by norms).

*Note: All finite dimensional norms induces the same topology. Estimates might be different, but
open sets are the same.

Definition 1.1 (Norm). Norm is a mapping || || : A 7→ R+ such that
(i) ||c · x|| = |c| · ||x|| ∀x ∈ A, c ∈ C
(ii) ||x+ y|| ≤ ||x||+ ||y|| (sub-additive; Triangle Inequality)
(iii) ||x|| = 0 ⇐⇒ x = 0A.
(iv) ||xy|| ≤ ||x|| · ||y|| (sub-multiplicative)
(v) (A, || · || is complete i.e. ∀|| · ||-Cauchy sequences converge.
(vi) ||x∗x|| = ||x||2, where ∗ is the involution.

• Properties (i)-(iii) form a normed space.

• Property (iii) is known as the ‘faithfulness’ property. If we do not have faithfulness, then we
have a semi-norm.

• With the addition of property (iv), we have a Norm Algebra

• With (i)-(v), we have a Banach Algebra.

• A Banach Algebra with an involution map is known as an Involutive Banach Algebra.

• Finally, all the six properties combine to define the C∗-Algebra.

Definition 1.2 (Involution). ∗ : A→ A is an involution if
(i) (ax+ by)∗ = āx∗ + b̄y∗ (Conjugate linear in C or linear in R).
(ii) (x∗)∗ = x
(iii) (xy)∗ = y∗x∗

Example 1 (Matrices). Consider Mn(C), k ∈ N.
It is equipped with the norm ||A||∞ = sup||v||2≤1 ||Av||2, where || · ||2 denotes the Euclidean norm.

Also notice that we have A∗ = ĀT (conjugate transpose).
Mn(C) satisfies all the conditions of a C∗-algebra.

Example 2 (Set of Continuous Functions). Similarly consider C([0, 1] = {f : [0, 1]→ C continuous}.
One can add continuous functions, do pointwise multiplications, and add by scalar, i.e. we have

(C[0, 1],+, ·, λ). Furthermore continuous functions of compact sets are bounded, so supremums are
well-defined. Hence, it is equipped with the following norm:
||f ||∞ = supx∈[0,1] |f(x)| <∞.

Finally, f∗(x) = f̄(x) (complex conjugate).
All the conditions above are satisfied. For example, the sub-multiplicative condition can be shown

as follows:

|(fg)(x)| = |f(x)g(x)|
= |f(x)| · |g(x)|
≤ ||f ||∞ · ||g||∞

Taking sups of both sides, we get the desired conclusion.

Example 3 (`∞ functions). Similarly, `∞ is also a C∗-algebra.
Define `∞([0, 1]) = {f : [0, 1]→ R essentially bounded}.
*Note: Commutativity is NOT assumed.
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1.2 Spectral Theory

Definition 1.3 (G(A)). G(A) = Set of all invertible elments of A = {x ∈ A : ∃ two side inversesx−1}

Definition 1.4 (Spectrum). Fix x ∈ A, σA(x) = {λ ∈ C, x− λ(orλ1− x 6∈ G(A)}.

Example 4 (Matrices). Let A = Mn(C), x ∈ A. Then,

λIn −X 6∈ G(A)

⇐⇒ det(λIn −X) = 0

⇐⇒ λ is an eigenvalue

Hence, λ is a spectrum if it is the root of the the characteristic polynomial i.e.

Spectrum σA(X) = {eigenvalues}.

(Later, we will find in our first big theorem that Spectrum is countable).

Lemma 5. Let A be a Banach algebra. x, y ∈ A. Then,

σA(xy) ∪ {0} = σA(yx) ∪ {0}.

Proof. 1− xy ∈ G(A) ⇐⇒ 1− yx ∈ G(A). We will prove the (⇐) implication.
First note that

(1− xy)−1 = 1 + x(1− yx)−1y. (1)

Then, we can check that

1 = (1− xy) · [1 + x(1− yx)−1y] from (1)

= (1− xy) + (1− xy)(x(1− yx)−1y)

= (1− xy) + x(1− yx)−1y − xyx(1− yx)−1y

= 1− xy + (1− yx)−1y − x(1− (1− yx))(1− yx)−1y

= 1− xy + x(1− yx)−1y − x(1− yx)−1y − x (1− yx)1(1− yx)−1︸ ︷︷ ︸
1

y

= 1− xy + xy

= 1

1.2.1 Derivation of the Inverse

Recall the power series

(1− z)−1 =
1

1− z
=

∞∑
n=0

zn = 1 + z + z2 + ... = (1− z)−1 (2)

We can apply this as follows:

(1− xy)−1 =
1

1− xy
=

∞∑
n=0

(xy)n

= 1 + xy + xyxy + xyxyxy + ...

= 1 + x(1 + yx+ (yx)2 + ..)y

= 1 + x
1

1− yx
y

= 1 + x(1− yx)−1y

(Very Cool).
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Lemma 6. Let A be a Banach Algebra. 1 ∈ A, x ∈ A, ||x|| < 1. Then, 1− x ∈ G(A).

Proof. Let yn = 1 + x+ x2 + ...xn.

(1− x)−1 =

∞∑
n=0

xn

= 1 + x+ x2 + ...

We need to take the limit of both sides. Before we can do that, consider WLOG for n > m,

||yn − ym|| = ||
∞∑
k=0

xk −
m∑
l=0

xl

= ||
m∑
k=n

xk||

≤
n∑

k=m+1

||xk||

≤
n∑

k=m+1

||x|| → 0.

The last line follows since this is a tail of a power series. Hence, we have

(1− x)yn = (1− x)(1 + x+ x2 + ...)

= 1− xn−1 Taking limits of both sides, we get

(1− x)(

∞∑
k=0

xn = 1

∴ (1− x)−1 =

∞∑
k=0

xn

Corollary 6.1. ||1− x|| < 1⇒ x ∈ G(A).
27 August 2021
1 ∈ A, x ∈ A such that ||x|| < 1⇒ 1− x ∈ G(A) and also (1− x)−1 =

∑∞
i=0 x

n.

Corollary 6.2. If ||1− y|| < 1⇒ y ∈ G(A).

This is true since B(1, 1) ⊂ G(A) and y−1 =
∑∞
i=0(1− y)n.

Theorem 7. 1 ∈ A. Then the following properties hold:
a) G(A) = {x ∈ A, ∃x−1} is open.
b) The map x 7→ x−1 is continuous, where x, x−1 ∈ G(A).

Here is the proof of a).

Proof. Fix b ∈ G(A). Then, we claim that

∀a ∈ A such that ||a− b|| < 1

||b−1||
≥ a ∈ G(A).

Note that B(b,
1

||b−1||
∈ G(A), where ||b−1|| > 0. Then,

||1− ab−1|| = ||bb−1 − ab−1||
= ||(b− a)b−1||
≤ ||b− a|| · ||b−1||| since Normed Algebra

<
1

||b−1||
· ||b−1||

= 1

⇒ ||1− ab−1|| = 1⇒ ab−1 ∈ G(A)⇒ b ∈ G(A) (by Corollary 6.2) ⇒ a = (ab)−1b ∈ G(A).
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Now we prove (b). To do this, we first need an estimate:

Proof.

||(ab−1)−1|| = ||
∞∑
n=0

(1− ab−1)n||

≤
∞∑
n=0

||(1− ab−1)n|| (by triangle inequality)

≤
∞∑
n=0

||(1− ab)−1)n|| (Normed Algebra)

≤
∞∑
n=0

||1− ab−1||n (sub-multiplicative)

=

∞∑
n=0

||bb−1 − ab−1||n

=
∞∑
n=0

||(b− a)b−1||n

≤
∞∑
n=0

||b− a||n · ||b−1||n

=

∞∑
n=0

||b− a||||b−1||n

=
1

1− ||b− a|| · ||b−1||

The last line follows since ||a− b|| < 1

||b−1||
.

Then, we have the following:

||a−1 − b−1|| = ||a−1 · 1− 1 · b−1||
= ||a−1bb−1 − a−1ab−1||
= ||a−1(b− a)b−1||
= ||b−1(ab−1)−1(b− a)b−1||
≤ ||b−1||||ab−1||||b− a||||b−1|| (Normed Algebra)

= ||(ab−1)−1||||b− a||||b−1||2

≤ 1

1− ||b− a||b−1
· ||b− a|| · ||b−1||2 (by Estimate)

Note that t 7→ ||b−1||2t
1− t||b−1||

→ 0 when t = 0 i.e. when ||b− a|| → 0

⇐⇒ ||a−1 − b−1|| → 0⇒ Continuous

Definition 1.5. x ∈ A, (spectrum) σA(x) ⊂ C, λ ∈ C, x− λ1 6∈ G(A).

Theorem 8. 1 ∈ A, x ∈ A⇒ σA(x) is nonempty compact subset of C.
Theorem 9. σA is closed.

(a) σA(x) ⊂ D̄(0, ||x||).
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Proof. Pick λ > ||x||. Then,

|| 1
λ
x|| = 1

λ
||x|| < 1

⇒ 1− 1

λ
||x|| ∈ G(A) (by Lemma)

⇒ λ1− x ∈ G(A)

⇒ λ 6∈ σA(x)

σA is bounded

Since we have closed and bounded, it is compact.

(Fact; Every Banach Algebra has a dual functional).

φ ∈ A∗ = {φA→ C}.
λ ∈ C 7→ φ((λ1− x)−1) ∈ C. Define Ψ = (λ1− x)−1.

Proof. Assume by way of contradiction that σA(x) = ∅. Then, the resolvent set ρA(x) = C.

∀λ ∈ C, λ1− x ∈ G(A). Then, we have the following:

Ψ(λ)−Ψ(λ0)

= φ((λ− x)−1 − (λ01− x)−1)

= φ((λ1− x)−1(λ1− x− = −(λ01− x)(λ01− x)−1))

= (λ− λ0)φ(λ1− x)−1(λ01− x)−1))

lim
λ→λ0

Ψ(λ1)−Ψ(λ0)

λ− λ0
= φ(λ1− x)−1(λ01− x)−1

= φ(λ01− x)−2)

30 August 2021 We continue with the proof.

Recall 1 ∈ A,∀x ∈ A, σA(x) = {λ ∈ C : (λ1− x) 6∈ G(A)}. Then, σA(x) 6= 0 and compact.

(Continued) ρA(x) = C − σA(x). Fix φ ∈ A∗, where the dual A∗ = {φA → C is linear, continuous }. Note
that

Let λ ∈ ρA(x) ⊂ C→ C.
Note that |||φ||| = sup||x||≤1 |φ(x)|. (A∗, ||| · |||) is a Banach space.

Proof. (Continued)

Take (λ1− x) ∈ ρA(x). Then,

φ(λ1− x)−1 i.e. λ 7→ φ(λ1− x)−1.

Observe

(λ1− x)−1 − (λ1− x)−1 = (λ01− x)−1(λ01− x)−1(λ1− x)−1

⇒ φ(λ01− x)−1 − (λ1− x)−1) = φ(λ− λ0)(λ01− x)−1(λ1− x)−)

= (λ− λ0)φ((λ01− x)−1(λ1− x)−1)

⇒ φ((λ01− x)−1) · φ(λ1− x)−1 = φ(λ− λ− λ0)(λ01− x)−1(λ1− x)

= (λ− λ0)φ(x01− λ)−1)(λ1 − x)−1
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Then, we have

Ψ(λ1)−Ψ(λ)

λ− λ0
=
φ(λ01− x)−1 − φ(λ1− x)−1)

λ− λ0

= φ((λ01− x)−1(λ− x)−1)

⇒ lim
λ→λ0

Ψ(λ)−Ψ(λ0

λ− λ0
= lim
λ→λ0

φ(λ01− x)−1(λ1− x)−1))

= φ(λ01− x)−1)2

= Ψ ∈ H(ρA(x)),

where H is the family of holomorphic functions.

Now we show that ρA(x) 6= ∅.

Proof. Assume by contradiction, σA(x) = ∅ ⇒ ρA(x) = C.
Ψ is entire. Next, we note that

(λ1− x)−1 = λ−1(1− x

λ
)−1

= λ−1
∞∑
n=0

(
x

λ
)n

=

∞∑
n=1

xn−1

λn

⇒ φ(λ1− x)−1)) = Ψ(

∞∑
n=1

xn−1

λn
) =

n∑
i=1

(φ(
xn−1

λn
))

=

n∑
i=1

1

λn
φ(xn−1)

Then, we have

||φ(λ)| = |
∑ 1

λn
φ(xn−1)|

=

∞∑
n=1

| 1

λn
φ(xn−1)|

≤
∞∑
n=1

1

λ
|||φ||| · ||xn−1||

Side Note

|φ(x)| ≤ |||φ||| ∀x ≤ 1

|φ(
y

||y||
)|| ≤ |||φ|||

1

|||y|||
· |φ(y)| ≤ |||φ|||

|φ(y)| ≤ |||φ||| · ||y||

≤
∞∑
n=1

1

|λ|n
|||φ||| · ||x||n−1
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Then, by geometric series

|φ(λ1)| ≤ |||φ|||
|λ|

·
∞∑
n=0

(
||λ||
λ

)n

=
|||φ|||
|λ|

· 1

1− ||x||λ

⇒ lim
x→∞

|φ(λ1)| ≤ lim
x→0

|||φ|||
|λ︸ ︷︷ ︸
→0

· 1

1− ||x||λ︸ ︷︷ ︸
→1

By Liouville Theorem, Ψ is constant ⇒ Ψ = 0.

Then, φ(λ1− x)−1 = 0 for every φ. This contradicts Hahn-Banach theorem (since we will have
φ = ∅ for a nonempty input).

∴ σA(x) 6= ∅.

Corollary 9.1. 1 ∈ A such that G(A) = A− {0}.

Proof. Pick x ∈ A⇒ σA(x) 6= ∅.
Then, ∃λ ∈ σA(x)⇒ λ1− x 6∈ G(A)⇒ λ1− x = 0 ⇐⇒ x = λ1.

Theorem 10. f(λ) =
∑k
n=0 anx

n.

x ∈ A, f(x) =
∑k
n=0 anx

n.

Theorem 11. x ∈ A, f(σA(x)) = σA(f(x)).

Proof. λ 6∈ σA(x)⇒

f(x)− f(λ) =

k∑
n=0

anx
n −

∑
anλ

n

=

k∑
n=0

an(xn − λn)

=

k∑
n=0

a)n(x− λ1)(

n−1∑
j=0

xjxn−1−j)

⇒ f(x)− f(λ)1 = (x− λ1)

∞∑
n=0

an(

n−1∑
j=0

xjxn−1−j)

λ ∈ σA(x) = (x − λ1) 6∈ G(A) ⇒ f(x) − f(λ)1 6∈ G(A) ⇒ f(λ) 6∈ σA(f(x)) ⇒ f(σA(x)) ⊂
σA(f(x)).

Pick µ 6∈ f(σA(x)). The,

f(x)− µ1 = an(x− λ1)(x− λ2... (can factor a polynomial)

λ ∈ σA(x). Then,

f(λ)− µ 6= 0 ⇐⇒ λ1, λ2, .... 6= 0 ⇐⇒ All functions invertible ⇐⇒ f(x)− µ(1).

1.3 Three Pillars of Functional Analysis

1.3.1 Hahn-Banach

x 6= 0 and φ ∈ A∗ and Re (φ(x)) 6 −0. (Can separate points).

9



1.3.2 Banach-Steinhaus or Uniform boundedness principle

1.3.3 Open Mapping Theorem
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1 September 2021

Theorem 12. 1 ∈ A Banach Algebra, x ∈ A, then

r(x) = lim
n→∞

||xn||1/n; r(x) = sup
λ∈σA

(x)

Proof. Observe that r(xn) = (r(x))n.

Definition 1.6.

r(xn) = sup
λıσA(xn)

|λ|

= sup
λ∈(σA(x))n

= sup
λ0∈σA(x)

|λn0 |

= sup
λ0∈σA(x)

|λ0|n

= ( sup
λ0∈σA(x)

λ0|)n

= r(x)n

⇒ (r(x))n = r(xn) ≤ ||xn||
⇒ r(x) ≤ ||xn||1/n ⇒ r(x) ≤ lim infn→∞ ||xn||1/n.
(We also need to show that r(x) ≥ lim supn→∞ ||xn||1/n.

Let Σ = {z ∈ C||z| > r(x)} = C−B(0, r(x))

Fix φ ∈ A∗.
λ (λ− x)−1

φ((λ− x)−1)

C→ C λ 7→ φ(λ− x)−1) ∈ H(ρA(x))

λ| > ||x||

(λ− x)−1 =
1

λ

∞∑
n=0

(
x

λ
)n =

∞∑
n=0

xn−1

λn

φ((λ− x)−1) = φ(

∞∑
n=0

xn−1

λn
)

=

∞∑
n=0

φ(xn−1

λn

=

∞∑
n=1

an
λn

⇒ limn→∞ |
φ(xn−1)

λn
| = 0 ⇐⇒ limn→∞ |φ(

xn−1

λn
)| = 0.

Let yn =
xn−1

λn
∈ A. Then,

limn→∞ φ(yn) = 0 for all φ ∈ A∗.

A∗ : {φ : A→ C| continuous, linear}

A ⊂ A∗∗.

11



x ∈ A x ∈ A∗∗.
x(φ) := φ(x)

||||x|||| = sup
||||x||||≤1

|x(φ)|

= sup
||||x||||≤1

||phi(x)|

≤ sup
||||x||||≤1

||||φ(x)||| · ||x||

= ||x||

2 Banach-Steinhaus Theorem

Theorem 13. Tn : X → Y linear, bounded.

∀x ∈ X,∃Cx ≥ 0 such that ||Tn(x)||Y ≤ Cx ∀n⇒ ∃c1 such that ||Tn|| < c∀n.

Proof. Fix n, k ∈ N.
Āk = Ak = {x ∈ X|Tn(x) ⊂ K ∀n}
∀x ∈ X, ∃k > 0, x ∈ Ak.

X = ∪Ak second Baire Category Theorem (A complete metric space cannot be expressed as a
countable union of nowhere dense subsets).

∃k such that Aok 6= ∅.
∃r > 0, x0 ∈ X such that B(x0, r) ⊂ Ak.

||Tn(x)|| < k ∀x ∈ B(x0, r).

x ∈ B(x0, r)⇒ x = x0 + ry, ||y|| ≤ 1. Then,

||Tn(x0 + ry)|| ≤ k ∀||y|| ≤ 1

||Tn(ry)|| − ||Tn(x0)|| ≤ k
|r|||Tn(y)|| ≤ k + ||Tn(x0)||

||Tn(y)|| ≤ k + Tn(x0)||
|r|

⇒ sup
||y||≤1

||Tn(y)|| ≤ k + Tn(x0)

|r|

Note that ||Tn(x0)|| < k. Then,

limn→ yn(φ) = 0 where yn : A∗ → C.

Banach-Steinhaus: ∃c > 0, ||yn|| = ||||yn|||| ≤ c∀n ∈ N.

12



c ≥ ||x
n−1

λn
|| ∀n

c ≥ ||x
n−1

|λ|n
||

c||x| ≥ ||x
n||
|λ|n

c|λ|n||x|| ≥ ||xn|| ∀n
c1/n|λ|||x||1/n ≥ ||xn||1/n ∀n

lim sup
n→∞

c1/n|λ|||x||1/n ≥ lim sup
n→∞

||xn||1/n

|λ| ≥ lim sup
n→∞

||xn||1/n ∀|λ| > r(x)

r(x) ≥ lim sup
n→∞

||xn||1/n

13



3 September 2021

3 Normal, Self-Adjoint, Isometry

Recall 1 ∈ A Banach Algebra. and r(x) = limx→0 ||xn|1/n.

Definition 3.1. 1 ∈ A. (with an involution).

x ∈ A is called normal iff xx∗ = x∗x.

x ∈ A is called self-adjoint iff x = x∗.

Exercise x ∈ A, x∗x, xx∗ ∈ A, then we have

(x∗x)∗ = x∗ · (x∗)∗ = x∗x.

Proposition 1. 1 ∈ A (involutive Banach algebra, x ∈ A is normal.

If in addition, A is a C∗-algebra, then r(x∗x) = r(x).

Proof.

(x∗x)n = (x∗)nxn

lim
n→∞

||(x∗x)n||1/n = lim
n→∞

||x∗nxn||1/n

≤ lim
n→∞

||(x∗)n|| · ||xn||1/n

= lim
n→∞

||(xn)∗|| · ||xn||1/n

− = lim
n→∞

||xn||2/n

= lim
n→∞

(||xn||1/n)2

= r(x)2

⇐⇒ r(x∗x = limx→∞ ||xn||1/n.

Proposition 2. A a C∗-algebra. If x ∈ A is normal, r(x) = ||x||.

Proof. Suppose x ∈ An ⇒⇐⇒ x = x∗ (self-adjoint).

Then, we have ||x∗x|| = ||x||2 (since it is C∗).

⇒ ||x2|| = ||x||2.

By induction, we have ||x2n = ||x||2n ⇒ ||x2n ||1/2n = ||x|| ∀n.
Taking the limit, we get, limn→∞ ||x2n ||1/2n = r(x) = ||x|| when x is self-adjoint x = x∗.

Finally, we have the following proof:

r(x)2 = r(x∗x)

= ||x∗x||
= ||x||2

⇐⇒ r(x) = ||x|| when x is normal.

Proposition 3. SupposeA,B any two unital C∗-algebras. Let Ψ : A→ B be any ∗-homomorphism
(preserves composition, one-to-one, and (Ψ(x∗)) = (Ψ(x))∗.

Contraction Then, ∀x ∈ A, ||Ψ(x)||B ≤ ||x||A.
Moreover, if Ψ is a ∗-isomorphism, then ||Ψ(x)|| = ||x|| for all x is an isometry.

14



Proof. Note that Ψ(G(A)) ⊂ G(B).

Fix x ∈ A. Let λ 6∈ σA(x). Then, λ ∈ ρA(x).

λ1− x ∈ G(A)

⇒ Ψ(λ1− x) ∈ G(B)

⇒ λΨ(1)−Ψ(x) = λ1B −Ψ(x) ∈ G(B)

⇒ λ 6∈ σB(Ψ(x))

Then, we take the complement. So,

σB(Ψ(x)) ⊂ σA(x)

.
sup

λ∈σB(Ψ(x)

|λ| ≤ sup
λ∈σA(x))

|λ| = r(x).

Trick

||Ψ(x)||2 = ||Ψ(x))∗Ψ(x)||
= ||Ψ(x∗)Ψ(x)||
= ||Ψ(x∗x)|| (since self-adjoint)

= ||r(Ψ(x∗x))||
≤ r(x∗x)

= ||x∗||
= ||x||2

⇒ ||Ψ(x)|| ≤ ||x|| ∀x
⇒ ||Ψ−1(x)|| ≤ ||x||

Corollary 13.1. ∃ at most 1C∗-norm on a given involutive Banach algebra.

Proof. Suppose (A, || · ||1
Id−→ (A, || · ||2

Id-map is a ∗-homomorphism. By Proposition 3, ||x||2 = ||Id||2 = ||x||1.
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Proposition 4. Suppose 1 ∈ A is a C∗-algebra, x ∈ An. Then spectrum σA(x) ⊂ R.

Proof. Fix λ ∈ σA(x) = α+ iβ.

Fix t ∈ R and consider yt = x− α+ it ∈ A; y(t) is normal. Then,

yt∗yt = (x− α+ it)∗(x− α+ it)

= ((x− α− it)(x− α+ it)

yty
∗
t = (x− α+ it)(x− α− it)

Then,

|i(t+ β)|2 ≤ r2(x) ∈ σA(yt)

|t+ β|2 ≤ r2(x) = ||yt||2 = ||y∗t yt||
= ||(x− α− it)(x− α+ it)||
= (x− α)2 + t2||
≤ ||(x− α)2||+ t2

⇒ t2 + 2βt+ β2 ≤ ||x− α||2 + t2 ∀t ∈ R
2βt+ β2 ≤ ||x− α||2 ∀

15



This is true only when β = 0.

Lemma 14. 1 ∈ A,C∗-algebra, x 6∈ G(A),∃{xn}n ⊂ G(A), xn → x. Then, limn→∞ ||x−1
n || =∞.

Proof. Assume by contradiction, ∃c > 0 such that ||x−1
n || ≤ c, ∀n.

||1− x−1
n x|| = ||x−1

n xn − x−1
n x||

≤ ||x−1
n ||||xn − x||

≤ c||xn − x||

∃n0 > 0 such that ||1− x−1
n0
x|| ≤ c||xn0

− x|| < 1

⇒ x−1
n0
x ∈ G(A)⇒ x ∈ G(A).

4 Examples of C∗-algebra

Example 15. C([0, 1]) = {f : [0, 1]→ C| continuous } with norm ||f ||∞ = sup |f(x)|.
Example 16. B(H) = {T : H → H| linear, bounded}, where H is a Hilbert space. Then,
(B(H),+, λ, ◦) is an algebra.

||T ||∞ = sup||ξ||≤1 sup ||T (ξ)||.
||T ◦ U(ξ)|| ≤ ||T || · ||U(ξ)|| ≤ ||T || · ||U || · ||ξ||
⇒ ||T ◦ U || ≤ ||T || · ||U ||
∀T : H → H  T ∗ : H → T

< Tξ, η >=< η.T ∗η > ∀ξ, η ∈ H.
Theorem 17 (Riesz Representation Theorem). f : H → C linear, continuous ∃!z ∈ H such that
f(x) =< x, z >.

16
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(B(H),+, λ, ·, ∗, || · ||∞) Banach algebra.

Theorem 18. Operator T ∈ B(H) 7→ T ∗ ∈ B(H).

Theorem 19 (Riesz Representation Theorem). ∀ functional φ ∈ H∗ (dual) ∃v ∈ H such that
φ(z) =< z, v > ∀z ∈ H.

Proof. Assume φ 6= 0.

Dual H∗ = {φ : H → C| continuous , linear }
ker(phi) = φ−1({0}).
Closed Subspace Let K = ker(φ) = ker(φ). Then,

K⊥ = {w ∈ H| < w, k >= 0 ∀kinK > .

H = K
⊕
K⊥.

Theorem 20. H is a Hilber t space and K ⊂ H, closed, and convex

Definition 4.1 (Convex). ∀k1, k2 ∈ K, tK + (1− t)k2 ∈ K ∀0 ≤ t ≤ 1.

Corollary 20.1. ∀K ≤ K ≤ H,H = K
⊕
K⊥

Proof. Let x ∈ H. By Theorejm, choose Pk(x) (not necessarily linear) such that

x = Pk(x) + (x− Pk(x))︸ ︷︷ ︸
∈K⊥

(Note that uniqueness follows: y1 + y2 = x = x1 + x2.

Let us look at ||x− Pk(x) ≤ inf ||x− n|∀n ∈ K.
Write ||x− Pk(x)| ≤ ||x− Pk(x) +m|| ∀m ∈ K. Then,

||x− Pk||2 ≤ ||x− Pk +m||2

⇐⇒ ||x− Pk(x)||2 ≤ ||x− Pk||2 + 2 Re < x− Pk(x),m > +||m||2 ∀m ∈ K
⇐⇒ −2 Re < x− Pk(x), tm > ≤ ||tm||2 ∀m ∈ K, t ∈ C

⇒ t Re < x− Pk(x),m > ≤ |t|2|m|2

⇒< x− Pk(t)(x),m > = 0 ∀m

Also ntoe that T ∗ : H → H is linear.

| < z, T ∗y > | ≤ || < Tz, y > || bounded operator

≤ ||Tz|| · ||y||
≤ ||T ||∞||z||||y|| ∀z, y

⇒ | < z, T ∗y > | ≤ ||T ||∞ · ||y||
∴ ||T ∗||∞ ≤ ||T ||∞

Show T = (T ∗)∗.

< T ∗z, y > =< z, (T ∗)∗y >

< y, T ∗z > = < Ty, z >

=< z, Ty >

⇒ (T ∗)∗y = Ty ⇒ (T ∗)∗ = T . It is an involution.

17



C∗-axiom ||T ||2 = ||T ∗T || ≤ ||T ∗|| · ||T || ≥ ||T ||2.

||T ||2 = sup
||z||≤1

||Tz||2

= sup
||z||≤1

< Tz, Tz >

≤ sup
||z||,||η||≤1

< Tz, Tη >

= sup
||z||,||η||≤1

< T ∗Tz, η > ||

= sup
||z||≤1

||T ∗Tz||

= ||T ∗T ||

∴, B(H) is a C∗-algebra.

18
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Exercises

1. Show that (B(H), || · ||∞) is a complete space.

2. Suppose (A, || · ||) is a Banach Algebra.

Ī = I ⊂ A closed ideal. Then show that (A/I, || · ||I is a Banach Algebra, where

||α+ I||I = inf
x∈I
||α+ x||A ≤ ||α||.

5 Gelfand Transform

Today we will discuss the spectrum of an algebra instead of just a n element.

Suppose 1 ∈ A is a unital Banach Algebra. Consider

σ(A) = {φ : A→ C| algebra homomorphism }. Then, the following conditions are satisfied

φ(1) = 1

φ(x+ y) = φ(x+ y)

φ(λx) = λφ(x)

φ(xy) = φ(x)φ(y)

Observation 1 ∀x ∈ A, φ(x) ∈ σ(x) ∀φ ∈ sigma(A).

Note that φ(x) · 1− x ∈ ker(φ).

⇒ φ(φ(x)1 · x) = φ(x)φ(x)− φ(x) = 0

φ(x) · 1− x ∈ ker(φ).

Recall that ker(φ) is an ideal (two-sided) of A.

φ(x) = 0⇒ φ(ax) = φ(a)φ(x) = 0 ∀x ∈ A
ker(φ) ∩G(A) = ∅ ⇐⇒ φ(x)1− x 6∈ G(A)⇒ φ(x) ∈ σ(x).

Then, ||φ(x)|| ≤ r(x) ≤ ||x|| ∀x ∈ A⇒ ||φ|| ≤ 1⇒ ||φ|| = 1. (since it is unital).

⇒ σ(A) ≤ {φ ∈ A∗|||φ|| =}.
Theorem 21 (Spectral Algebra Theorem). There is a correspondence (bijection) between

φ ∈ φ(A)→ ker(φ) ∈M(A) (co-dimension 1 ⇐⇒ maximal ideal)

Proof. Fix φ ∈ σ(A). Take I = ker(φ).

Fix I 6≤ J ≤ A,⇒ ∃x ∈ J − I.

Consider φ(x) 6= 0 and 1− 1

φ(x)
· x ∈ ker(φ) = I.

Obs 1

1 = 1− 1

φ(x)
x︸ ︷︷ ︸

∈J

+
1

φ(x)︸ ︷︷ ︸
∈J

⇒ 1 ∈ J ⇒ J = A.
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Obs 2 If I ∈M(A) (maximal ideal) ⇒ I = Ī.

Maximal ideal are closed. We need to show I ⊂ Ī ⊂ A.

We want to exclude Ī = A.

Proof. Suppose not.

Suppose Ī = A (unital)⇒ ∃y ∈ I such that ||1−y|| ≤ 1⇒ y ∈ G(A)⇒ I = A, contradiction.

Also note that for a fixed I ∈M(A)→ A/I (field since I is maximal).

We know that A/I ≡ C.

α A

C

ρ

π
π◦ρ

5.1 Weak-∗ Topology

Let A∗ = {φ : A→ C, linear, continuous} be any normed space.

This topology is defined as φi = φ iff φi(x) 7→ φ(x) pointwise ∀x ∈ A. [Note that the unit ball
is weak-∗ compact]

Theorem 22 (Banach-Alaoglu). (A∗)1 is compact in weak∗-topology.

Proof. (Proof Idea)

f ∈ A∗, f : A→ C. Then, we have

||f || ≤ 1

⇐⇒ |f(x)| ≤ ||x|| ∀x
f(x) ∈ D||x||(0)

By Tychonhoff’s Theorem, product of compact spaces is compact (f(x))x∈A ∈ Πx∈AD||x||(0)
(x-tuple of closed unit discs).

Hence, we have fn(x)→ f(x) ⇐⇒ each coordinate converges.

Theorem 23. σ(A) ⊂ (A∗)1 is a nonempty, compac set in weak-∗ topology.

20



15 September 2021

Theorem 24. 1 ∈ A (Banach Algebra) ⇒ σ(A) 6= ∅ is weak∗-compact.

Proof. x 6∈ G(A)⇒ ∃I ⊂ A maximal ideal.

x ∈ I ⇒ ∃φ ∈ σ(A) by correspondence theorem. I = ker(φ)⇒ φ(x) = 0.

σ(A) 6= ∅ ⊂ A∗ compact by Banach-Alaoglu.

It is sufficient to show that σ(A) is a weak∗-closed.

Proof. φ ∈ σ(A)
W∗
⇒ ∃φi ∈ σ(A)→ φW ∗

⇒ φi(x)→ φ(x) ∀x ∈ A.

Fix x, y ∈ A. φi(x)φ(y) = φi(xy) ∀i⇒ φ(x) · φ(y) = φ(xy) since φi(x)→ φ(x), φi(y)→ φ(y) and
φi(xy)→ φ(xy).

Since the space is Hausdorff. limit is unique (similarly, this holds for addition, identity, etc.).

∴ φ ∈ σ(A).

Theorem 25. Suppose K is Hausdorff compact and C(K) : {f : K → C continuous }. Then, ∃
a natural homomorphism

K → σ(C(K)) weak∗ topology

k 7→ φk

defined by φk(f) = f(k) ∀k ∈ C(K).

This map is a homeomorphism.

Proof.

1. Show injective.

Suppose k1 and k2 such that

φk1
= φk2

φk1
(f) = φk2

(f) ∀f
f(k1) = f(k2) ∀

Continuous function on a Hausdorff space is compact. Hence, because continuous functions
separate points, k1 = k2 ⇐⇒ injective.

Proof.

2. Show continuity i.e. ki → k ⇒ φki
weak−−−→ φk.

Fix f ∈ C(K)⇒ φ(ki)→ φ(k)⇒ φki(f)→ φ(k(f))

Exercise M(C(K)) = {f ∈ C(K)|f(K) = 0}. Show this is maximal.

Lemma 26. For any ideal I ⊂ C(K), ∃B ∈ K = 1.

Definition 5.1 (Gelfand Transform). 1 ∈ A, take C(σ(A)) where x→ (Γ(x))(φ) = φ(x).

Theorem 27. Γ is a homomorphism, contraction.

A ∈ G(A) ⇐⇒ Γ(a) ∈ G(C(σ(A)).
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Proof.

(Γ(x) · Γ(y))(φ) for x, y ∈ A
= (Γ(x)(φ))Γ(y)(φ))

= φ(x)φ(y)

= φ(xy)

= (Γ(xy))(φ)

Contraction ||Γ(x)||φ = sup Γ(x)(φ) = supφ∈σ(A) |φ(x)|

a ∈ G(A) = 1− Γ(1)Γ(a) = Γ(aa−1) = Γ(a) · Γ(a−1).

⇐ Assume σ 6= G(A)⇒ ∃ ∈ G(A)(x) such that φ(a) = 0⇒ ρ(a)(φ)⇒ ρ(a) 6∈ G(σ(A)).

Corollary 27.1. σ(x) = σ(x∗)
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Recall, Gelfand Transform:

Γ : A→ C(σ(A))

x 7→ Γ(x)(φ) = φ(x).

Theorem 28. a ∈ G(A) ⇐⇒ Γ(a) ∈ C(G(A)).

Corollary 28.1. σ(a) = σ(Γa).

||a|| ≥ r(a) = r(Γ(a)) = ||Γ(a)||.

Theorem 29. Let 1 ∈ A,C∗ algebra, commutative. Then,

ΓA 7→ C(σ(A)) is an isometric ∗-isomorphism.

(We need to upgrade homomorphism to ∗-homomorphism).

Proof.

(a) Show Γ(x∗ = Γ(x).

(i) Case 1: (Self-adjoint) i.e. x = x∗.

x = x∗

⇒ σ(x) ⊂ R
= σ(Γ(x)) ⊂ R

(Image is closed under R, space where conjugation is the same).

Therefore, Γ(x∗) = Γ(x) = Γ(x).

(ii) General Case Let x = a+ ib, where a, b are self-adjoint. Then,

x∗ = (a+ ib)∗

= a∗ + (ib)∗

= a− ib
⇒ x+ x∗ = (a+ ib) + (a− ib)

= 2a

a =
x+ x∗

2

Similarly, x− x∗ = (a+ ib)− (a− ib) = 2ib⇒ b =
x− x∗

2i
=
i(x∗ − x)

2

Γ(x∗) = Γ((a+ ib)∗)

= Γ(a− ib)
= Γ(a)− iΓ(b)

= Γ(a)0iΓ(b)

= Γ(a) + iΓ(b)

= Γ(a+ iΓ(b)

= Γ(x)
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(b) Now show isometry.

Γ(x)|| = r(Γ(x)) = r(x) = ||x||.

In addition, since x commutes with x∗ ⇐⇒ Normal. This is injective since the kernel is trivial.

(c) Now show surjectivity.

1 ∈ Γ(A) ⊂ C(σ(A))

Note Contain constants, normed closed, and separate points.

Take y ∈ Γ(A)⇒ ∃(yn)n ⊂ Γ(A), ||yn − y|| → C.

⇒ (yn)n is a Cauchy sequence. Therefore, ||yn − ym|| → ∞ as n,m→∞.

⇒ yn − Γ(xn) for some xn ∈ A. Then, we have:

||yn − ym|| = ||Γ(xn)− Γ(xm)|| = ||xn − xm||
→ 0 as n,m→∞

⇒ Cauchy sequence ⇒ ∃x ∈ A such that xn ⇒ x⇒ Γ(xn)⇒ Γ(x)⇒ yn → y.

Therefore Γ(A) separates the points of σ(A).

(d) Fix φ1 6= φ2 ∈ σ(A). Then, does there exist a ∈ A such that

Γ(a(φ1)) 6= F (a)(φ2) ⇐⇒ φ1(a) 6= φ2(a).

(e) By Stone-Weirstrauss Theorem, Γ(A) = C(σ(A)).
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6 Continuous Functional Calculus

6.1 Notation

1. 1 ∈ A = C∗ algebra.

p ∈ A, p2 = p (idempotent).

p2 = p = p∗ (projection).

2. h ∈ A, self- adjoint, h = h∗.

3. u ∈ A is called isometry if u∗u = 1 (preserves norm).

4. u ∈ A is called partial isometry if u∗u = projection.

4b. u ∈ A is unitary if u∗u = uu∗.

5. x ∈ A is called positive if x = y∗y for some y ∈ A.
Take A = {≥ 0|x ∈ A1}. x = y for some y ∈ A.
Let A+ = {x ≥ 0|x ∈ A}.
∀x ∈ A, xA+x

∗, x∗A+x ⊂ A+.

If you pick z ∈ A+, z = y∗y− ⇒ xzx∗ = xy∗yx∗ = (yx∗)∗yx∗.

6. Partial order x ≥ y ⇐⇒ x− y ∈ A+.
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A→ C(σ(A))

x 7→ Γ(x)(φ) = φ(x)

is an isometric isomorphism.

6.2 Continuous Functional Calculus

σ(A) ∼= σ(x) σ(x) = σ(Γ(x))

Consider

Γ−1 : C(σ(x))→ A

f 7→ f(x) ∈ C∗(x, x∗, 1)

Theorem 30. Let A,B,C∗-algebras with units. Let x ∈ A such that xx∗ = x∗x. Then, the
functional calculus satisfies:

1.

C(σ(A))→ A

f 7→ f(x)

is a ∗- homomorphism ∀f =
∑
k,` ak`z

kz`, f(x) =
∑
k,` ak`x

kx∗`.

2. ∀f ∈ C(σ(x)), σ(f(x)) = f(σ(x))

3. If Φ : A→ B,Φ(f(x)) = f(Φ(x)).

4. If xn ⊂ A normal, xn
||·||−−→ x ⇒ Then ∀Ω ⊃ σ(x) compact neighborhood ∃n > 0 such that

σ(xn) ⊂ Ω and ∀f ∈ C(Ω),

f(xn)
||·||−−→ f(x).
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Proof. (1), (2) ⇒ (3)

f =
∑
ak` z

kz̄`.

Φ(f(x)) = Φ(
∑
ak`x

`x∗k) =
∑
ak`Φ(x)kΦ(x)∗` = f(Φ(x))

∀f, ∃fn, fn
uniformly−−−−−−→ fσ(x).

||fn − f ||∞ → 0

||Φ(f(x))− f(Φ(x))|| = ||Φ(f(x))− Φ(fn(x)) + Φ(fn(x))− fn(Φ(x)) + fn(Φ(x))− f(Φ(x))||
≤ ||Φ(f(x)− fn(x))||+ ||fn(Φ(x))− f(Φ(x))||
≤ ||f(x)− fn(x)||+ ||fn(Φ(x))− f(Φ(x))||
≤ 2||(f − fn)(x)|| ∀n
→ 0

4. x→ x−1 is continuous and ||xn − x|| → 0 gives the first part.

c = supn ||xn|| <∞
f ∈ C(Ω), ∃g polynomial, ||f − g||∞ < ε

||f(xn)− f(x)|| = ||f(xn)− g(xn) + g(xn)− g(x) + g(x)− f(x)||
≤ ||f(xn)− g(xn)||+ ||f(x)− g(x)||+ ||g(xn)− g(x)||
≤ ||f − g||∞ + ||f − g||∞ + ||g(xn)− g(x)||

< 2ε+ ||g(xn)− g(x)||︸ ︷︷ ︸
≤C||xn−x||

Theorem 31. 1 ∈ A, ∀x ∈ A, ∃u1, u2, u3, u4, λi ∈ C,

x =

4∑
i=1

λiui.

Proof. x = Re(x) + iIm(x),Re(x) =
x+ x∗

2
, Im(x) =

x− x∗

2i
.

Let u = x+ i
√

1− x2. Then,

x = x∗, ||x|| ≤ 1⇒ σ(x) ∈ [−1, 1].

σ(x2) ⊂ [0, 1].

σ(1− x2) ⊂ [0, 1].

t→
√
t

√ Γ−1

−−→
√

1− x2 (Push forward).

uu∗ = (x+ i
√

1− x2)(x− i
√

1− x2) = 1
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6.3 Functional Analysis Application

1 ∈ A, C∗ Algebra.

Proposition. ∀x ∈ A∗ = {x ∈ A|x = x∗} ∃!x+, x− ∈ A such that x = x+ − x−, x+ · x− = 0.

Jordan Decomposition σ(x+) = σ(x−) ⊂ [0,∞), f = f+ − f−, where f+ = sup{f, 0}, f− = sup{0,−f}.
Note that ∨ symbolizes the supremum.
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Proof. t = (0 ∨ t)− (0 ∨ (−t))
By Functional Calculus, we have x = (0 ∨ t)(x)︸ ︷︷ ︸

x+

− (0 ∨ (−t))(x)︸ ︷︷ ︸
x−

. Note that x+ · x− = 0.

Then we have by σ(f(x)) = f(σ(x)) (push forward), σ(x+) = σ(0 ∨ t)(x) = 0 ∨ t(σ(x)) ⊂
[0,∞).

Proposition. Let 1 ∈ A,C∗-algebra, assume x ∈ A is normal. Then TFAE

1. x is self-adjoint ⇐⇒ σ(x) ∈ R.

2. x is positive ⇐⇒ σ(x) ⊂ [0,R).

3. x is unitary ⇐⇒ σ(x) ⊂ Π (Unit Circle)

4. x is projecitve ⇐⇒ σ(x) ⊂ {0, 1}.

Note we have done ⇒ before. We will be proving ⇐ . Also σ(x) ⊂ R, t → t, t → t̄ ⇒ x = x∗ ⇒
t(x) = t̄(x).

Proof.

4. ⇐ σ(x) ⊂ {0, 1}.
We see that t = t2 when taking the max. Hence, by Functional Calculus, x∗ = x = x2 ⇒ its is a
projection.

Now we move on to 2.

2. ⇐ x is positive ⇒ ∃y ∈ A such that x = y∗y.

If we know that yy = normal, then y∗y = |t2|(y).

Lemma 32. Let x, y ∈ A∗ such that σ(x)σ(y) ⊂ [0,∞). Then, σ(x+ y) ⊂ [0,∞).

Proof. Observation 1: |||x|| − x|| ≤ ||x||.

| ||x|| − x|| = r(||x|| − x||)
= sup
λ∈σ(x)

||x|| − λ|| ≤ ||x||

(The last inequality can be visualized on a number line. Write λ is between 0 and ||x||. Then
the inequality follows).

Similarly, |||y|| − y|| ≤ ||y||. Then, we have:

||x||+ ||y|| ≥ || ||x|| − x||+ ||y|| − y||
⇒ ||(||x||+ ||y|| − (x+ y)|| = sup

λ∈σ(x+y)

(||x||+ ||y|| − λ|

= r(||x||+ ||y|| − (x+ y)||
⇐⇒ sup

λ∈(x+y)

(||x||+ ||y|| − λ) ≤ ||x||+ ||y||

⇒ 0 ≤ λ ∀ ∈ σ(x+ y)

The last line follows since x+ y is self-adjoint.

Proof.

⇐ σ(x) ⊂ [0,∞).

x is normal. Then, t =
√
t
√
t ∀t ∈ σ(x)⇒ x =

√
x
√
x = (

√
x)∗(
√
x).

Let y =
√
x. Then, we are done.

27



⇒ Assume x is positive ⇒ x = y∗y. Show σ(x) ⊂ [0,∞).

By Jordan decomposition, x = x+ + x−. (Both spectrums are positive). We need to show that
x− = 0.

Consider a = y · x−. Then,

a∗a = (yx−)∗.yx

= x−y
∗yx−

= x−xx
∗

= x−(x+ − x−)x−

= −(x2
−)

⇒ σ(aa∗) ⊂ σ(a∗a) ∪ {0}
⊂ (−∞, 0]

⇒ −σ(a, a∗) ⊂ (0,∞)

Let a = z + it, where z, t are self-adjoint. Then, we look at

a∗a+ aa∗ = (z − it)(z + it) + (z + it)(z − it)
= (z2 + t2) + itz − izt+ (z2 + t2)

= 2z2 + 2t2

⇒ σ(a∗a) = σ((2z2 + 2t2)︸ ︷︷ ︸
⊂[0,∞)

+(−aa∗)︸ ︷︷ ︸
⊂[0,∞)

)

Hence, by the lemma, σ(a∗a) ⊂ [0,∞).

σ(a∗a) = (−∞, 0) ∩ [0,∞) = {0}
a∗a = 0 (By Functional Calculus)

⇐⇒ −(x−)3 = 0

⇐⇒ −x− = 0

∴ x = x+

Corollary 32.1. x is a partial isometry ⇒ x∗is a projection.

x∗x = p

⇒ σ(x∗x) ⊂ {0, 1}
⇒ σ(xx∗) ⊂ σ(x∗x) ∪ {0} ⊂ {0, 1}

By (4.), xx∗ is a projection as well.
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Corollary 32.2. 1inAC∗ algebra, a ∈ A, a ≥ 0⇒ 0 ≤ a ≤ ||a|| · 1

Proof. ||a|| · 1− a ≥ 0

[0,∞) ⊃ σ(||a||1− a) = {||a|| − λ, λ ∈ σ(a)} (This follows from (2.) by Proposition above).

Proposition. 1 ∈ A C∗ algebra. Suppose x, y ∈ A. Then

1. 0 ≤ x ≤ y ⇒
√
x ≤ √y

2. Moreover if x, y are invertibles, then y−1 ≤ x−1.
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2. a ≥ 0, ∀b, b∗ab ≤ 0.

Let a = z∗z ⇒ b∗z∗zb = (zb∗)∗(zb).

Consider y−1 ≤ x−1. Let b = x1/2 =
√
x (this is defined) and x1/2 = (x1/2)∗. Then,

(x1/2)∗y−1x1/2 < (x1/2)∗x−1x1/2. Also, note that

y−1 ≤ x−1 ⇐⇒ x1/2y−1/2y−1/2x1/2 ⇐⇒ x1/2y−1x1/2 ≤ 1 (b∗b).

Now, we proceed to the proof (Note that spectral radius can compute).

Proof.

(1)⇒ (2)

x ≤ y
⇒ y−1/2xy−1/2 ≤ y−1/2y1/2 = 1

⇒ y−1/2x1/2x1/2y−1/2 ≤ 1

⇐⇒ x1/2y−1x1/2 ≤ ||x1/2y−1x1/2||
= r(x1/2y−1x1/2) r(b∗b)

= r(x1/2y−1/2y−1/2x1/2)

= r(y−1/2x1/2x1/2y−1/2

= r(y−1/2xy−1/2)

= ||y−1/2xy−1/2||
≤ 1

x1/2y1/2 ⇐⇒ y−1/4x1/2x−1/4 ≤ 1.

Finally, we have that:

y−1/4x1/2y−1/4 ≤ ||y−1/4x1/2y1/4||
= ||(y−1/4x1/4)(x1/4y−1/4)|| (||b∗b||
= ||x1/4y−1/4||2

= r(y−1/4x1/2y−1/4

= r(x1/2y−1/2)

≤ ||x1/2y−1/2||
≤ 1

We can see this since b∗b = (y−1/2x1/2)(x1/2y−1/2) ≤ 1⇒ ||b|| ≤ 1.

If 0 < a ≤ 1⇒ 0 ≤ ||a|| ≤ 1⇒ σ(a) ⊂ [0, 1].

Finally, ||a|| = r(a) = supλ∈A |λ| ≤ 1.

xis set of invertibles, 0 ≤ x ≤ y.
Pick ε > 0.

Consider x+ ε1, y + ε1. Then,

0 ≤ x⇒ σ(x) ⊂ [0,∞)⇒ σ(x+ ε1) ⊂ [ε,∞)⇒ x+ ε1, y1 + ε ∈ G(A).

Note that 0 6∈ σ ⇒ invertible. Then,

x+ ε1 ≤ y + ε1⇒
√
x+ ε1 ≤

√
y + ε1 (by 2 from previous part).

Hence, 0 < ε→ 0⇒
√
≤x ⇐⇒

√
x ≤ √y as a limit of

√
x+ ε1 ≤

√
y + ε1.
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HW

1. A C∗ algebra the extreme points of (A+) are the projections.

2. Extreme points of (Ak) are the self-adjoint unitaries.

3. Extreme points of (A) are the partial isometries.

Definition 6.1 (Extremal Points). X0 ⊂ X convex then x ∈ X0 is an extremal point if whenver

x =
x0 + x1

2
for some x0, x1 ∈ X0 ⇒ x = x0 = x1.

Proof.

1.⇒ Pick x ∈ Ext((A+)1), the set of extremal points.

x ∈ (A+)1 = {x ≥ 0, ||x|| ≤ 1, 1 ≥ x ≥ 0}.

0 ≤ x ≤ 1⇒ (x1/2)∗xx1/2 ≤ (x1/2)∗x1/2 = x

x2 = x1/2xx1/2

⇒ x2 ≤ x < 2x

x =
1

2
(2x− x2 + x2)

=
2x− x2 + x2

2

Because 1 ≥ x ≥ 0, 0 ≤ x2 ≤ x ≤ 1⇒ x2 ∈ (A+)2.

Also

0 ≤ 2x− x2 ≤ 1 ≤ 1

⇐⇒ 1− 2x+ x2 ≥ 0

⇐⇒ (x− 1)2 ≥ 0

⇐⇒ 2x− x2 ∈ A+

Hence, since x is an extremal point, 2x− x2 = x = x2 ⇒∴ x = x2 ⇒ Projection.

1. ⇐ We need to use commutativity here. We will need to:

(a) Show Abelian case [characteristic function of a clopen set]

(b) Show other cases can reduce to the Abelian case.

Proof.

Let p =
a+ b

2
, where a, b ∈ (A+)1

p =
a

2
+
b

2
b

2
= p− a

2
≤ p

⇒ b

2
≤ p, a

2
≤ p

We will set this aside for a second and come back.
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Claim Now suppose we have proven

bp = pb = b

ap = pa = a

Then,

p =
a

2
+
b

2

(p− a

2
=
b

2
)b by right multiplication

⇒ pb− ab

2
=
b2

2

−(bp− ba

2
=
b2

2
) (by left multiplication)

⇐⇒ ab = ba

Hence, it commutes.

Now, we shall prove the claim.

p =
1

2
(a+ b)

1

2
a = p− 1

2
b ≤ p

⇒ 0 ≤ a ≤ 2p

(First note that 0 ≤ p ≤ 1 is self adjoint) Conjugating both sides, we get:

0 ≤ (1− p)∗a(1− p) ≤ (1− p)∗(2p)(1− p)
0 ≤ (1− p)a(1− p) ≤ (1− p)(2p)(1− p)

(1− p)a(1− p) ≤ 2 (p− p2)︸ ︷︷ ︸
=0since this is a projection

(1− p)

∴ (1− p)a(1− p) = 0

⇒ (a− pa)(1− p) = 0

⇒ a− ap− pa+ pap = 0

⇒ (1− p)a1/2a1//2(1− p) = 0

((a1/2)(1− p))∗a1/2(1− p) = 0

⇐⇒ y∗y = 0

⇐⇒ y = 0

⇒ a1/2(a1/2)∗(1− p) = 0

a(1− p) = 0

a− ap = 0

⇒ (a = ap)∗

a∗ = (ap)∗

a = pa = ap

Similarly for bp = pb = a. Hence the claim is satisfied and the proof is complete.
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7 GNS Representation

Abbreviation For Gelfand-Neumann-Segal

7.1 States on C∗- algebras

Let A be a C∗ algebra.

Definition 7.1 (Dual). A∗ = {φ : A → C continuous, linear } forms a bimodule structure on
A.

In particular, A∗ has A−A bimodule structure (both left/right action) defined by

a · φ · b(x) = φ(bxa)

One can check that (a1a2)φ(x) = φ(x(a1a2)) and (φb1)(b2)(x) = φ(b1b2)(x).

Properties

1. Linear

2. Normal

||a · φ · b|| = sup
||x||≤1

|a · φ · b)(x)|

= sup
||x||≤1

|φ(bxa)|

≤ ||φ|| sup
|x|≤1

||b · x · a|| ≤ ||b|| · ||a|| · ||x||

We also need to preserve the Hermitian.

Definition 7.2. φ : A→ C is positive functional ⇐⇒ φ(x) ≥ 0, x ≤ 0.

Definition 7.3. φ : A 7→ C is faithful functional ⇐⇒ φ(x) 6= 0 ∀x ≥ 0, x 6= 0.

Definition 7.4. φ : A 7→ C is state ⇐⇒ φ ≥ 0 and ||φ|| = 1.

(A) ⊃ S(A) = {φ : A→ C|φ is a state} is a compact subset in weak∗-topology (by Alaoglu).

29 September 2021

Let A be a C∗ algebra. Assume 1 ∈ A. Recall that S(A) = {φ : A→ C linear functional φ(x) ≥
0 ∀x ∈ A+}, where A+ is set of positive elements (preserves positivity).

S(A) ⊂ (A∗)1 weak∗-compact.

(xn)m ⊂ (A)1, xn ≥ 0.

φ ∈ S(A). Pick an ∈ `1(N), an ≥ 0.

Schur Product
∑
n anφ(xn)]leqφ(

∑
anxn) <∞

⇒ (φ(xn))1 ∈ `∞(N). Then,

(an)(bn) ≥ 0, (an) ∈ `1N) [summable] and∑
anbn <∞⇒ supn ||bn|| <∞

∴ supx∈(A+) φ(x) <∞⇒ ||φ|| <∞
In C∗ algebra, people do not care about duals (unlike Bananch algebra), they care about state
space instead.

(Note that pure states generate state space)

Proposition. If φ ∈ S(A) then |φ(y∗(x)| ≤ (φ(x∗x)1/2(φ(y∗y)1/2 ∀x, y ∈ A.

32



Proof.

< x, y >φ = φ(y∗x)

< x1 + x2, y >φ = φ(y∗(x1 + x2))

= φ(y∗x1 + y∗x2))

= φ(y∗x1) + φ(y∗x2)

=< x1, φ >φ + < x2, φ >φ

||x||2φ =< x, x >φ= φ(x∗x)︸ ︷︷ ︸
≥0 (by positivity)

≥ 0

By Cauchy-Schwarz, | < x, y >φ | ≤ ||x||φ · ||y||φ.

Proposition. Suppose 1 ∈ A C∗ algebra, φ : A→ C is a positive functional ⇐⇒ ||φ|| = φ(1).

Hermitian Note that φ(x∗) = φ(x) is the Hermitian (self-adjoint elements).

Proof.

φ∗(x) = φ∗(x)

= φ(x)

= φ1 + iφ2

Note that a is self-adjoint i.e. a ≤ ||a|| · 1 ∀a = a∗. Then, we have

x+ x∗ ≤ ||x+ x∗|| · 1
⇒ ||x+ x∗||1− (x+ x∗|| ≥ 0

⇒ φ(||x+ x||1− (x+ x∗) ≥ 0 (by positivity)

⇒ ||x+ x∗||φ(1)− φ(x+ x∗ ≥ 0

⇒ |x+ x∗|| · φ(1) ≥ φ(x+ x∗)

⇒ ||x+ x∗|| · φ(1) ≥ φ(x+ x∗)

⇒ 1

2
(||x+ x∗|| · φ(1) ≥ 1

2
(x+ x∗)

⇒ |x+ x∗

2
| · φ(1) ≥ φ(

x+ x∗

2
)

Goal ||x||φ(1) ≥ |φ(x)| ∀x

||x+ x∗

2
||2 · φ(1) ≥ (

φ(x+ x∗)

2
)

After some simplification, we get that ||x|| ≥ φ(1).
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Proposition. 1 ∈ A C∗ algebra, φ : A→ C line, φ ≥ 0 ⇐⇒ ||φ|| = φ(1).

Last time, we proved ⇒. Now, we proof the other direction.

Proof.
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⇐ Suppose ||φ|| = φ(1).

Pick x ∈ A+ = {x ∈ A, x ≥ 0}. Let φ(x) = a+ ib, a, b ∈ R.

Consider x+ it ∈ A, t ∈ R. Then, we have

φ(x+ it) = φ(x) + φ(it · 1)

= φ(x) + itφ(1)

= a+ ib+ it||φ||
= a+ i(b+ t||φ||)

Taking the norm and squaring both sides, we get the following:

|a2 + (b+ t||φ||2) ≤ ||x+ it||2||φ||2

a2 + (b+ t||φ||2) ≤ (||x2||+ t2)||φ||2

⇒ a2 + b2 + 2bt||φ||+ t2||φ||2 ≤ ||x2||||φ||2 + t2||φ||2

⇒ a2 + b2 + 2bt||φ|| ≤ ||x||2 · ||φ||2 ∀t ∈ R
⇒ 2b ≡ 0

⇒ b = 0

⇒ φ(x) = a ∈ R

Then, we have

||x|| ≥ x
⇒ ||x|| − x ≥ 0

0 ≤ φ(||x|| − x||)
≤ ||||x− x|| · ||φ||
≤ ||x|| · 1||φ||

⇒ φ(||x|| · 1)− φ(x) = ||x · φ(1)− φ(x)

⇒ ||x|| · ||φ|| − φ(x)

∴ ||x||||φ|| − φ(x) ≤ ||x|| · ||φ||
⇒ −φ(x) ≤ 0

φ(x) ≥ 0

Proposition. Every C∗ algebra has an overabundance of states.

Let A is a C∗ algebra (may contain 1). Fix x ∈ A. Then, λ ∈ σ(x), ∃φ ∈ ρ(A) such that
φ(x) = x.

Proof. We will use the Hahn Banach Theorem.

Take the linear span linspan (x, 1)− Cx+ C1 ≤ A (this is closed).

Define φ0 : Cx+ C1→ C such that

φ0(ax+ b · 1) = a · x+ b, ||φ0|| = 1.

By the Hahn Banach Theorem, ∃φ : A→ C linear, bound ||φ|| = ||φ0|| =
φ(1).

From prior theorem, we have that φ ∈ S(A).

How to use this theorem?

1. x ∈ A, then x = 0 ⇐⇒ φ(x) = 0 ∀x ∈ ρ(A).

2. x = x∗ ⇐⇒ φ(x) = φ(0) ∀x ∈ φ.
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4 October 7.2 GNS Construction

Suppose 1 ∈ A,C∗-algebra, φinS(A)⇒ ∃πL2(A, φ) - Hilbert space where

π : A→ B(L@(A, φ)), ∗-represtations such that φ(x) =< π(x), 1 >.

∃1φ ∈ L2(A, φ) cyclic vectors such that

φ(x) =< π(x)1φ, 1φ > ∀x ∈ A

Up to unitary equivalence, we have p : A→ B(H), ∃ξ ∈ H cyclic such that

φ(x) =< p(x)ξ, ξ >⇒ p ∼ π
Consider Iφ = {x ∈ A− (x−1x) = 0}

Observe Ĩφ = {x ∈ A|φ(x∗y) = 0 y ∈ A}

Why? |φ(y∗x)| ≤ φ(x∗x)1/2φ(y∗y)1/2

∴ Ip = Ĩp. Clearly, IP is a linear subspace.

Suppose x ∈ Iφ, y ∈ A. Show yx ∈ Iφ.

Proof.

φ((yx)∗(yx)) = φ(x∗y∗yx)

φ(x∗y∗yx) ≤ φ(x∗||y∗y|||x|)
= φ(||y∗y|x∗x)

= ||y∗y||φ(x∗x)

= 0

⇒ yx ∈ Iφ

Now consider the quotient of a linear space.

[x] + Iφ ∈ A/Iφ.

Definition 7.5. < [x], [y] >φ= φ(y∗x)

This is well defined since

[x] = [x1]

[y] = [y1]

⇒ φ(y∗1x1) = φ(y∗x)

Completion L2(A, φ) = A/Iφ ⊃ A/Iφ as a dense set.

Now “extend action class y.” For x ∈ A, we have

L2(A, φ)→ L2(A, φ)

π(x)([y]) = [xy]

We now prove that this well defined.

Proof.

Π(x)[y1] = Π(x)[y2]

[xy1] = [xy2]

⇒ xy1 − xy2 ∈ Iφ
x(y1 − y2) ∈ Iφ

The last line follows since (y1 − y2) ∈ Iφ is an ideal.
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Let Π(x) : A/Iφ → A/Iφ. Then,

||Π(x)[y]||2,φ = ||(xy)2||2,φ
= φ((xy)∗(xy))1/2

= φ(y∗x∗xy)1/2

= φ(x∗|x∗x||y)1/2

= ||x∗x||1/2∞ φ(y∗y)1/2

= ||x|||||[y]||2,φ

Idea τ̃ : H → H where T : K → K linear, K̄ Hilbert space.

If ||T (ξ)|| ≤ C||ξ|| ∀ξ ∈ K ⇒ ∃ τ̃ : H → H such that τ̃ |K = τ .

Furthermore, ||τ̃(ξ)|| ≤ C||ξ|| ∀ξ ∈ K.

Proof. Suppose ξn ∈ K → ξ ∈ H.

First we show that (ξ̃n)n ⊂ K, ∃η ∈ H such that T (ξn)→ η.

||Tξn − Tξm|| = ||T (ξn − ξm)||
≤ C||ξn − ξm||

⇒ Tξn → η (since in a Hilbert space)

⇒ Tξn = η

Let ξ′n, ξn → ξ and ||ξ′n − ξn|| → 0. Then,

|T (ξ′n)− T (ξn)|| = ||T (ξn − ξ′n)||
≤ C||ξn − ξ′n|| ⇒ ||T̃ (ξ)|| = η

= lim
n→∞

T (ξn)

≤ lim
n→∞

||T ||∞||ξn||

= ||T ||∞||ξ||

6 October Last time we proved existence. Now uniqueness.

Proof. ∃ σ : A→ B(H)∗-representation, ξ ∈ H;Aξ = H and φ(x) =< σ(x)ξ, ξ >.

Let U : L2(A, φ)→ H be unitary with U(Πpa1φ) = σ(a0ξ).

Now we show that this is an isometric map (takes care of well- defined).

< U(Πpa1φ), U(Πpb1φ) >H =< Πφ(a)1φ,Πφ(b)1φ >

< σ(a)ξ, σ(b)ξ) >H =< Πp(b)
∗Πp(a), 1φ >

< σ(b)∗σ(a)ξ, ξ > =< Πφ(φ∗a)1φ, 1φ >

< σ(b∗aξ, ξ > = φ(b∗a)

For b = a, we have
||U(Πp(a)1φ|| = ||Πp(a)1φ||

∴ Πφ(a)1φ = Πφ(b) ⇐⇒ ||φ(a− b)|| = 0.
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(Can lift to whole space). For anyting in the closure, < U(η1), U(η2) >=< η1, η2 > .

U is an isometry from L2(A, φ)→ H. Now show unitary (show bijection).

∴ U(L2(1φ) = H, η(ΠpH), 1φ).

Corollary 32.3. 1 ∈ C∗- algebra admits only faithful representations i.e. Π(x) = 0 ⇐⇒ x = 0.

Proof. φ ∈ S(A) Πφ : A→ B(L2(A, φ)).

⊕φ∈S(A)Πp = Π : A→ B(⊕φ∈S(A)L
2(A, φ))

Π is faithful.

π(x) = 0⇒ Πp(x) = 0 ∀φ.

φ(x) =< Πφ(x)2φ, 1φ >= 0.

Note that φ,Ψ ∈ SA, φ ≤ Ψ⇒ Ψ(a) ≥ Φ(a) ∀a ∈ A.

Theorem 33. Suppose Ψ = φ ≥ 0⇒ φ1Ψ ≥ 0 on C∗ algebra A, φ ≤
⇐⇒ ∃! y ∈ ΠΨ(A) such that 0 < y ≤ 1 and φ(a) =< ΠΨ(a)y1Ψ, 1Ψ > for all a ∈ A.

Proof. GNS wrt Ψ :

ΠΨ : A→ B(L2(A,Ψ)), ∗-representation

Ψ(a) =< ΠΨ(a)1Ψ, 1Ψ), A1Ψ = L2(A,Ψ) (completion)

Pick 0 ≤ a ∈ A+ ⇒ ΠΨ(a) ∈ (B(L2(A,Ψ)). Then,

0 ≤ y ≤ 1 ⇐⇒ ΠΨ(a) · y(ΠΨ(a)1/2)y

= (Π
1/2
Ψ(a)((ΠΨ(a))

1/2

= (ΠΨ(a) ∀a ≥ 0

T ≥ 0⇒< Tξ, ξ >≥ 0.

φ(a) =< ΠΨ(a)y1φ, 1Ψ >≤< (ΠΨ(a)1Ψ, 1Ψ? = Ψ(a).

Proof. (⇒) Now suppose φ ≤ Ψ. Then, for a, b ∈ A,L2(A, φ) = K < [a], [b] >φ= |φ(b∗a)|

≤ φ(b∗b)1/2φ(a∗a)1/2

≤ ψ(b∗b)1/2φ(a∗a)1/2

= ||b||Ψ||a||

(·) : L2(A,Ψ)× l2(A,C)→ C. Then, ([a], [b]) = φ(b∗a).

Note that sesquilinear means linear in 1st component and antilinear in the second component.
Since A = L2(A, φ), we have |[a][b]|φ ≤ ||b||Ψ||a||Ψ
Let (·) : H ×H → C be bounded ⇒ ∃T : H → linear space (ξ, η).

φ(b∗a( = (a, b)φ =< y(ΠΨ(a)1Ψ, (ΠΨ(b)1Ψ) >

Ψ(a∗a) ≥< y(ΠΨ(a)1Ψ, (ΠΨ(a)1Ψ >

< (ΠΨ(a)1Ψ1Ψ, (ΠΨ(a)1Ψ > ≥< y(ΠΨ(a)1Ψ, (ΠΨ(a)1Ψ >

⇒< (1− y)(ΠΨ(a)1Ψ, (ΠΨ(a)1Ψ > ≥ 0 ∀a
< (1− y)ξ, ξ >≥ 0 ∀ξ ∈ L2(A)

⇒ (1− y) ≥ 0

1 ≥ y ≥ 0

Now we check that (ΠΨ(a)y = y(ΠΨ(a).

It is enough to check in a dense set TU : H → K where < Tξ, η >=< Uξ, η >, ξ, η ∈ H.
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Proof.

(ΠΨ(a)y = y(ΠΨ(a)

=< (ΠΨ(a)y · (ΠΨ(b)1Ψ), (ΠΨ(b)1Ψ) >

=< y(ΠΨ(a)(ΠΨ(b)1Ψ, (ΠΨ(c)1Ψ) >

=< y(ΠΨ(b)1Ψ, (ΠΨ(a) ∗ (ΠΨ(c)1Ψ >

=< y(ΠΨ(b)1Ψ, (ΠΨ(a∗c)1Ψ >= φ(a∗c∗)b

= φ(c∗ab)

Definition 7.6. φ ∈ S(A) is a pure state ⇐⇒ φ is an extremal point of S(A).

Exercise

Proposition. φ ∈ S(A), AC∗- algebra, φ is a pure state ⇐⇒ the corresponding GNS construction
Πp : A→ B(L2(A, φ)) with corresponding cyclic vector 1φ irreducible.

11 October

Corollary 33.1. Fix 1 ∈ A,C∗-algebra, x ∈ A.

If x 6= 0, ∃Π : A→ B(H) irreducible ∗-representation such that Π(x) 6= 0.

Next we present a preliminary theorem that will be used to prove other theorems.

Theorem 34 (Krien-Milman). A compact convex set of a Hausdorff locally convex topological
vector space is equal to the closed convex hull of its extremal points, denoted by C0(ext(K)) for
compact Hausdorff space K ⊂ X.
Corollary 34.1. AC∗-algebra.

Let C0(Sp(A)) weak∗-topology on S(A).

We can see this from the Krien-Milman theorem, where X = (S(A), weak∗-topology), where
S(A) is convex and compact from Alaoglu.

Recall proposition:

φ ∈ Sp(A) GNS construction Πφ : A→ B(L2(A, φ)) given by

φ(x) =< Πp(x), 1φ)2 > and Πφ(A)1φ = L2(A,Ψ).

Putting these two together, we get the corollary.

Proof. x 6= 0, ∃φ ∈ S(A), φ(x) 6= 0 suc h that |φ(x)−
∑
αi(φi)(x)| < ε.

Here, ∃i ∈ N such that φi(x0 6= 0, perform the GNS construction from the porposition ⇒
Πφi(x) 6= 0.

8 Jordon Decomposition

AC∗-algebra, φ ∈ A∗ such that φ = φ∗ (Hermitian).

∃!φ+, φ− ≥ 0 such that

φ = φ+ − φ−, ||φ|| = ||φ+||+ ||φ−||

Proof Idea Can define continuous φ : A→ C(σ).

Can take all positive linear functionals (and just like Gelfand Transform), apply the separation
argument and Radon measure argument.

Corollary 34.2. Every functional can be decomposed in a linear combination of positive functions.
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9 Intro to Von Neumann Algebra

B(H, || · ||∞. Let x ∈ B(H) be operators.

||x||∞ = sup||ξ||≤1 ||xξ||
Note that < xξ, eta >=< ξ, x∗η > .

Lemma 35. x ∈ B(H), ker(x) = Ran(x∗)⊥, ker(x)⊥ = Ran(x∗

Proof. ξ ∈ ker(x)⇒ xξ = 0.

(⇒)

∀η ∈ H, 0 =< 0, η >=< xξ, η >=< ξ, x∗η >

⇒ ξ ⊥ Ran(x∗)⇒ ξ ∈ Ran(x∗)⊥

⇒ ker(x) ⊂ Ran(x∗)⊥

Proof. (⇐)

ξ ∈ Ran(x∗)⊥ ⇒< ξ, x∗η >= 0 ∀η ∈ H ⇒< xξ, η >= 0⇒ xξ ⊥ η ∀η.
Pick η = xξ. Then, < xξ, xξ >= 0⇒ ||xξ||2 = 0 ⇐⇒ xξ = 0 ⇐⇒ ξ ∈ ker(x).

⇒ Ran(x∗)⊥ ⊂ ker(x)

∴ ker(x) = Ran(x∗)⊥

9.1 Point Spectrum

x ∈ B(H).

σ(x) = {λ ∈ C|x− λ1 not invertible}
(One way fails invertibility if kernel is non-trivial i.e. σp(x)− {λ ∈ C| ker(x− λ1) 6= 0}.

Definition 9.1 (Approximate Kernel). Let xa ∈ B(H). The approximate kernel is (ξn)n ⊂ H
such that

ξη ⊂ H such that ||ξη|| = 1 and ||xξη|| → 0

as n→∞.
σap(x) = {λ ∈ Cx− λ has an approximate kernel}
σp(x) ⊂ σap(x) ⊂ σ(x).

Lemma 36. x ∈ B(H) normal operator. Then, σp(x)∗ = σp(x)

Proof. x is normal ⇐⇒ xx∗ = x∗x, λ ∈ C⇒ (x+ λ1) is normal as well.

Now we need to show that the operator is normal, which means

x = x∗

||xξ|| = ||x∗ξ|| ∀ξ ∈ H
< xξ, xξ > =< x∗ξ, x∗ξ >

< x∗xξ, ξ > =< xx∗ξ, ξ >

Then we have ||(x− λ)ξ|| = ||(x∗ − λ̄)ξ|| (essentially an isometry).

Suppose ξ, η ∈ H eignevectors for x (λ 6= µ). Then,

(x− λ1) = 0⇒ xξ = λξ. On the other hand

(x− µ1)η = 0⇒ xξ = µη ⇒ x∗η = µ̄η.
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Then, for λ ∈ C, we have

λ < ξ, η > =< λξ, η >

=< xξ, η >

=< η, µ̄η >

=< µξ, η >

= µ < ξ, η >

∴< ξ, η >= 0.

Proposition. x ∈ B(H). Then, ∂σ(x) ⊂ σap(x).

Proof. Suppose λ ∈ ∂σ(x) (That means we can approximate from outside the boundary).

⇒ ∃λn inC− σ(x) = P (x) with λn → λ.

⇒ x− λn → x− λ (not invertible, limit point outside, blows up).

Using a prior lemma we have ||(x − λn)−1|| → ∞ ⇒ ∃ξn ∈ H such that ||ξn|| → 0 such that
||x− λn)−1ξn|| = 1.

Normally, ||ξn|| = 1 such that ||(x− λn)−1ξn|| = cn →∞ (after rescaling/normalizing).

||(x− λ)(x− λn)−1ξn| ≤ |λ− λn|||(x− λn)ξn||+ ||ξn|| → 0.

Therefore, (x− λ−1
n (ξn)) is the approximate kernel.

14 October Recall partial(σ(x)) ⊂ σap(x)

Lemma 37. x ∈ B(H)

x invertible ⇐⇒ neither x nor x∗ has an approximate kernel.

∃ξn ∈ ||, ||ξn|| = 1.

||xξ + n|| → 0 as n→∞.

Consequently, σ(x) = σap(x) ∪ σap(x∗ ∀x ∈ B(H)

Proof. (⇒)

Suppose x invertible, ∃x−1 ∈ B(H) such that

||x−1||∞||xξ|| ≥ ||x−1(xξ)|| = ||ξ|| ∀ξ ∈ H
||Tξ|| ≤ ||T ||∞||ξ|| T ∈ B(H)

||x|| = 1⇒ ||x−1||||xξ|| ≥ 1⇒ ||xξ|| ≥ 1

||x||
≥ 0.

∴ x does not have an approximate kernel for x∗.

Proof. (⇐)

Suppose that neither x nor x∗ has approximate kernel. Show that x has dense range.

Recall,

ker(x) = Ran(x∗)⊥, ker(x)⊥ = Ran(x)∗

Pick (xξn) ⊂ Ran(x).

This is injective and dense (almost surjective). Need to show it is fully onto.

(xξn) ⊂ Ran(x)− {xξ, ξ ∈ H} ∈ H.

Assume Cauchy sequence.

⇒ ||xξn−xξm| → n,m→∞ = ||x(ξn− ξm)|| → 0. (operator does not have approximate kernel).
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Claim ||ξn − ξm|| → 0.

If not, ||ξn − ξm|| ≥ C0 > 0 ∀n,m.

||X(ξn − ξm)

(||ξn − ξm)
→ 0

⇒ X will have non-trivial approximate kernel.

H Hilbert space ⇒ complete ⇒ ξn → ξ ⇒ xξn → xξ ∈ Range

Everything in closure is in Range ⇒ closed.

Summary η ∈ Ran(x), ||η − xξn|| → 0.

By triangle inequality, ||xξn − η + η − xξn|| → 0.

This is Cauchy. x is a linear bijective map. Now we apply the Open Mapping Theorem.

x : H → H bijective ⇒(open ∃x−1 : H → H exists.

{< xξ, ξ|||ξ = 1 >, ξ ∈ H. Records all the complex numbers. (This is where all complex numbers lie).

Lemma 38. x ∈ B(H) Hilbert space. Then, σ(x) ⊂W (x).

Proof. Fix λ ∈ σ(x)⇒ (x− λ1) not invertible.

Either x− λ or (x− λ)∗ has an approximate kernel.

⇒ ∃ξn ∈ H, ||ξn|| = 1, ||(x− λ)ξn|| → 0 or ||(x− λ)∗ξn|| → 0

| < xξn, ξn > −λ1|| = | < xξn, ξ)n > −λ||ξn||2|
= | < xξn, ξn > −λ < ξn, ξn > |
= | < xξn − λξn, ξn > |
≤ ||xξn − λξn|||ξn||
= ||xξn − ξn| → 0

∴< xξn, ξn >→ λ⇒ λ ∈W (X).

(Repeat with < ξn, x
∗ξn > - same story).
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Theorem 39. λ ∈W (X), x ∈ B(H). TFAE:

(1) x normal ⇐⇒ ||xξ|| = ||x∗ξ|| ∀ξ ∈ H.

(2) x = x∗ ⇐⇒ < xξ, x >∈ P (closed subspace of C ∀ξ ∈ H
(3) x ≥ 0 ⇐⇒ < xξ, ξ >≥ 0 ∀ξ ∈ H
(4) x isometry (x∗x = 1) ⇐⇒ ||xξ|| = ||ξ|| ∀ξ ∈ H.

(5) x is a projective ⇐⇒ x = Pk (orthogonal projection on K̄ = K ⊂ H).

(6) x is a partial isometry ⇐⇒ ∃K = K̄ ≤ H such that x|K is an isometry ⇐⇒ x|K̄ = 0.

Proof. (1)

||xξ||2 = ||x∗ξ||2

< xξ, xξ > =< x∗ξ, x∗ξ >

< x∗xξ, ξ > =< xx∗ξ, ξ >

< x∗x− xx∗ξ, ξ > = 0 ∀ξ ∈ H

Proof. (2)

< xξ, ξ > = < xξ, ξ >

=< ξ, xξ >

=< x∗ξ, x >

=< (x− x∗ξ, ξ >= 0

⇐⇒ x = x∗

Proof. (3)

If x = y∗y for some y ∈ B(H), then < y∗yξ, ξ >=< yξ, yξ >≥ 0 for all ξ ∈ H.

Conversely, if < xξ, ξ >≥ 0 for all ξ ∈ H then x = x∗ by (ii) and by the previous lemma σ(x) ⊂
W (x) ⊂ [0,∞), so x is positive.

Proof. (4)

If x is an isometry, then x∗x = 1 and so ||xξ||2 =< x∗xξ, ξ >= ||ξ||2 for all ξ ∈ H.

Conversely, assuming < x∗xξ, ξ >= 0 for all ξ ∈ H and applying the polarization identity, we have
x∗x = 1.

Proof. (5)

Suppose x is a projection and let K = R(x) = (Ranx)⊥. Notice for all ξ ∈ K, η ∈ kerx and xζ ∈ R(x),
we have < xξ, η + xζ >=< ξ, xξ >.

So, xξ ∈ K and xξ = ξ.Therefore, x is the orthogonal projection onto K.

Proposition (Polar Decomposition). Let H be a Hilbert space and x ∈ B(H), then there exists a partial
isometry v such that x = v|x| and ker v = ker |x| = kerx. Moreover, this decomposition is unique in
that if x = wy where y ≥ 0 and w is a partial isometry with kerw = ker y, then y = |x| and v = w.

(Moreover, v∗x = x| as < v∗xξ, |x|η. =< xξ, xη >=< |x|2ξ, η >).

Proof. Define a linear operator v0 : R(|x|)→ R(x) by v0(|x|ξ) = xξ for any ξ ∈ H.

Notice, |||x|ξ|| = ||xξ|| is v0 is well defined and bounded, so it extends to a partial isometry v : R(|x| →
R(x) and we have v|x| = x.

We also have ker v = R(|x|)⊥ = ker(|x|) = ker(x). Now suppose x = wy with y ≥ 0 and w is a partial
isometry with kerw = ker y.

Then |x|2 = x∗x = yw∗wy = y2 and hence |x| = (|x|2)1/2y.

Then, kerw = R(|x|)⊥ and ||w(x)ξ|| = ||xξ|| for all ξ ∈ H and w = v.
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10 Trace Class of Operators

20 October

Definition 10.1. x ∈ B(H), x > 0. Then,

Tr(x) =
∑
i∈I < xξi, ξi > where (ξi)i∈I is an orthonormal basis of H ⇒ ξi ⊥ ξj ∀i, j and ||ξi|| = 1 ∀i.

Lemma 40. Suppose x ∈ B(H), (ξ)i ⊂ H ONB. Define Trace as Tr(xx∗) = Tr(x∗x)

Theorem 41. If x ∈ B(H), x ≥ 0, Tr(x) is independent on the choice of (ξi)i∈I ⊂ H ONB.

Proof. Let (ξi)i∈I , (ηj)j∈I ⊂ H ONB.

Let u : H → H be a unitary operator with u∗(ξi) = ηi ∀i. Then, we have the following:

Tr(x) =
∑

< xξi, ξi > (x = y∗y)

Tr(y∗y) = Tr(y∗u∗uy)

= Tr((uy)∗uy))

= Tr((uy)(uy)∗)

= Tr(uyy∗u∗) (by lemma)

=
∑
i

< uyy∗u∗ξi, ξi >

=
∑
i

< yy∗u∗ξi, u
∗ξi >

=
∑
i

< yy∗ηi, ηi >

=
∑
i

< y∗yηi, ηi >

=
∑
i

< xηi, ηi >

(Trace with respect to ηi)

Proof. Let (ξi)i∈I ⊂ H ONB. Then,

Tr(x∗x) =
∑
i∈I

< x∗xξi, ξi >

=
∑
i∈I

< xξi, xξi >=
∑
i∈I
||xξi||2

=
∑
i

(
∑
j

| < xξi, ξj |2)

=
∑
i

∑
j

< xξi, ξj >< xξi, ξj >

=
∑
j

∑
i

< ξ, x∗ξj >< ξi, x∗ξj >

=
∑
j

∑
i

| < ξi, x
∗ξj > |2

=
∑
j

||x∗ξj ||2

=
∑
j

< x∗ξi, x
∗ξj >

=
∑
j

< xx∗ξi, ξj >

= Tr(xx∗)
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Definition 10.2. x ∈ B(H), ||x||1 = Tr(|x|)
x is trace class ⇐⇒ ||x||1 <∞(L1(B(H)).

Trace Class Operators

x ∈ L1(B(H)),Tr =
∑
i∈I < xξi, ξi >

Lemma 42. 2|Tr| ≤ Tr(|x|) + Tr(v|x|v∗) ≤ 2||x||1

x = v|x|, x ∈ B(H), x ∈ v|x|, vξ ∈ H. Then,

2| < xξ, ξ > | ≤< |x|ξ, ξ > + < |x|v∗ξ, v∗ξ >

Proof. Take ||(x− |x|1/2 + v∗)ξ||. Then,

||(x− |x|1/2 + v∗)ξ|| ≤< (|x|1/2 − |x|1/2 + v∗)ξ, |x|1/2 − |x|1/2v∗

=< |x|1/2ξ, |x1/2(ξ) + |t|2 < |x|2v∗ξ > −2Re(< |x|1/2ξ, ||x||1/2t v∗ξ >)

⇒ 2Re(t < |x|ξ, v∗ξ > ≤< |x|ξ, ξ > +t2 < |x|v∗ξ, v∗ξ >

(Here t ∈ C).

22 October `1(B(H)) = {x ∈ B(H) : Tr(|x|) = ||x||1 <∞}
Theorem 43. L1(B(H)) is a two sided ideal in B(H), elements of L1(B(H)) appears as finite linear
combination of positive operators of finite trace.

Proof. Show || · ||1 is a norm ∈ L1(B(H))

x, y ∈ L1(B(H))→ x+ y ∈ L1(B(H)).

Using the polar decomposition theorem (x = w|x| ⇒ w∗w = r(x) i.e. w∗w|x| = x), ∃w ∈ B(H)
partial isometry such that

x+ y = w|x+ y|
⇐⇒ w∗w|x+ y| = |x+ y|
⇒ w∗x+ w∗y = w∗(x+ y)

= w∗w|x+ y|
= |x+ y|

x, y ∈ L1(B(H))⇒ w∗x,w∗y ∈ L1(B(H)).

x ∈ L1(B(H)),

Know w is a partial isometry ⇒ w∗w is a projection ⇒ ww∗ = 1.

ww∗ ≤ 1

x∗ww∗x ≤ x∗1x
= x∗x

⇒ (w∗x)∗w∗x = x∗x

|w∗x|2 ≤ |x|2

⇒ |w∗x| ≤ |x|

For x ≥ 0, we have

Tr =
∑
i < xξi, ξi >≥ 0⇒ Tr(|w∗x|) ≤ Tr(|x|) <∞.

(This way, we can show this is a left ideal). Next,
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||x+ y||1 = Tr(|x+ y|)

=
∑
i∈I

< |x+ y|ξi, ξi > (ξi)i∈I ∈ H ONB

=
∑
i=1

< (w∗x+ w∗y)ξi, ξi >

=
∑
i=1

< w∗xξi, ξi > +
∑
i

< w∗xξi, ξi ><∞

⇒ x+ y ∈ L1(B(H)). Therefore, it is a vector linear subspace. Furthermore,

||x+ y||1 = Tr(w∗x) + Tr(w∗y)

≤ ||w∗x||1 + ||w∗y||1
≤ ||x||1 + ||y||1

Also note that ||cx||1 = |c|||x||1 since |cx| = |c||x|. So far, we have shown this is a semi norm. Finally,
we have

||x||1 = 0

⇒ Tr(|x|) = 0∑
i=1

< |x|ξi, ξi > ≥ 0 ( since it is a positive operator )

⇒< |x|ξi, ξi > = 0

< |x|1/2|x|1/2ξi, ξi > = 0

< |x|1/2ξi, |x|1/2ξi > = 0

||x||1/2ξi|| = 0

|x1/2ξi| = 0

|x|ξi = 0 ∀i
⇒ |x| = 0

∴ x = 0

Hence we have shown that this is a norm.

An element x = w|x| (by polar decomposition).

y ∈ B(H)⇒ y|x| = 1

4

∑3
k=0(y + ik · 1)|x|(y + i∗1)∗

After some computation, we come to the conclusion that Tr(|x|1/2(y + ik)∗(y + iky)(|x|1/2) = ||y +
ik||Tr(|x|) <∞
Theorem 44. x ∈ L1(B(H)), a, b ∈ B(H). Then TFH:

(1)||x||∞ ≤ ||x||1
(2)||ax+ b||1 ≤ ||a||∞||b||∞||x||1
(3)Tr(ax) = Tr(xa)

Proof. ||x||∞ = sup||ξ||≤1 ||xξ||
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Fix ξ ∈ H, ||ξ|| = 1. Then, ∃(ξi)i∈I ⊂ H ONB. Then,

||xξ||2 =< x∗xξ, ξi >

≤
∑
i=1

< x∗xξi, ξi >

= Tr(x∗x)

= Tr(|x|2)

≤ ||x||∞Tr(|x|)
= ||x||∞||x||1

Now consider ||ax||1. Then,

a∗a ≤ ||a||21

x∗a∗ax ≤ ||a||2∞x∗x
(ax)∗ax ≤ ||a||2∞ · x∗x
|ax|2 ≤ ||a||2∞|x|2

⇒ |ax|| ≤ ||a||∞|x|
Tr((ax)) ≤ Tr(||a||∞ · |x|)
∴ ||ax||1 ≤ ||a||∞||x||1

u ∈ U(B(H))

Tr(xu) = (ξi)i∈I ONB. Then,

Tr(xu) =
∑
i

< xuξi, ξi >

=
∑
i

< xuξi, u
∗uξi >

=
∑
i

< uxuξi, uξi >

= Tr(ux)
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25 October

Exercise Show that the finite rank operator FR(H) ⊂ L1(B(H)) and moreover FR(H) = L1(B(H)).

Hint Tr(ξ ⊗ η̄) =< ξ, η > (finite linear combination). Show dense.

Apply definition. Let (bi)i∈I be an ONB. Then,

Tr(ξ ⊗ η̄) =

∞∑
i=1

ξ ⊗ η̄ < bi, bi >

=
∑
i∈I

<< bi, η > ξ, bi >

=
∑
i∈I

< bi, η >< ξ, bi > Prove this is the same as dot product

=
∑
i∈I

< ξi, < ξi, η >, ξi >

=< ξi,
∑
i

< bi, η >bi >

=< ξi,
∑

< η, bi > bi >

=< ξ, η >, i ∈ I

Theorem 45. (L1(B(H)), || · ||1) is a Banach space.

Proof. (From previous lectures), (L1(B(H)), || · ||1) is a normed space.

Check Completeness Fix (xi)nsubsetL
1(B(H)) is a Cauchy sequence.

∀n,m ∈ N, ||xn − xm||∞ ≤ ||xn − xm||1 < ε.

⇒ (xn)n ⊂ B(H) is a || · ||∞ -Cauchy sequence.

⇒ ∃x ∈ B(H) such that ||xn − x||∞ → 0.

||xn − xm||∞ → 0 as n,m→∞.
⇒ ||xn − x||∞ → 0 as n→∞
⇒ |||xn| − x||∞ → 0 as n→∞ (application of continuous functions).

Now suppose ξ1, ξ2, ..., ξn ⊂ H is orthonormal system. Then, we need to analyze the trace as follows:

k∑
i=1

< |x|ξi, ξi > = lim
n→∞

k∑
i=1

< |xn|ξi, ξi >

≤ Tr(xn)

= ||xn||1
≤ C for every n ∈ N

This is bounded by constant for all k.

||x||1 = limk→∞
∑k
i=1 < |x|ξi, ξi >= C ⇒ x ∈ L1(B(H)).

Fix ε > 0. ∃N ≥> 0, ∀n ≥ N such that |xn − xN ||1 < ε.

Let H0 ≤ H be a finite dimensional subspace. Then ||xNPH⊥0 || < ε (by theorem above).

Also assume that ||xPH⊥0 ||1 < ε. Then,
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||x− xn||1 = ||(x− xn) ◦ (PH0
+ PH⊥)||1

≤ ||(x− xn) ◦ PH0
||1 + ||(x− xn) ◦ PH⊥0 ||1

≤ ||(x− xn) ◦ PH0 ||1 + ||(x− xN ) ◦ PH⊥0 ||1 + ||(xN − xn)PH⊥0 ||1
≤ ||(x− xN )PH0

||1 + 3ε

=

k∑
i=1

< (x− xn)ξi, ξi > +3ε

≤ k||x− xn||∞ + 3ε

Theorem 46 (Pre-Dual Property).

∃mapΨ : B(H)→ (L1(B(H)), || · ||)∗

a 7→ Ψa(x) = Tr(ax), x ∈ L1(B(H))

is a Banach space since this is an isomorphism.

Proof. Show surjectivity.

Fix φ ∈ L1(B)H))∗.

Take (ξ, η) ∈ H × H. Then, (ξ, η) → φ(ξ ⊗ η̄), (rank 1) is a bounded, sesquilinear form y the Riesz
Representation Theorem.

∃a ∈ B(H)) such that

Tr(a⊗ η̄) =< aξ, η >= φ(ξ ⊗ η̄) ∀ξ, η ⇒ φ = Ψa.

Since Tr(ax) = φ(x), this is onto.

27 October 11 Hilbert Schmidt Operators

Recall L1(B(H)) = {x ∈ B(H), ||x||1 = Tr(|x|) <∞}.
L2(B(H)) = {x ∈ B(H)|x|2 ∈ L1(B(H)) = Tr(x∗x) = Tr(|x|2) <∞}
Here are some properties for L1(B(H)); Tr).

Lemma 47.

1. L2(B(H)) ⊂ B(H) is a 2-sided ideal.

2. ∀xy ∈ L2(B(H))⇒ xy, yx ∈ L1(B(H))

3. Tr(xy) =Tr(yx)

Proof. x, y ∈ L2 ⇒ x+ y ∈ L2. Then,

|x+ y|2 ≤ |x+ y|2 + |x− y|2

= (x+ y)∗(x+ y) + (x− y)∗(x− y)

= (x∗ + y∗)(x+ y) + (x∗ − y∗)(x− y)

= x∗x+ x∗y + y∗x+ y∗y + (x∗x− x∗y − x∗x+ y∗y)

= 2x∗x+ 2y∗y

= 2|x2|+ 2|y2|
Tr(|x+ y|2) ≤ 2Tr(|x|2) + 2Tr(|y|2) <∞

Therefore, it is a linear subspace.
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|ax|2 = (ax)∗(ax)

= x∗aax

= ||x∗a|| − x∗x
= k||a||2 · |x|2

for a ∈ B(H), x ∈ L2(B(H)).

We will now use Polarization.

x, y ∈ L2 ⇒ xy.

y∗x =
1

4

3∑
p=0

ik(y + ik)∗(y + ikx)

Tr(y∗x) = Tr(
1

4

3∑
p=0

y + ikx)∗(y + ikx)

=
1

4

3∑
i=0

Tr((y + ikx)∗) ∗ (y + ikx)

=
1

4

∑
Tr((y + ikx)(y + ikx)

= Tr(xy∗)

11.1 Hilbet Schmidt Operators

x, y ∈ L2(B(H),Tr).

Define < x, y >2= Tr(y∗x). Then,

0 ≤< x, x >2 = Tr(|x|)2 = ||x||22
||xii||22 =< |x|2ξi, ξi >= 0

||axb||2 ≤ ||a||∞ · ||b||∞ · ||x||2 ∀a,∈ B(H), x ∈ L2(B(H)).

||x||2 = sup
||y||2≤1,y∈L2(B(H))

= sup
||y||2≤1

|Tr(y∗x)|

≤ sup
||y||2
||y∗||∞||x||1

≤ ||x||1

Therefore ||x||∞ ≤ ||x||2 ≤ ||x||1 ∀x.

||x||22 = Tr < |x|2ξi, ξi >≥< |x|ξi, ξi >
= |||x|ξi||2

= ||x||2∞

x, y ∈ L2(B(H))⇒ ||xy||1 ≤ ||x||2||y||2.
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Proof.

||xy||1 = Tr(|xy|)
= Tr(x∗v)∗y)

= | < y, x∗v >2 |
≤ ||y||2 · ||x∗v||2
≤ ||y||2 · ||x∗||2||v||∞
= ||y||2||x||2

Here v is the projection.

29 October H,K Hilbert spaces. Consider H⊗̄K, which is new Hilbert space.

HS(H,K) = {x : H → Klinear, bounded|x̃ ∈ L2(B(H ⊕K)}
x : H → K.

Definition 11.1.

x̃ : H ⊕K → H ⊕K
x̃(ξ ⊕ η) = O ⊕ x(ξ)

(bounded operator ⇒∈ L2(B(H ⊕K)).

Lemma 48. HS(H,K) form a closed subspace L2(B(H ⊕K))

Proof. Exercise.

Observe (When K = C), HS(H,C) is the dual of H (by Riesz Representation H∗ = H̄).

By Riesz Representation Theorem, this is naturally anti-isomorphic to H.

11.2 Lifting Procedure

H̄ = conjugate of H.

B(H)→ B(H̄)

x 7→ x̄, x̄(ξ̄) = xξ

Consider H⊗̄H (completion of algebraic structure), where(ξi)i ⊂ H ONB and (ηj)j ⊂ K ONB. Then,

(ξi ⊗ ηj)i∈I,j∈J ONB for H ⊗ k.

Note that the span of ξi ⊗ ηj = H⊗K.

Also note that H⊗K ⊃ H ⊗C K = {
∑

finite ξ ⊗ η|ξ ∈ H, η ∈ K}.
Then, we apply tensor to a vector.

x ∈ B(H), y ∈ B(K), then we can define a new tensor x⊗ y ∈ B(H⊗̄K).

Define (x⊗ y)(h) = xhy∗. Then,

||(x⊗ y)(ξi ⊗ η)| = ||(xξ)⊗ (yη)||
≤ ||xη||||ηh||
≤ ||x||∞||ξ||+ ||hy||∞

⇒ ||x⊗ y||∞ ≤ ||x||∞||y||∞
= ||x||∞||y||∞||ξ ⊗ η||

This is bounded on finite numbers.

(x⊗ y)∗ =< x∗(xy)∗, ηx∗η >
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1 November 2021

Theorem 49. L2(X ×X, η × η) 3 k → Tk ∈ `2(B(L2(X)))

Then Tk(ξ)(x) =
∫
X
k(x, y)ξ(y) dµ(y) is a unitary, T ∗k = Tk̄,

Q. Why is this an isometry?

||Tk|| ≤ ||k||2 (Want to show equality)

Suppose k =
∑n
i,j=1 cijξi ⊗ ξj .

ξi, ξj ∈ L2(X), ci,j ∈ C. For η ∈ L2(X), we have

Tk(η)(x) =

∫
X

k(x, y)η dµ(y)

=

∫ n∑
i=1

cijξi(x)ξj(y)η(y) dµ(y)

−
n∑
i=1

cijξi(x)

∫
X

ξ̄i(y)η(y) dµ(y)

=

n∑
i,j

cijξi < ξj , η̄ >

= cijxii ⊗ ξ̄j(η)

Tk =
∑
i,j cijξi ⊗ ξj (finite rank operator)

||Tk|| = ||
∑
cijξi ⊗ ξj || = ||k||2. (If the sum is finite, we have equality).

1. ||Tk|| ≤ ||k||2

2. k =
∑
i=1,j cjξi ⊗ ξj)⇒ ||Tk|| = ||k||2

Fix k ∈ L2(X ×X), ε > 0. Then,

∃kε =
∑n
i,j=1 ci,jξi ⊗ ξj such that ||kε − k||2 < ε⇒ ||kε|| ≥ ||k|| − ε (by reverse triangle inequality).

||Tk|| = ||Tk − Tkε + Tkε || = ||Tkε + Tkkε||
≥ −||Tk−kε ||+ ||Tkε ||
≥ ||Tkε ||2 − ||Tk − kε||2
= ||kε||2 − ||k − kε||2
≥ ||kε|| − ε
≥ ||k||2 − ε− ε

∴ ||Tk|| ≥ ||k|| − 2ε ∀ε

As ε→ 0, ||Tk|| ≥ ||k||2 (due to continuity).

Theorem 50. x ∈ B(H). Then FAE:

(1) x ∈ FR(H)

(2) (ξα)α ⊂ (H)1 ⇒ ξα
weakly−−−−→ ξ ⇒ x(ξα) → x(ξ) (follows from weak topology continuity for x to

norm topology of H)

(3) x(H)1 is compact in norm topology

(4) x(H)1 has compact closure in norm topology.

Definition 11.2. ∀x ∈ B(H) satisfying one of the previous conditions is called a compact operator is

FR(H)
||·||∞

= K(H)
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Proof. (1)⇒ (2)

Fix (ξα)α∈I ⊂ H.

ξα
weakly−−−−→ ξ. Then, < ξα, η >→< ξ, η > ∀η

Fix ε > 0. Then ∃y ∈ FR(H) such that ||x− y||∞ < ε.

Whenver ξα
weakly−−−−→ ξ ⇒ ||xξα− xξ|| → 0. Then we apply the triangle inequality:

||xξα − xξ|| ≤ ||xξα − yξα + yξα − xξ||
≤ ||xξα − yξα||+ ||yξα − yξ||+ ||(x− y)ξα||
≤ ||x− y||∞||ξα||
< 2ε+ ||yξα − yξ|| → 0

i.e. y ∈ FR⇒ dim(Ran(y)) <∞.

∴, we have prove (1)⇒ (2).

Proof. (2)⇒ (3)

Idea x(H1) will move compact sets to compact sets.

Since H1 is weakly compact, then by (2), x(H1) is noncompact.

Proof. (3)⇒ (4)

Trivial.

Proof. (4)⇒ (1)

Suppose (Pα)α∈X ∈ B(H) orthogonal projections. Then,

||Pα(ξ)− ξ|| → 0 ∀ξ ∈ H.
Note that dimC(Pα) <∞.
Pn = span{ξ1, ..., ξn}
By composition of operators, ||Pα ◦ x− x||∞ → 0.

By way of contradiction, suppose this does not converge uniformly → 0.

⇒ ∃(ξα) ∈ H1 such that |Pα ◦ (ξα)− ξα||| ≥ ξ0 > 0

By (4), xξα has a limit point ⇒ ∃x ∈ H such that xξα → x. Then

ξ0 ≤ ||xξα − Pxξα||
≤ ||ξ − Pαξ||+ ||(1− Pα(xξα − ξ)||
≤ ||ξ − Pαξ||+ 2||xξα0ε||
→ 0

3 November 2021 Recall, last time we had a theorem that said x ∈ B(H) is compact iff x ∈ FR(H)

Lemma 51. Suppose x ∈ K(H), σap(x)− {0} ≤ σp(x).

Proof. Pick λ ∈ σap(x)− {0}. Then,

∃ {ξ}i ⊂ (H)1 = {ξ ∈ H|||ξ|| = 1} such that ||(x− λ)ξn|| → 0 as n→∞.

||xξn − λξn|| → 0.
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x ∈ K(H), {xξn}n is pre-compact.

∃ξ ∈ H such that xξn → ξ as n→∞ after passing to a subsequence.

Then, by continuity we have x(xξn)→ xξ. Next,

||xξn − λξn|| → 0

||x(xξn − λξn|| ≤ |x||∞ · ||xξn − λξn|| → 0

||x(xξn)− λxξn|| → ||xξ − λξ||
⇒ ||xξ − λξ|| = 0

⇒ xξ = λξ λ ∈ σap

Lemma 52. x ∈ K(H) ∀ point in σ(x)− {0} is an isolated point.

Proof. Let (λn)n ⊂ σ(x)− {0} such that λn → λ.

σ(x) = σap(x) = σap(x∗.

We can assume without loss of generality that passing to a subsequence (λn)n ⊂ σap(x)− {0}

Note that λn are distinct eigenvalues ⇐⇒ will have nonzero eigenvectors.

∴ ∃ηk 6= 0 such that ηninH such that
xξn = λnηn ∀n

.

∴ {ηn|n ∈ N} are linearly independent.

5 November 2021 Last time, we discussed a lemma that if x ∈ K(H) (compact operator), then σ(x) − {0} are isolated
(no limit points).

Theorem 53 (Fredholm Alternative). Let x ∈ K(H). Then σ(x)− {0} = σp(x)− {0}.

Proof. σ(x)− {0} ⊂ ∂(σ(x)) ⊂ σap(x)− {0} ⊂ σp(x)

Theorem 54. Suppose x ∈ K(H) normal.

∀λ ∈ σp(x), Eλ the eigenspace (subspace of Hilbert space).

x =
∑
λ∈σ(x)−{0} λPEλ (orthogonal projection) , where the sum is in the topology induced by || · ||∞.

12 Locally Convex Topologies on B(H)

8 November 2021 WOT, SOT is generated by family of semi-norms.

(1) Weak Operator Topology

B(H) 3 x 7→ | < xξ, η > | = |Pξ,η(x)| ∈ R+ ∀ξ, η ∈ H

This is the samllest topology on B(H) so that Pξ,η are continuous for ξ, η ∈ H.
(2) Strong Operator Topology (finer topology - WOT < SOT < Norm)

B(H) 3 x 7→ ||xξ|| = Pξ(x)

This is the smallest topology on B(H) such that Pξ is continuous.

Note that Pξ,η(x) = | < xξ, η > | ≤ ||xξ||||η|| = Pξ||η||

Basis VWOT(x0, .., ξ1, .., ξn, η1, ..., ηn) = {x ∈ B(H)|Pξ,ηi(x− x0) < ε, i > ī, η}
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Theorem 55. WOT, SOT have the same dual i.e.

φ : B(H)→ C linear functional. TFAE

(1) ∃ξ1, ξ2, ..., ξn ∈ H such that φ(x) =
∑n
i=1 < xξi, ηi >.

(2) φ is WOT-continuous

(3) φ is SOT-continuous

Consequence Two different duals if duals same, the closure on convex sets is the same.

Proof. (1)⇒ (2)

For xi
WOT−−−→ x, show that φ(xi)→ φ(x).

|φ(xi)| = |
n∑
i=1

< xξk, ηk >

≤
n∑
k=1

| < xξiηk >→ 0

Proof. (2)⇒ (3)

xi
SOT−−−→ x⇒ x

WOT−−−→ x⇒ φ(xi)→ φ(x).

Proof. (3)⇒ (1) (This is hard)

Assume φ is SOT-continuous.

∃ k > 0, ξ1, .ξ2, ..., ξn ∈ H such that

|φ(x)| ≤ k
∑n
i=1 ||xξi||2 ≤ k(η

∑n
i=1 ||xξ||2)1/2

φ−1(D(0, 1)) ⊂ B(H)SOT open set.

∃ξ0 > 0, ξ1, ..., ξn ∈ H such that

V (0, ξ1, .., ξn, ξi > 0) ⊂ φ−1(D(0, 1))

∀x ∈ V, |φ(x)| ≤ 1. ||xξi|| < ξ0∀i = 1, n. Then,

||( ξ0∑n
i=1 ||xξi

· x)ξk||2 ≤ ||
ξ0/2||xξk||∑n
i=1 ||xξk||

≤ | ξ0
2(
∑
||xξi||)

|φ(xi)| < 1

|φ(x) ≤ k1/2
0 (

n∑
i=1

|xξi||2)1/2

= ⊕ni=1xξi||2

Consider H0 = {(xξ1, xξ2, .., .xξn) = ⊕ni=1xξi} ≤ ⊕H = Hn

φ̃(⊕ni=1xξi) = φ(x)

We need to make sure it is well efined.

K0|| ⊕ni=1 xξi|| ≥ |φ(x)| = φ̃(⊕ni=1xξi)

We note that a subspace of a Hilbert space is Hilbert space. We can also apply Hahn-Banach to extent
(φ̃).
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By application of H-B and Riesz-Representation Theorem, we get that

||φ̃(⊕ni=1φi|| =
n∑
i=1

< hi, ki >

⇒ φ(x) =

n∑
i=1

< xξi, ξi >

∴ ξ̃i = ξi

Corollary 55.1. K ⊂ B(H) is a convex set and K
WOT

= K
SOT

.
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12 November 2021

Lemma 56. φ : B(H)→ C linear, then TFAE:

1. ∃ ξ1, ξ2, ..., ξn, η1, ...ηn ∈ H such that

φ(x) =

n∑
i=1

< xξi, ηi > (3)

2. φ is WOT-continuous

3. φ is SOT-continuous

Corollary 56.1. K ⊂ B(H), K convex.

K
WOT

= K
SOT

⇒ We first show K
WOT ⊃ KSOT

.

∃x ∈ KWOT
such that x 6∈ KSOT

.

Then, we have φ ∈ (B(H))∗,WOT). We can use this to come up with the conclusion that

Re (φ(x)) > ε0+Re(φ(y)), y ∈ KSOT
.

Contradiction.

13 σ-WOT, σ-SOT

Consider the ‘inflated space’ B(H⊗`2(N)).

There is a natural map

B(H)→ B(H⊗`2(N)WOT

x 7→ x⊗ 1

Now we can think of the pullback topology i.e.

σ-WOT = pullback of B(H ⊗ `2(N) under this map.

σ-SOT = pullback of (B ⊗ `n(N) under this map.

B(H) 3 T 7→ |Tr(aT )|, a ∈ `1(B(H)).

B(H) = L⊥(B(H))∗,Ψ(a) ∈ Tr(a).

σ-WOT on B(H) agrees with the weak∗-topology of B(H) (with this, we have compactness properties
on the unit ball).

Lemma 57. φ : B(H)→ C linear. Then TFAE:

1. ∃a ∈ `1(B(H)) such that φ(x) = Tr(ax) ∀x ∈ B(H)).

2. φ is σ-WOT.

3. φ is σ-SOT.

Proof. (1)⇒ (2)⇒ (3).

3⇒ 1 Consider φ : B(H)→ C, where B(H) ⊂ B(H ⊗ `2(N).

(By the Hahn-Banach Theorem, we can extend this i.e.)

∃ φ̃ : B(H ⊗ `2(N)→ C SOT continuous.

By the first lemma above, ∃ξ1, ...ξn, η1, ..., η)n ∈ H ⊗ `2(N) such that φ(x) =
∑n
i=1 < xξi, ηi >.

Now, let

H ⊗ `2(N) = HS(H, `2(N)

ξiηi → aibi
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(where HS stands for the Hilbert-Schmidt operator).

Let a =
∑n
i=1 b

∗
i ai ∈ `1(B(H)). Then,

Tr (ax) = Tr(xa) =
∑

< aix, bi >2 . Since Trace is linear, we have the following

Tr(xa) = Tr(x

n∑
i=1

biai)

=

n∑
i=1

Tr(xbiai)

=

n∑
i=1

< id⊗ 1(x)ξi, ηi >

= φ(x)

Corollary 57.1. ((B(H))1 (unit ball) is σ-WOT compact.

(i.e. agress with the weak∗ topology and Alaoglu’s theorem gets us htere).

Corollary 57.2. WOT, σ-WOT agree on bounded sets.

Homework Proof of the corollary above.

14 Von Neumann Algebras

Definition 14.1 (Von Neumann Algebra). M ⊂ B(H) is called a VN algebra if 1 ∈ M and M =

M
WOT

= (M
SOT

) = M ′′.

Definition 14.2. 1 ∈M ⊂ B(H) self-adjoint algebra is called a VN algebra iff M
SOT

= M
WOT

= M.

Notation A ⊂ B(H). Then, W ∗(A) = VN algebra generated by A = ∩A⊂MM.

Corollary 57.3. (von Neumann bicommutant) Let a ⊂ B(H), ∗-subalgebra, then A′′ = A
SOT

.

Definition 14.3. S ⊂ B(H). Then, (commutant) S′ = {T ∈ B(H)|Tx = xT ∀x ∈ S}. We will denote
this by ?.

1. ? is a subalgebra of B(H).

2. If S is self-adjoint then ? is a ∗- sublagebra of B(H).

Lemma 58. S ⊂ B(H) is a slef adjoint st (S = S∗), then S′ ⊂ B(H) is a VN algebra.

Proof. S′ is WOT-closed.

Fix xα → x WOT i.e. < xαξα, ηα >→< xξα, ηα > ∀ξα, ηα ∈ H.

(Here xα, x ∈ S′.

Show [x, a] = xa− ax = 0∀a ∈ S (commutator). Fix ξn ∈ H.
Then, we have < [x, a]ξ, η >= 0. Then,

< [x, a]ξ, η > =< (xa− ax)ξ, η >

=< xaξ, η > − < axξ, η >

=< xaξ, η > − < xξ, a∗η >

= lim
α
< xαaξ, η > − lim

α
< xαξ, a

∗η >

= lim
α
< xαaξ, η > − lim

α
< xαξ, a

∗η >)

= lim
α

(< xαaξ, η > − < axαξ, η >)

= lim
α
< xαa− axαξ, η >

= 0
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Lemma 59. 1 ∈ A ⊂ B(H) self -adjoint (∗-subalgebra)

∀ξ ∈ H,∀x ∈ A′′,∃(xα)α ⊂ A such that

||xαε− xε|| → 0.

Show xε ∈ Aε.

Proof. ξ ∈ H. Take Aξ ≤ H.

H0 = Aξ ≤ H.

p′ = PH0 is the orthogonal projection (Remarkable: Projection lines in bicommutant).

Let p ∈ A. Then,

a(Aξ) ⊂ Aξ.
aH0 ⊂ H0. (H0 is an invariant space for a).

Pick x ∈ H0

p(aη) = aη

pap(η0) = ap(η0) ∀η0 ∈ H
pap = ap foralla ∈ A

⇒ (pa∗p)∗ = (a∗p)∗

pap∗ = pa since p = p∗

∴ pa = pap = ap⇒ pa = ap.

Let x ∈ A′′, p ∈ A′. Then,

xp = px

xp′(η) = px(η) ∈ Aξ, where η ∈ H
p(H) = Aξ

xξ ∈ Aξ since A has a unit

⇒ (xα)a ⊂ A such that ||xξ − xαξ|| → 0.

Claim A′′ ⊃ A⇒ A′′
SOT ⊃ ASOT

.

Show A′′ ⊂ ASOT
.

Fix x ∈ A′′ ⇒ x ∈ ASOT
.

∀ξ1, ..., ξn ∈ H, ∃(xα)α ⊂ A such that ||xαξ − xξi|| → 0, pi(xα − x)− ηi).
Let Hn = H ⊕H...⊕H︸ ︷︷ ︸

n times

. Then,

B(Hn) ∼= Mn(B(H)).

Ã ⊂ B(Hn) = {


a ..... 0
0 a.... 0
. .... ..
0 .... a

 |a ∈ A}

x ∈ {


x ..... 0
0 x.... 0
. .... ..
0 .... x

 , x ∈ A.
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λ̃ ∈ Ã′′.

||x̃ξ̃ − x̃αξ̃|| → 0, where ξ̃ =


ξ1
ξ2
...
ξn


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3 December 2021 15 Borelian Functional Calculus

x ∈ B(H), xx∗ = x∗x.

A = C∗(xx∗, 1) = C∗(x, 1) ⊂ B(H) (Abelian C∗- algebra).

Recall π : A→ B(H) ∗-representation

∃! spectral measure σ(A) such that π(x) =
∫

Γ(x) dE

σ(A) σ(x), we obtain an isomorphism

C(σ(X)) 7→ B(H)

f →
∫
σ(X)

f dE

B∞(σ(x)) 3 f →
∫
σ(x)

fdE ∈ B(H), where f dE = f(x).

∀f ∈ B∞(|x|). Let f(x) =
∫
σ(x)

f dE. Here,

f(z) = z, x =
∫
σ(x)

t dE

Theorem 60 (Borelian Functional Calculus). Let A ⊂ B(H) be a VN Algebra and let x ∈ A normal.
Then, the functional calculus defined f 7→ f(x satisfies the following proposition:

(i) f 7→ f(x) is a continuous unital x-homomorphism

(ii) ∀f ∈ B∞(σ(x)), σ(f(x)) ⊂ f(σ(x))

(iii) If f ∈ C(σ(x)), Borel calculus agrees in the continuous one.

X(ξ,∞)(t) · t ≥ εX(ξ,∞)(t)

X(ξ,∞)(x) · x ≥ εX(ξ,∞)(x)

Call X(ξ,∞)(x) = eξ. Then,

xeξξeξ ⇒ x ≥ eξ. On this algebra, this is invertible.

15.1 Take Home Exam

Let H be a separable Hilbert space and M ⊂ B(H) is an abelian VN algebra. Then show that M is
∗-isomorphic to L∞(X,µ), X is a compact, metric space and µ is a Borel regular measure on X.
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16 Decomposition Into Types for VN Algebras

M ⊂ B(H), P (M) = {p ∈M |p = p2 = p∗}, U(M) = {u ∈M |uu∗ = u∗u = 1}
(pi)i ∈ P (B(H)).

Definition 16.1 (“Smallest projection that dominates everything”). ∨i∈Ipi = smallest p ∈ P (H)
such that p ≥ pi ∀i
Equivalently, this is the Proj lin span{pi(H)|i ∈ I}

Definition 16.2 (“Largest projection that is smaller than everything”). ∧i∈Ipi = largest p ∈ P (B(H))
such that p ≤ pi ∀i
(= Proj ∩i∈IpiH)

Proposition. If (pi)i ⊂ P (M)⇒ ∧ipi ∈M,∨ipi ∈M .

p ∈ P (B(H)), p ∈M = (M ′)

[p, y] = 0 forally ∈M ′ ∩B(H))

B(H) is invariant ∀y ∈M .

Z(M) = M ∩M ′

M is a factor Z(M) = C1

p ∈ P (M) is called a central p ∈ Z(M)

Central support of p (that is in center such that when you multiply, it does not change) is the smallest
z(p) ∈ Z(M) such that 0 ⊂ Z(p)

Theorem 61. p ∈M ⊂ B(H) z(p) = MpH

z(p) =Proj MpH ∈ B(H)

pH ⊂MpH

⇒ pH ⊂MpH → b ≤ z (Range of 1 contained in range of z)

x(MpH) ⊂MpH. Since it is continuous,

y(MpH)⇒ (mpyH) ⊂ mPH (can move to closure)

6 December 2021 Recall, p ∈ P (M), z(p) =central support and z(p) ∈ Z(M) = M ∩M ′ 3 C1 is the smallest project
z ∈ Z(M) such that p ≤ z.
Theorem 62. z(p) = PMpH .

z = MpH ≤ H ∈M ∩M.

z(p), 1 ∈M . Then,

1 · pH = MpH

p(H) = MpH

⇒ p ≤ z(p) ⇐⇒ z(p) · p = p

= pz(p)

Note that the range of a projection is closed. Then,

f ≤ e ⇐⇒ fH ⊂ eH ⇐⇒ fe = ef = f

Proof. (Proof Idea) (⇒)

eξ = xi

e(fη) = fη ∀η ∈ H
⇒ ef(η) = f(η)⇒ ef = f
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(⇐)

(ef = f)∗

f = f∗e∗

= (ef)∗

= f∗

= f

Show z ≤ z(p) (By minimality, they have to be equal)

Proof. MpH = Mz(p) ·H ⊂Mz(p)H = z(p) ∴ z ≤ z(p) (smallest project)

Exercise
∨sup η∈B(H)upu

∗z(p)

Theorem 63. Suppose M ⊂ B(H), p ∈ P (M), p′ ∈ P (M ′). Then,

pMp = {pxp|x ∈M}

This is an algebra.

Proof. (Proof Idea)

pxp+ pyp′ = p(xppy)p′. Hence, still an algebra.

Now why is this a VN algebra?

Mp′ = {xp′|x ∈M} ⊂ B(pH)

pxpξ = pxp(pξ)

Theorem 64. The TFH:

(a)Mp′ ⊂ B(p′(H)) is a VN algebra.

Compute commutant (Mp′)′ = p′M ′p′

(b)pMp ⊂ B(pH) is a VN algebra

(pMp)′ = M ′p

Corollary 64.1. Z(pMp) = Z(M)p, Z(Mp′) = Z(M)p

(i) pMp ∩ (pMp)′ = Mp ∩Mp′ (elements in form Z(m)p)

(ii) M ′p ⊂ (pMp)′ For m′inM ′

m′ppp = ppxpm′

= pxpmp

Therefore, commutes.

Show (pMp)′ ⊂M ′p.
Since every element is a linear combination of 4 unitaries of (pMp)′, then it suffices to prove the
following:

∀u ∈ U((pMp′)),∃u′ ∈ U(M ′) such that

u = ũp, pu = up.
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Proof. Suppose x1, x2, .., xn ∈M, ξ1, ξ2, .., ξu ∈ pH.
U∗px∗jx)jpu = U∗px∗jxipU .

Here U : pH → pH given by

Up : Up(pξ) = U(pξ)Up = p.

Define ũ : H → H. Then,

Ũ(ξ) =

n∑
i=1

xiUξi, ξ =

n∑
i=1

xiξi ∈MpH

⇒ ||Ũ(ξ)||2 = ||
n∑
i=1

xiUξi||2

=
∑
i,j

< xiUξi, xjUξi >

=
∑
i,j

< U∗x)j∗xi, Uξiξi >

=
∑
i,j

< U∗px∗jxipUξi, ξj >

= ||
∑

xjξi||

p ∈ P (M),M = M ′′
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[8 December 2021]

Proof. (2)pMP ⊂ B(pH) VN algebra, (pMp)′ = M ′p.

We need to show that U ∈ (pMp)′ unitary, ∃Ũ ∈M ′ such that U = Ũp

Let x1, .., xn ∈M, ξ1, .., ξn ∈ pH.

Ũ : H → H.

Ũ(ξ) =

n∑
i=1

xiUξi ∀ξ =

n∑
i=1

xiξi ∈MpH

Last time, ||η̃(ξ)|| = ||ξ||∀ξ ∈MpH = Ran(Z(p)).

Ũ(0) = 0 ∀1σ ∈MpH
⊥

Initial support of µ̃ = final support of ũ = MpH.

Ũp = U, Ũ ∈M ′.

M = M · 1
= M(z + (1− z))
= Mz +M(1− z)

If y ∈M(1− z), Ũ ∈ y = Ũ(1− z)y
zŨ = Ũ = Ũz = Ũz(1− z)y = 0⇒ Ũy = 0.

Similarly, yŨ = 0.

Let y ∈Mz;x ∈M,xξ ∈MpH. Then,

Ũy(xξ) = Ũ(yxξ)

= y(xuξ)

= yŨ(xξ)

⇐⇒ Uỹz = ỹUz

Uỹ = ỹu

Show VN Algebra

(pMp)′′ = pMp.

x ∈ (pMp)′′. If y ∈M ′, then py = yp ∈M ′p = (pMp)′.

xy = x(py) = (py)x⇒ (yp)x = y(px) = yx.

(M ′)′ = M = pMp⇒ x ∈ (M ′)′ = M .

p, ξ ∈ P (M), p ≺ q (subequivalent).

Definition 16.3. ∃ v ∈M partial isometry such that v∗v = p and vv∗ ≺ q

Two projections equivalent if partial isometry.

Theorem 65. (1)p ∼ p
(2)p ≺ q, q ≺ r ⇒ p ≺ r
(3)p ≺ q, q ≺ p = 1, p ∼ q
(Cantor-Bernstein Theorem)
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[10 December 2021] p, q ∈ P (M), p ∼ q (von Neumann equivlance)

⇒ ∃v ∈M such that v∗v = p, vv∗ = q

Theorem 66. ∼ is an equivalence relation

Proof. p ∼ q ⇒ v∗v = p, vv∗ = q

⇒ v∗(v∗)∗ ⇒= q ∼ p = (v∗)∗(v∗)

p ≺ q if p ∼0, where q0 ≤ q.
Theorem 67. This is ∝.

p ∝ q, q ∝ p⇒ p ∼ q (Generalization of C-B).

17 Connection to Cantor-Bernstein

Let S1, S2 be two sets.

Form `2(S1), `2(S2), each Hilbert space.

φ1 : S1 → S2 injection  P`2S1 ∝ P`2S2

φ2 : S2 → S1 injection  P`2S2 ∝ P`2S1

By generalization, P`2S1
∼ P`2S2 ⇐⇒ dim(`2S1) = dim(`2S2)) ⇐⇒ |S1| = |S2|.

Lemma 68. Let M VN algebra.

(1) If p, q ∈ P (M).

Then, p ∼ q  Ψ : pMp→ ξMξ ∗- isomorphic given by Ψ(x) = vxv∗.

v∗v = p, vv∗ = ξ. Then,

ξ(p) = vpv∗ = (vv) ∝ (vv)∗ = qη = η.

Proof. (1) xy ∈ pMp.

Ψ(x) ·Ψ(y) = vxv∗vyv∗

= vxpyv∗

= vxyv∗

= vxyv∗

= Ψ(xy)

Proof. (2)

Suppose {pi}, {qi} ⊂ P (M)

pi ∼ qi ∀i
pi · pj = 0(⊥)⇒ qiqj = 0 for i, j 6= 0.

⇒
∑
pi ∼

∑
qJ .

Proof. (3)p ∼ q, z ∈ P (Z(M)) ⇐⇒ pz ∼ qz
(vz)∗(vz) = zv∗vz = v∗vz = vvz = Pz

Lemma 69. p, q ∈ P (M),M VN algebra. Then TFAE

(1)∃pMq 6= {0}
(2)∃0 6= p1 ≤ p, 0 6= q1 ≤ 1 such that p1 ∼ z1

∈ pZ(ξ) 6= 0.
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Proof. (2)⇒ (1)

p1 ≤ p
∃0 6= v ∈M partial isometry of v∗v = p1 = p, vv∗ = q ≤ q.
pv∗ = pv∗(vv∗) = pv∗vv∗q = pv∗q =⊂ pMq

Proof. (1)⇒ (2)

∃ x ∈ pMq ⇒

x = pyq

pxq = p2yq2

= pyq

∴ pxq = x

Now let us look at (1) and (3)

pMq 6= {0}, x ∈M, ξ ∈ H.

p(xqξ) = 0. Take Mqh = H (Hilbert subspace).

pzq 6= 0.

Proof. Suppose pMq = 0. Then,

pη = 0 ∀η ∈MqH ≤ H pz(q) = 0

x(p)ξ = 0

z(q)(x(p)(ξ))) = 0

⇒ z(q)z(p) = 0

(⇐)

z(p) · z(q) = 0⇒ pxq = pz(p)xq = pxz(p)z(q) = px = 0

Theorem 70 (Comparison Theorem). p, q ∈M2,M VN algebra.

∃z ∈ Z(M) such that pz ≺ qz and q(1− z) ≺ p(1− z)
∴ p ≺ q of q ≺ p.

Proof. (Maximality argument)

{pi}i∈I , {qi} such that

pipj = 0, qiqj = 0. Then,

p1 ≥ p ∼ q1 ≤ q.
p1 =

∑
i p
′
i ∼ q1

∑
i q
′
i ≤ q

⇒ p2 = p = p1, q = q1 = q2.

pz = (p1 + p2)z = p1z + p2z ∼ q1z ≤ q1z + q2z = qz
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18 Type Classification

2nd Semester 19 January 2022

18.1 Type of projections

Definition 18.1. p ∈ P (M) = {p ∈M |p = p2 = p∗}

1. p is minimal iff∀q ≤ p⇒ q = 0 ⇐⇒ pMp ∼= Cp (minimal projection)

2. p is abelian ⇐⇒ pMp is abelian vN algebra.

3. p is finite ⇐⇒ ∀q ≤ p if q ∼ p⇒ q = p. (Cannot be subequivalent)

4. p is semifinite ⇐⇒ p =
∑
α pα, pα is finite (Sum of projections. if sum finite p is finite, but could also

be infinite)

5. 0 6= p is purely infinite ⇐⇒ 6 ∃q ≤ p such that q is finite.

6. 0 6= p is properly infinite ⇐⇒ ∀0 6= z ∈ Z(M), pz is not finite.

18.2 Observations

Minimal ⇒ abelian (since if pMp is trivial, then it is abelian).

(q ∈ p. Then, q ∈ pqp. There is a partial isometry w ∈ pMp uch that w∗w ∈ p, ww∗ = p.)

Summary 1. minimal ⇒ abelian ⇒ finite ⇒ semifiite ⇒ not purely infinite.

2. infinite ⇒ properly infinite.

Now we want to move from projections to algebra (Ex: M is isometry ⇒ 1 ∈M is isometry).

3. M is finite ⇒ (v∗v = 1 ⇐⇒ vv∗ = 1) (i.e. every isometry is a unitary).

4. B(H) (algebra) is finite ⇐⇒ H is finite dimensional (i.e. it is a matrix algebra). It is also Type I as
we will see.

4b. Otherwise B(H) is semifinite if 1 =
∑
α[Cξα], (ξα)α∈I ⊂ H ONB.

(Prototype of minimal)

[] is orthogonal projection on this space. If H0 ≤ H, then [H] = PH0 .

18.3 Lemmas

Proposition. M vN algebra, {pα}α ⊂ P (M) centrally orthogonal (z(pα)z(pβ) = 0 ∀α 6= β)

Let p =
∑
α pα

If pα are abelian for ∀α (resp. finite) ⇒ p is abelian (resp. finite)

(If you take supremum, this is not generally true. Counter example -¿ infinite dimensional matrix).

Proof. (Abelian Case)

pα abelian, then pMpα is an abelian algebra ∀α. Show pMp is abelian.

For x, y ∈M , show that (pxp)(pyp) = (pyp)(pxp).
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(pxp)(pyp) =
∑
α

pαxpαypα

pαxppypβ = pαz(pα)p · pyz(pβ)pβ

= pα z(pαz(pβ)︸ ︷︷ ︸
=0 when α6=β

xppypβ

Note pα = pα · z(pα) (since it is central and you multiply by something bigger, it does not change).

Hence we have

(pxp)(pyp) =
∑
α

pαxpypalpha

=
∑
α

pαxpαypα

=
∑
α

pαxp
2
αypα

=
∑
α

pαxpαpαypα

=
∑
α

pαypαpαxpα

=
∑

pαypαxpα

= pyp · pxp

Proof. (Finite Case)

Assume pα is finite ∀α⇒ p is finite.

Assume p is subequivalent i.e. ∃p ∼ z ≤ p (Note,we have a partial isometry uu∗ = p, u∗u = p, uu∗ ≤ p).
Show that uu∗ = q.

Look at u∗u = p. Fix α ∈ I. Multiply on left/right by central support.

u∗u = p

⇒ z(pα)u∗uz(pα) = z(pα)pz(pα)

= z(pα) · (
∑
β

pβz(pα)

= z(pα)pαz(pα)

= pα

= z(pα)︸ ︷︷ ︸
w∗

u∗uz(pα)︸ ︷︷ ︸
w

⇒ uz(pα)z(pα)u∗ = z(pα)uu∗z(pα)

≤ z(pα)pz(pα)

= pα

= uz(pα)︸ ︷︷ ︸
w

z(pα)u∗︸ ︷︷ ︸
w∗

≤ pα

Hence we have uz(pα)u∗ = pα ∀α (since finite )
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Consequences

uu∗ = uz(p)u∗ = u
∑
α

z(pα)u∗ =
∑
α

uz(pα)u∗ =
∑
α

pα = p ( from above)

u∗u = p ⇐⇒ up = u = p u

uu∗ ≤ p ⇐⇒ uu∗p = uu∗ = puu∗

u = p · |z(p)
uz(p) = upz(p) = up = u

Proposition. Let M be a vN algebra and let p ∈ P (M) is finite. Then, every q ≺ p is also finite (purely
infinite).

Proof. (2 Cases)

q ≺ p ⇐⇒ ∃p0 ≤ p such that q ∼ p0.

(i) Assume p0 ≤ p and ∃u ∈ M such that u∗u = p0, uu
∗ ≤ p0 ⇒?uu∗ = p (equivalent to a subprojec-

tion).

consider w = u+p = p0 (Not immediately obvious that this is a partial isometry, so we need to check)

w∗w = p0 + (p− p0) = p.

Note up = u = pu still holds true. Here up0 = u = p0u.

ww∗ = (u+ p− p0)(u+ p− p0)∗

= (u+ p− p0)(u∗ + p− p0)

= uu∗ + u(p− p0) + (p− p0)u∗ + (p− p0)2

≤ p+ up0(p− p0) + (p− p0)p0u
∗ + p− p0

≤ p0p− p0 = p (Equality since p finite)

The equality will happe iff uu∗ = p0, which is exactly what we needed.

The middle terms cancel because projections are orthogonal.
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18.4 Geometry of Projections

Type III is the building block for everything.

(Continued from last time).

Proposition. M ⊂ B(H) vN algebra.

0 6= p, q ∈ P (M) such that p ≺ q. If q is finite (respectively purely infinite), then p is also finite
(respectively purely infinite)

Proof. (Left from Last time).

p ∼ q ⇒ p is finite.

Since p ∼ q ⇒ ∃v ∈M partial isometry such that v∗v = p, vv∗ = q.

Suppose u∗u = p and uu∗ ≤ p⇒ Show uu∗ = p.

(From last time, with this assumption, we have) up = pu = u.

Now look at

(vuv∗)∗(vuv∗) = vu∗v∗vuv∗

= vu∗uv∗

= vpv∗

= v(v∗v)v∗

= q · q
= q

On the other hand, look at

(vuv∗)(vuv∗)∗ = vuv∗vu∗v∗

vupu∗v∗

= vuu∗v∗

≤ vpv∗

= q

Since q is assumed to be finite ⇒ vxv∗(vuv∗)∗ = q ⇒ vuu∗v∗ = vpv∗ ⇒ uu∗ = p.

Proposition. Let p ∈ P (M).

Then, p is semifinite ⇐⇒ p = ∨i∈Ipi when pi are finite. In particular, if pj are semifinite ⇒ ∨jpj is
semifinite.

⇒ Proof. Since p is semifinite ⇒ p =
∑
i∈I pi, pi are finite, pi ⊥ pj ∀i 6= j.

Then, p = ∨i∈Ipi (supremum)

⇐ Proof. Assume that p = ∨i∈Ipi, pi are finite (supremum) [i.e. at least one projection is finite ⇒
nonempty for the set below ⇒ by Zorn Lemma, can reorder and find a maximum]

(Maximality argument) Let {qj}j∈J be a maximal family of finite pairwise orthogonal projections,
qj ≤ p (by Zorn’s Lemma)

Consider the difference (show it is 0):

q0 = p−
∑
j∈J qj

(⇒ q0 ⊥ qj ∀j ∈ J, q0 ≤ p.)
If q0 6= 0, it follows that ∃ j0 ∈ J such that pj0 · q0 6= 0.

Then the central support is not perpendicular, i.e. z(pj0) ·z(q0) 6= 0⇒ ∃q̃0 ≤ q0, q̃0 ≺ pj0 (by Lemma)
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However, we know that pj0 is finite ⇒ q̃0 is finite means that q̃0 ≤ q0 if q̃0 ≤ q0 ≤ p means you are
perpendicular to all qj ’s (mutually orthogonal) i.e.

Can construct the set {qj} ∪ {q̃0} forms a family of mutually orthogonal finite subprojections of p,
which contradicts the maximality of {qj}j∈J (since assume q0 6= 0).

Thus q0 = 0⇒ p =
∑
j∈J qj .

Corollary 70.1. M ⊂ B(H) vN algebra.

Let p ∈ P (M). Then p is semifinite ⇒ z(p) is semifinite.

Proof. (Central support)

z(p) = PMpH = [MpH]

= ∨q∼pq

Homework:

Hint: p ∼ q ⇒ p = v′v, q = vv∗, (q ≤ z(p))′

p ∼ q ⇒ q ≤ z(p)⇒ ∨q∼pq ≤ z(p)
(The other way: subequivalent means it lives inside of it. Equivalent means lives under the support).

Take a partial isometry p = v∗v, q = vv∗, qH = vv∗(H) ⊂ vH ⊂ MvH = Mvv∗vH ⊂ Mv = MpH =
z(p)

z(p) = ∨q∼pq = ∨q∼p(∨i∈Iqi) = ∨qi
p =semifinite ⇒ p = ∨ipi (anything equivalent to it is semifinite as well)

Proposition. p, q ∈ P (M) such that p ≺ q. If q is semifinite ⇒ p is semifinite.

Proof. p ≺ q ⇒ z(p) ≤ z(q). (HOMEWORK)

p ≤ z(p) ≤ z(q)⇒ p ≤ z(q).
We only need to prove our statement for p ≤ q ∈ Z(M) (in the center).

p ≤ z ∈ Z(M).

(Maximality argument) Let p0 = ∨i∈Ipi where pi ≤ p, pi is finite.

Since q is semifinite, then q = ∨qj where qi ≤ q, qi finite.

Take p− p0 (subprojects of p that will not have any subprojections).

Then, its central support z(p− p0) ≤ q = z(q) (since p− p0 ≤ p ≤ q)
⇒If p− p0 6= 0, ∃0 6= q̃0 ≤ q, q̃0 ≺ p− p0, which contradicts the definition of p0.

Thus p− p0 = 0⇒ p = ∨i∈I,pi≤p,pifinitepi ⇒ p semifinite.

Theorem 71. ∀ p, q ∈M finite projections ⇒ p ∨ q is finite.

(Kaplanksi Formula) - Relationship between supremum and infimum.

p, q ∈ P (M)⇒ p ∨ q − p ∼ q − p ∧ q (if Abelian, we have equality).

Analogy (like inclusion/exclusion principle for 2 sets or measure theory)

m(A ∪B) = m(A) +m(B)−m(A ∩B)

m(A ∪B)−m(A) = m(B)−m(A ∩B)

m((A ∪B)−A) = m(B − (A ∩B))

(Can also think combinatorially)
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Theorem 72. Le M be a vN algebra.

e, f ∈ P (M). If e, f are finite ⇒ e ∨ f is finite (bunch of finite projections supremum here is finite. ∨
Smallest projection that dominates both of them i.e. h ≥ e, f).

Lemma 73. Let M ⊂ B(H) be a purely infinite vN algebra. Then ∃ p ∈ P (M) such that p ∼ 1−p ∼ 1.

(Comes from Physics)

Proof. 1 is purely infinite (i.e. does not have finite subprojections so there is a subprojection that is
equivalent) ⇒ ∃u, a partial isometry in M such that u ∈M,uu∗ < 1, uu∗ = 1.

• • • 1

• •

p0uu∗

p1

In other words we have,

p0 = 1− uu∗

p1 = up0u
∗

p2 = up1u
∗

= u2p0(u∗)2

⇒ pn = unp0(u∗)n, {pn|n ∈ N}

These are mutually orthogonal equivalent projections.

Let {qi}i be a maximal family of pairwise orthogonal equivalent projections containing {pn|n ∈ N}
(such a family does exist by Zorn’s Lemma)

We now try to use comparison as follows (up to something in the center, we can compare them).

q0 = −1−
∑
i∈I

qi (There can still be complement)

Fix q0, qi0 . Then by Comparison theorem, ∃z ∈ Z(M) such that q0z ≺ qi0z and qi0(1−z)− � q0(1−z).
If z = 0⇒ qi0 ≺ q0 ⇒ Would contradict maximality of {qi}i
Thus z 6= 0. Then,

z = 1z

= (q0 +
∑
i∈I

qi)z

= q0z +
∑
i∈I

qiz

≺ qi0z +
∑
i∈Ii0

qiz

=
∑
i∈I

qiz

≤ z

(Infinite family of pairwise orthogonal equivalent projection. Pull out a term -¿ still infinite (still in
bijection)).

(Inequality follows from) Consider φ : I → I − {i0} with the mapping qiz 7→ qφiz.

So we have shown that q �
∑
i qiz,

∑
qiz. Then, by Cantor-Bernstein,

∑
i∈I qiz ∼ z.
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Proof. Now part 2 of the proof (split the infinte set in two).

∃I = I1 t I2 such that |I| = |I1| = |I2|.

p =
∑
i∈I1

qiz

⇒
∑
i∈I1

qiz ∼
∑
i∈I2

qiz ∼
∑
i∈I

qiz

p ∼ z − p ∼ z

If z = 1, we are done.

(Fact that we use above: If ai ∼ bi and they are all mutually orthogonal then,
∑
ai ∼

∑
bi).

Let {rj}j be a maximal family of centrally orthogonal projection (i.e. their centers are mutually
orthogonal) such that rj ∼ z(rj) ∼ z(rj)− rj (each equivalent to its central support and complement)

p =
∑
j

rj

∼
∑
i∈I

z(rj) ∼ (
∑

(z(rj))− (
∑

rj))

∴ ∼ p ∼ 1 ∼ 1− p

(Note: IF
∑
i∈I z(rj) 6= 1, then we can take the complement and repeat the process - “cut corners”)

Lemma 74 (Kaplanaski). Let M ⊂ B(H) vN algebra where p, q ∈ P (M). Then,

p ∨ q − p ∼ q − p ∧ q

In an abelian vN algebra, infinum p ∧ q = p · q. Then,

p ∨ q − q = p− p · q
p ∨ q = p+ q − p·

(Cardinality of union is the cardinality of first plus cardinality of second minus cardinality of intersec-
tion. Similar to measure theory).

Notation Recall: Px∗H = [x∗H]

Proof.

p ∨ q − q ∼ p− p ∧ q
Px∗H = [x∗H] ∼ [xH],

where x = (1− p) · q.
Can show that ker(x) = ker(q)⊕ (qH ∩ pH). Then, by Rank-Nullity Theorem,

Px∗H = [x∗H]

= 1− (1− q + q ∧ p)
= q − q ∧ p

PxH = (1− p)− (1− p) ∧ (1− q)
= 1− p− (1− p ∨ q)
= p ∨ q − p
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Theorem 75. M ⊂ B(H) vN algebra.

Let p, q ∈ P (M) such that p, q are finite . Then p ∨ q is finite.

Recall

Lemma 76. Let M ⊂ B(H) vN algebra properly infinite.

∃ r ∈ P (M) such that r ∼ 1− r ∼ 1.

Kaplanski M ⊂ B(H) vN algebra.

∀p, q ∈ P (M), we have p ∨ q − p ∼ q − p ∧ q.

Proof.

p ∨ q = p ∨ q − p+ p

= q − p ∧ q (by Kaplanski formula)

≤ q

WLOG, we can assume p ⊥ q. (i.e. p · q = 0).

p ∨ q = p+ q (finite)

⇐⇒ = (p+ q)M(p+ q)

WLOG we can assume p+ q = 1.

(Just showed that if we have two finite orthogonal projection, then the sum is finite).

(Now, ensure that infinite parts are prevented).

Let z0 =
∨
z∈Z(M) finite z (supremum of centrally orthogonal projections) by prior lemma.

If z0 = 1, we are done (maximal finite projection if this case happens).

If z0 6= 1, can excise as follows. Let 0 6= 1− z0 and consider (1− z0)p and (1− z0)q. So thus z0 = 0.

Assume by contradiction that z0 = 0.

Proof Begins Here Assume by contradiction:

(a) p ⊥ q, (b) p+ q = 1, (c) z0 = 0⇒ properly infinite, (d) p, qfinite.

By (c) and Lemma 1 today ⇒ ∃r ∈ P (M) such that r ∼ (1− r) ∼ 1.

Consider, p ∧ r and q ∧ (1− r) ∈ P (M). Now by Comparison Theorem,

∃z ∈ Z(M) such that

z(p ∧ r) � z(q ∧ (1− r))
(1− z)(q ∧ (1− r)) � (1− z)(p ∧ r)

zr ∼ z(1− r) ∼ z
⇒ (zp) ∧ (zr) = z(p ∧ r)

� z(q ∧ (1− r))
= (zq) ∧ (z(1− r))

Now we use the Kaplanski formula on zr as follows:

zr = z(r − p ∧ r + p ∧ r)
= z(r − p ∧ r) + z(p ∧ r)
� z(p ∨ r − p) + z(q ∧ (1− r)) =?zq

= z(p ∨ r − p+ q ∧ (1− r))
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We need to show the = zq part. (Now here is the catch...)

Formula: e∨ f = 1− (1− e)∧ (1− f). (algebraic trick to go between infimum and supremum). Proof
continued:

zr = z(p ∨ r − p+ (1− p) ∧ (1− r))
= z(1− (1− p) ∧ (1− r)− p+ (1− p) ∧ (1− r)) (by formula above)

= z(1− p)
= zq

∴ zr is finite ⇒ zr ∼ z ⇒ z is finite also. We have found a finite central projection but since M is
properly infinite ⇒ z = 0.

⇒ q ∧ (1− r) ≺ p ∧ r (plug in z = 0 in the first equation above).

(This will lead to subequivalent below, which will help us get the contradiction).

Now consider the following:

1− r = (1− r − (1− r) ∧ q) + (1− r) ∧ q
� (1− r) ∨ q − q + p ∧ r (by Kaplanski)

= (1− r) ∨ (1− p)− (1− p) + p ∧ r
= 1− r ∧ p− (1− p) + p ∧ r (by the infimum-supremum formula)

= p

Hence we have 1− r � p.
p finite ⇒ 1− r finite but then 1− r ∼ r ∼ 1. Contradiction.

Note Infinite supremum might not be finite (for finite set, can do an inductive argument, but not in infinite
case).

Corollary 76.1. Suppose M ⊂ B(H) vN algebra.

Let p, q ∈ P (M) be finite projections. Then, if

p ∼ q[v]⇒ (1− p)[w] ∼ (1− q)
(v, w) respective isometries.

In particular, ∃ u ∈ U(M) such that p = uqu∗.

u = v + w

uu∗ = (v + w)(v + w)∗

= (v + w)(v∗ + w∗)

v∗v = p, vv∗ = q, 1− p = w∗w, 1− q = ww∗. Then,

= vv∗ + vw∗ + wv∗ + ww∗

= q + v v∗v︸︷︷︸
p

w∗w︸︷︷︸
1−p=0

w∗ + w w∗w︸︷︷︸
1−p=0

v∗v︸︷︷︸
p

+1− q

= 1

uqu∗ = (v + w)q(v∗ + w∗)

= v∗qw + w∗qv + v∗qw + w∗qv

= v∗vv∗v + w∗wwq

= p+ 1− q + 0
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p ∨ qMp ∨ q. M is finite (if not, 1− p ∨ q)
p ∼ q ⇒ p ∨ q − p ∼ p ∨ q − q
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28 Jan 2022 Recall from last time,

∀ p, q ∈ P (M) finite and M ⊂ B(H) vN algebra ⇒ p ∨ q is finite.

Corollary 76.2. M ⊂ B(H) vN algebra. Then, ∀p, q ∈ P (M) finite if p ∼ q ⇒ 1 − p ∼ 1 − q. In
particular, ∃u ∈ U(M) such that upu∗ = q.

Generic idea:
∑
pi = 1,

∑
qi = 1, pi ∼ qi ⇒ ∃u ∈Mupu∗ =

∑
(add both the partial isometries).

Example 77. Consider B(H) such that dimC(H) =∞.

{ξi}i∈I ⊂ H ONB.

span {ξ|i 6= j} = K.

p = PK

{ξi : i 6= j}, {ξi|i ∈ I} (There is a bjiection)

Example 78. (If infinite, corollary not true) Consider B(`2(N)).

Now look at the map:

V : `2(N)→ `2(N)

V : (δx) = δ1+x

V ∗V = 1, V V ∗ = Proj`2(N−{1}).

Then, 1 ∼ Proj`2(N−1)

Proof. p ∼ q ⇒ 1− p ∼ 1− q.
By the theorem, p, q finite ⇒ the supremum, p ∨ q is finite.

p ∨ qMp ∨ q = rMr (finite vN algebra )

1− p = 1− r + r − p
1− q = 1− r + r − q

Lemma 79. If two families of projections equivalent i.e.

{pi}i, {qi} ⊂ P (M).

pi ⊥ pj ∀i 6= j, ξi ⊥ ξ)i ∀i 6= j,
∑
vi

If pi ∼ qi ∀i⇒
∑
i∈I pi ∼

∑
i∈I qi

Based on the lemma, all we really need to show is that r − p ∼ r − q.
Note that p, q ∈ rMr (finite since r is a finite projection). p ∼ q (in rMr).

Show: r − p ∼ r − q.
Therefore, WLOG assume r = 1.

Working Assumption: (i) p, q ∈M (finite), (ii) p ∼ q. Now, by Comparison,

∃z ∈ Z(M) such that (1− p)z � (1− q)z and (1− q)(1− z) � (1− p)(1− z). Need to show that these
subequivalences are actually equivalences.

(1− p)z ∼ p1 ≤ (1− q)z and (1− q)(1− z) ∼ p2 ≤ (1− p(1− z)
Note*: Discussions For the calculations below:

z = (1− p)z + pz

∼ p1 + qz

� (1− q)z + qz

= z

⇒ z � z
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Now consider

1− z = (1− q)(1− z) + q(1− z)
∼ p2 + p(1− z)
≤ (1− p)(1− z) + p(1− z)
= 1− z

z, 1− z finite, then subequivalent needs to be equivalent.

Hence, the subequivalneces above become equivalences.

Definition 18.2 (Countably Decomposable). ∀ family of mutually orthogonal projections is at most
countable.

Exercise p � q ⇒ z(p) ≤ z(q).
Let M ⊂ B(H) be countably decomposable. If p, q are properly infinite and z(p) ≤ z(q)⇒ p � q.
Corollary 79.1. If M is countably decomposable properly infinite factors. Then, any two nonzero
projections are equivalent.

19 Type Decomposition/Classification

M ⊂ B(H) vN algebra is

Definition 19.1 (Type I). if every nonzero projection has an abelian subprojection.

Example 80. B(H) is Type I.

Subtypes (one finite Ifin, one infinite I∞)

Definition 19.2 (Type II). if it is semifinite and there are no nonzero abelian subprojections.

Definition 19.3 (Type II1). if M is finite

Definition 19.4. Type II∞ if M is properly infinite

Definition 19.5 (Type III ). if M has no finite projections.

Theorem 81. Let M ⊂ B(H) vN . Then ∃! pI, pII1 , pII∞ , pIII ∈ Z(M) such that pI+pII1 +pII∞+pIII = 1.

M · pI is type I,MpII is type II∞.

MpII1 is type II1, MpIII is type III.

Proof. pI =
∨
p∈P (M),pabelian p =

∨
p∈P (M),p abelian upu

∗ = u(
∨
p)u∗ = upIu

∗. Then,

upI = pIu⇒ xpI = pIx ∀x ∈M,pI ∈ Z(M).

MpI 3 p.
0 6= p ≤ pI ∃p0 ∈M abelian such that pp0 6= 0

⇒ z(p)z(p0) 6= 0. Then, by comparison,

∃ q0 ≤ p, q1 ≤ p0 such that q0 ∼ q1. Abelianess is preserved.

Hence, the algebra is abelian.
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31 Jan 2022

Theorem 82. Let M ⊂ B(H) vN algebra. Then ∃ : pI, pII1 , pII∞ , pIII ∈ Z(M) such that

pI + pII1 + pII∞ + pIII = 1 and

MpI is type I.

Mp

Corollary 82.1. ∀ M ⊂ B(H) a factor is either type I or type II1 or type II∞or type III.

Theorem 83. M ⊂ B(H) type I factor. Then, ∃ K Hilbert space.

M ∼= B(K),dimσ(K) = n⇒M ∼= Mn(C).

Proof. (Idea: Take supremum of all abelian projections)

pI = ∨z∈P (M)z ∈ Z(M), where z are abelian projections.

Now consider 1− pI has no abelian subprojections.

pII1 = ∨z≤1−pIz ∈ Z(M), where z central, finite (if none exist, put 0).

Therefore, pII1 finite projection.

Now let pII∞ ≤ 1− pI − pII1 be defined as pII∞ = ∨p∈P (M)p finite such that p ≤ 1− pI − pII1 . (closed
under conjugacy).

Since p is finite,

⇒ (finite) upu∗ ≤ u(1− pI − pII1)u∗

= (1− pI − pII1)uu∗

= 1− pI − pII1

(Above follows since a ≤ b⇒ xax∗ ≤ xbx∗. Then, we have

pII∞ = ∨p∈P (M)p

= ∨upu ∗
= ∨u∈u(M),p∈P (M)upII∞u

∗

(After some calculations, we get) ⇒ 1− pI − pII1) − pII∞ = pIII

1− pI − pII1) − pII∞ = pIII

1 = pI + pII1) + pII∞ + pIII

1 = qI + qII1 + 1II∞ + qpIII

MpIII,MqIII purely infinite. Then,

qIII · pI = 0

qIII · pII1 = 0

qIII · pII∞ = 0

⇒ qIII = qIII · 1
= qIII(pI + pII1) + pII∞ + pIII)

= qIIIpIII

pIII ≥ qIII, Reversing the roles of pIII and qIII, we get pIII = qIII

Now consider (pII1 + pII∞) · qI = 0 (living under qI means there is some abelian part).

⇒ pII1 + pII∞ = qII1 + qII∞ ⇒ pI = qI.

Note*: Focus will be on Type II.

(Last semester, if you compresss a vN algebra, it is still a vN algebra).
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Proposition. M ⊂ B(H) vN algebra.

Let p ∈ P (M), q ∈ P (M ′) (commutant).

pMpq is a vN algebra. Then, consider its commutant:

(pMpq)′ ∩B(pqH) = qM ′qp

Z(M) = C so is pMpq.

Theorem 84. M ⊂ B(H) vN .

p ∈ P (M), q ∈ P (M ′).

If M is type I or has no nonzero abelian projections, then so is pMpq is type I or has no nonzero
abelian projection (i.e. type is preserved by the compression).

Similar for semifinite.

Theorem 85. M ⊂ B(H) vN algebra.

M is of type I ⇐⇒ M ′ is type I. M is of type II ⇐⇒ M ′ is type II. M is type III ⇐⇒ M ′ is type
III.

Definition 19.6. M ⊂ B(H), ξ ∈ H is called a cyclic vector ⇒ Mξ = H ∀ M P (M ′) ⊃ pξ =
PMξ = [Mξ] ∈ P (M ′)

p′ξ = PM ′ξ = [M ′ξ] ∈ P (M) (orthogonal projection)

(Notion of cyclic vectors and irreducibility in this theorem)

Theorem 86 (BT Theorem von Neumann). Let M ⊂ B(H) vN algebra with cyclic vector ξ ∈ H.
Then, for each element, ∀ η ∈ H, ∃x, y ∈M,x ≥ 0 and 1gamma ∈ xH (vector in range of x)

Such that x1γ = ξ, y1γ = η.

x1γ = ξ ⇒ 1γ = “x−1‘′ξ y1γ = η

η = yx−1ξ (BT)

Mξ = H

(*Note: There may be typos in the day above)
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2 February 2022 Recall the BT Theorem.

Let M ⊂ B(H) vN algebra, ξ ∈ H such that Mξ = H.

Then, ∀η ∈ H, there exist x, y ∈M,x ≥ 0, ζ ∈ x(H) such that

xζ = ξ, yζ = η.

if x−1 ∃ ζ = x−1ξ.

yx−1ξ = η (by BT)

(B - Bounded, T - affiliated - does not live in the algebra)

Proof. WLOG, assume ||ξ||, ||η|| ≤ 1. Because Mξ = H (can be approximated - have to work in a
series).

η ∈ H.

∀x ∈ N, ∃xi operators inM , i = 1, ..., n such that

||η −
n∑
i=1

xiξ|| <
1

4n
∀n

||η − x1ξ|| <
1

4
(do this repeatedly)

||η − x1ξ − x2ξ|| <
1

4

Define the following operator (sequence of increasing positive operators)

yn = 1 +

n∑
i=1

4nx∗i xi, 1 ≤ yn ≤ yn+1∀n

zn = y1/2
n ∀n

0 ≤ z−1
n+1 ≤ z−1

n ≤ 1 ∀n
z−1
n ↘ x (Weirstrauss Thm, decreasing SOT limit)

Note that this is because:

1 ≤ yn ≤ yn+1

⇒ y−1
n+1 ≤ y−1

n ≤ 1

1 ≤ y1/2
n ≤ y1/2

n+1

1 ≤ zn ≤ zn+1

0 ≤ z−1
n+1 ≤ z−1

n ≤ 1
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{znξ}n∈N ⊂ H is bounded. Then,

||znξ||2 =< znξ, znξ >

=< z2
nξ, ξ >

=< ynξ, ξ >

=< (1 + 4n
n∑
i=1

x∗i xi)ξ, ξ >

=< ξ, ξ > +4n
n∑

i−=1

< x∗i xiξ, ξ >

= ||ξ||2 + 4n
n∑
i=1

||xiξ||2

≤ 1 + 4n
n∑
i=1

||xiξ||2

≤ 1 + 4n(

n∑
i=1

4−i)

≤ 1 + 4n
1

4n
3

⇒ ||znξ|| ≤ 2 ∀n

Note the second to last line follows because:

||xiξ|| ≤
1

2n

||η −
n∑
i=1

xiξ|| ≤
1

4n

||η − 0

n+1∑
i=1

xiξ|| ≤
1

4n+1

||xn+1ξ|| = ||(η −
4∑
i=1

xiξ)− (η −
n1∑
i=1

xiξ)||

≤ 1

4n
+

1

4n+1
≤ 1

2n

∴ ||xnξ|| ≤
1

2n−1

∃ζ ∈ H a cluster point (subsequence argument).

Assume that znξ → ζ (weak convergence).

Now we prove the main part:

xζ = ξ

⇐⇒ xζ − ξ = 0

⇐⇒ < xζ − ξ, ξ0 > = 0 ∀ξ0 ⊂ H

We need to prove this last line.
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⇐⇒ ∀ ε > 0 such that | < xζ − ξ, ξ0 > | < ε.

| < xζ − ξ, ξ0 > =< xζ − xznξ + xznξ − ξ, ξ0 >
≤ | < x(ζ − znξ), ξ0 > |+ | < xznξ − ξ, ξ0 >
= | < ζ − xnξ, xξ0|︸ ︷︷ ︸

<ε

+| < xznξ − ξ, ξ0 > |

< ε+ | < xznξ − ξ, ξ0 >
= ε+ | < znξ, xξ0 > − < ξ, ξ0 > |
= ε+ | < znξ, (xξ0 − z−1

n ξ0 + z−1
n ξ0) > − < ξ, ξ0 > |

≤ ε+ |znξ, xξ0 − z−1
n ξ0 > |+ | < znξ, z

−1
n ξ0 > − < ξ, ξ0 > | (triangle inequality)

≤ ε+ ||znε||||xξn − z−1
n ξ0||+ | < ξ, znz

−1
0 z0 > −Mξ, ξ0 > |︸ ︷︷ ︸

=0

≤ ε+ 2ε

We have used the following facts:

1. < znζ − ξ, a >→ 0 ∀a ∈ H ⇒ | < znζ − ξ, xξ0 > | < ε, ζ ∈ H

2.z−1
n ↘ x, ||z−1

n ξ0 − xξ0|| < ε ∀n >>

∴, we have shown that xζ = ξ. Now we need to get to our y.

Let us look at the following:

0 ≤ z−1
n 4ix∗i xiz

−1
n ≤ z−1

n (1 +
∑
i

4ixixi)z
−1
i︸ ︷︷ ︸

z−1
n z2

nz
−1
n =1

< 1

{z−1
n 4ix∗i xizn}n≥1. As n→∞, we have 4ixxix1x⇒ ||4ixxixix|| ≤ 1 (strong norm)

⇒ 2i||xixi||2 ≤ 1. Then, we have

||2ixix||∞ ≤ 1

||xix||∞ ≤
1

2i
∀i

n∑
i=1

xix = y > 0.

is convergent.

yζ = (
∑
xix)ζ =

∑
xixζ =

∑∞
i=1 xiξ = η

Can check that ker(y) ≤ ker(x). Can replace ζ ⇐⇒ xHζ
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4 February 2021

Recall M ⊂ B(H) vN . [Mξ] = 1) ⇐⇒ Mξ = H (cyclic).

∀ η ∈ H, ∃x, y ∈M,x ≥ 0.

ζ ∈ xH such that xζ = ξ, yζ = η.

Theorem 87. M ⊂ B(H) vN algebra.

∀ ξ, η ∈ H, the following holds:

[Mξ] �M ′ [Mη] ⇐⇒ [M ′ξ] �M [M ′η].

[Mξ] = PMξ

Lemma 88. Supose that M ⊂ B(H) vN algebra. Suppose that we have two cyclic projections ξ, η ∈ H
i.e. [Mξ] = [Mη] = 1.

⇒ [M ′ξ] ∼M [M ′η]

Proof. (Idea: Use BT Theorem to understand, can relate ξ and η)

(Part I of the Proof) Using BT Theorem (for ξ, η), one can find ∃ x, yinM, x ≥ 0, ζ ∈ xH such that
xζ = ξ, yζ = η.

Claim: [M ′ξ] ∼ [M ′ζ] ∼ [M ′η]

Let us call [M ′ζ] = p (projection in M).

Know: (i) ζ ∈ xH., (ii) pζ = ζ.

⇒ ζ ∈ pxH (since p(xH) ∈ pxH).

Therefore, p ≤ [M ′pxH] ≤ [pxH] ≤ [pH] = p (absorbed in H).

⇒ p = [pxH] (Then we use ideas from Polar Decomposition Theorem)

p = [pxH]

∼ [(px)∗H]

= [x∗p∗H]

= [xpH]

= [xM ′ζ] (they commute)

= [M ′xζ]

= [M ′ξ]

∴ [M ′ξ] ∼ [M ′ζ].

(Part 2 of the Proof)

[M ′η] = [M ′yζ]

= [yM ′ζ]

= [ypH]

∼ [(yp)∗H]

= [pyH]

≤ [pH]

= p

At this point, we have subequivalence i.e. [M ′η] ≺ p ( we need equivalence).

We also have [Mζ ∼ p]⇒ [M ′η] � [M ′ξ].

Reversing the role of ξ and η, we get [M ′ξ] � [M ′η]. Hence the conclusion holds by C-B.
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Lemma 89. M ⊂ B(H) vN algebra. Assume ∀ ξ, η ∈ H vectors, we have that [M ′ξ] ∼ [M ′η] ⇐⇒
[Mξ] ∼ [Mη].

Proof. [M ′ξ] ≤ [M ′η]⇒ [M ′ξ] ∼ p ≤ [M ′η]

Fact: p = [M ′pη] (sub-projection of a cyclic projection is cyclic)

[M ′ξ] ∼ [M ′pη] ⇐⇒ [Mζ] ∼ [Mpη]

[Mpη] ≤ [Mη] (since p is an element of M ⇒Mp contained inM)

⇒ [Mξ] � [Mη]

(Real proof begins here) Assume

[M ′ξ] ∼v [M ′η] (v∗v = [M ′ξ] = PM ′ξ, vv
∗ = [M ′η])

[M ′vξ] = [vM ′ξ] = v[M ′ξ]

⇒ [Mvξ] ≤ [Mξ] = [Mv∗vξ] ≤ [Mvξ]

⇒ [Mvξ] = [Mξ]

Explanation for line 2: Since v partial isometry, M ′vξ = v(Mξ)

Allows us to work with vξ instead of ξ (reduction). We can assume [M ′ξ] = [M ′η] = p0. (It is better
to cut something that is central).

Let z = z([M ′ξ]) ∈ Z(M) be the central support. Then,

z = [MM ′η] = [M ′Mη] = [MM ′ξ]

= [Mp0H]

In the Mz algebra, we can assume WLOG that [Mξ], [Mη] such that [M ′ξ] = [M ′η] = p0 have central
support z. Can assume central support is the unit, 1.

Want to show they are equivalent. In particular,

x 7→ xp0

M ′ →M ′z (isomorphism)

[Mξ] ∼ [Mη]

⇐⇒ [Mξ]p0 ∼ [Mη]p0

p0ξ p0η

(cyclic vectors M ′p0).

Theorems coming up
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7 Feb 2022

Recall

Proposition. Let ξ, η ∈ H. Then,

[Mξ] � [Mη]⇒ [M ′ξ] � [M ′η].

Proposition. Let M ⊂ B(H) countably decomposably.

If e, f ∈ P (M) properly infinite. Then,

z(p) ≤ z(q)⇒ p � q.
Proposition. Let M ⊂ B(H) be an abelian vN algebra that admits cylic, separating vecor⇒M = M ′.

Theorem 90. Suppose M ⊂ B(H) vN algebra.

Let ξ ∈ H with [Mξ] = [M ′ξ] = 1.

If M is finite, then M ′ is finite. (Note: Type is preserved under commutant, subtype is not).

Note that any vN algebra can be written as a direct sum of Type I + Type II + Type III.

Proof. Let q ∈ P (M ′) a maximal central projection. Then, M ′q is finite.

If q = 1, we are done. If not, consider the complement and note it is properly infinite.

Assume WLOG, M is finite while M ′ is properly infinite.

If M is abelian.

[Side Note: M(1− q) ⊂ B((1− q)H)⇒ [M(1− q)ξ]? = (1− q)H. Then,

[M(1− q)ξ]? = (1− q)H
[(1− q)Mξ] = (1− q) (Mξ)︸ ︷︷ ︸

=H

= (1− q)H

]

The M also has a cyclic separating vector ⇒ M = M ′ (Abelian algebra cannot be properly infinite.
Hence, this is a contradiction).

(Any algebra commute with its central support, then it is Abelian)

Since M not abelian ⇒ ∃p ∈ P (M) such that p < z(p) = 1.

Let r = [Mpξ] ∈M ′. Since M ′ (properly infinite) has a separating vector.

Exercie: M ′ is countably decomposable.

M ⊂ B(H), ξ ∈ H, q = sup of all projection, qξ = 0⇒ sup = 0 ⇒ 1− q is countable.

Consider r ≤ z(r) (Central support same). By Prop 2, we have r ∼ z(r).
Note, H = closure of Mξ.

r ∼ z(r) = [M ′rH]

= [M ′Mpξ]

− [MpM ′ξ]

= [MpH]

= z(p)

= 1

Now, we have shown that r = [Mpξ] ∼ 1 = [Mξ] (cyclic vector by assumption).

By Prop 1 ⇒ [M ′pξ] ∼ [M ′ξ] = 1⇒ p = [pM ′xi].

Contradiction ⇒M is finite.
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Theorem 91. M ⊂ B(H) vN algbra. Then,

M is type I ⇐⇒ M ′ is type I (respectively for Type II, III).

We only need to show ⇒ implication.

Proof. Assume by way of contradiction that M is type I while M ′ is not type I.

∃q ∈ Z(M) such that Mq has no abelian subprojection.

WLOG assume M is type I while M ′ has no abelian subprojections.

Pick p ∈M an abelian projection ⇒ pMp = z(M)p is abelian. Now we define two projections:

(i) e = [pMpξ] ∈M ′p, (ii) q − [pMp′ξ] ∈ pMp (e is contained in q.

Now look at qeξ ∈ qeH (this is a cyclic separating projection for qMqe). [Recall, earlier we had to
partition H with cyclic separating vectors in each space. Similar here]

qMqe = (qMqe)′ = eM ′eq. (If algebra is certain type that corner, pMp is also same type).

Hence, contradiction.

For Type II, same argument as before. The only difference is that we will replace Abelian projections
by finite projections.

For Type III, negation.
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Theorem 92. Let M ⊂ B(H) vN algebra.

Then M is finite ⇐⇒ ∃ a faithful normal tracial central state.

Definition 19.7. A map Φ : M → Z(M) is a called a faithful normal tracial central state if the
following hold:

1. Φ(x∗x) ≥ 0 ∀ x ∈M (positive operator)

2. Φ(zx) = zΦ(x) ∀z ∈ Z(M), x ∈M
2b. Φ(1)⇒ Φ|Z(M) = Id (unital)

3. Φ is normal (Φ of the sum is summable. A form of continuity. Convergence preserves the W -
convergence)

4. Φ(x∗x) = 0 ⇐⇒ x = 0 (faithful)

5. Φ(xy) = Φ(yx) ∀x, y ∈M .

(If we drop 5, this is conditional expectation).

Proof. ⇐
∃p P (M) such that p ∼v 1⇒ v∗v = p, vv∗ = 1.

Consider 1− p ≥ 0. Since this is a positive operator, we have

Φ(1− p) = Φ(vv∗ − v∗v)

= Φ(vv∗)Φ(v∗v)

= 0

0 = Φ(1− p)
= Φ((1− p)∗(1− p))
= 1− p = 0

⇒ p = 1

⇒ (Construction proof - Dyadic numbers)

Lemma 93. Suppose M is a finite vN algebra, 0 6= p ∈ P (M) (nonzero projection).

Then any family of projections, ∀ F = {pi ∈ P (M)|p :∼ p, pipj = 0 ∀i 6= j} finite.

Proof. Suppose |F | =∞, ∃F0 6⊂ F, |F0| = |F | (characteristic of infinite sets)

Consider φ : F → F0 bijective.∑
i∈F pi ∼

∑
i∈F0

pi.

This is impossible because one of them is a strict projection of the other ⇒M is not finite.

Let us build the dyadic numbers first.

Let p0 = 0, p1 = 1.

Lemma 94. M is II1.

∃ p1/2 ∈ P (M) such that p1/2 = 1− p1/2.
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Proof. Consider the family {pi, qi} which are equivalent pi ∼ qi. They are mutually orthogonal.

(By Zorn’s Lemma) Pick such a maximal family.

Now consider the sum, p =
∑
pi ∼ q =

∑
qi. (Essentially, p is perpendicular to q). Then, we look at

1− (p+ q).

Note that (1− (p+ q))M(1− (p+ q)) is not Abelian. Then,

∃0 6= p0, q0 ∈ P (1− (p+ q))M(1− (p+ q)) such that

p0 ∼ q0 and p0q0 = 0.

{pi}i ∪ p0 and {qi} ∪ q0 ⇒ 1− (p+ q) = 0⇒ p+ q = 1.

⇒ ∃r ∈ (1− (p+ q))M(1− (p+ q)) such that r < z(r).

Take z(r)− r and r. Take the center of this. Will be something nonzero. Then, by comparison need
to find something that lives in both.

That is exactly our p0, q0. In other words,

0 6= z(r) = r, r 6= 0. Take the central support.

0 6= 0Z(z(r)− r) ≤ Z(r)

⇒ Z(z(r)− r) · Z(r) = Z(z(r)− r) 6= 0

⇒ pξ ≤ z(r)− = r

0 ≤ r

Conclusion: p0 = 0, p1 = 1, p1/2.

So we now have:

p1/2 ∼v p1/2

p1/2 = v∗v ⇒ 1− p1/2 = vv∗. Then, p1 − p1/2 = vv∗.

Then, p1/2Mp1/2. Basically, p1/2 = p′(1− q′).
Iterating it, we get p1/2 = p1/4 + (p1/2 − p1/4 ⇒ p1/4 ∼ p1/2 − p1/4.

Then, p3/4 = p1/2 + vp1/4v
∗. When factor, trace = number (1/2, 1/4, 3/4, etc.) Hence, we have

pr ∈ P (M) where r ∈ Q dyadic number.

r ≤ t⇒ pr ≤ pt.
r − t = r′ − t′ ⇒ pr − pt ∼ p′r − p′t.
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11 February 2022 Recall,

Theorem 95. M ⊂ B(H) Type II finite vN algebra. Then, ∃ family of projections {pr}r∈dyadic ⊂

P (M) : { k
2n
|k, n ∈ N}.

p0 = 0, p1 = 1.

0 ≤ pr ≤ pt ≤ 1, r ≤ t.
∀r, t, r′, t′ dyadic numbers. Then, r − t = r′ − t′.
Lemma 96. M ⊂ B(H) vN algebra. ∀0 6= q ∈ P (M), ∃z ∈ Z(M) (for every nonzero projection,
there exists a central projection) and a dyadic number, r such that pr · z 6= 0 and

pr · z � qz. (4)

Proof. Consider z0 = z(q) ∈ Z(M). Working into M · z0.

We can assume WLOG that z(q) = 1.

z(pr) ≤ z(q) = 1. Now we use the comparison theorem.

If (4) does not hold, ⇒ q � pr ∀r.
Then,

q � p 1

2k+1

= p
1

2k+1
− p0

∼ p 1

2k
− p 1

2k+1
∀k (they are projections)

⇒ (p
1

2k
− p 1

2k+1
) · (p 1

2k+1
− p 1

2k+2
) = 0 ∀k

(Next one lives underneath and are mutually orthogonal).

But this contradicts Lemma 1 (cannot keep finding more).

Definition 19.8 (Monic Projections). p ∈ p(M) is called ‘monic” if ∃ finitely many projections,
{p1, p2, ..., pn} mutually orthogonal with pi ∼ p and

∑n
i=1 pi ∈ Z(M) (all span something in the

center).

Observation {pr}r∈dyadic are monic projections. We can do this because

1 = 1︸︷︷︸
p1

−p3/4 + p3/4 − p1/2 + p1/2 − p1/4 + p1/8

Can do something similar for any k.

Lemma 97. If M ⊂ B(H) finite vN algebra then any projection is a sum of mutually orthogonal monic
projections.

Proof. By a maximality argument it suffices to argue that ∀p ∈ P (M) ∃p0 ≤ p that is.

But this follows from Lemma 1 (Case II1.

Case In follows for any abelian projection.

Lemma 98. ∀φ : M → Z(M) central valued state. These are (norm) bounded (with norms, ||φ|| = 1).

∀x ≥ 0⇒ φ(x) ≥ 0.

y = y∗ = y+ − y−, y+, y− ≥ 0.

y = y∗ ⇒ φ(y) = φ(y+0φ−) = φ(y+)− φ(y−) ∈ Z(M).
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φ(y∗) = φ((y1 + iy2)∗)

= (φ(y1) + iφ(y2))∗

= φ(y)∗

For y ∈M,

y + y∗ ≤ ||y + y∗|| · 1
φ(||y + y∗||1± (y + y∗)) ≥ 0

||y + y∗|| · 1 · 2φ(y + y∗)|

||φ(y)|| = ||φ(
y + y∗

2
)||

≤ ||y + y

2
||

≤ ||y||

Also note that ||y∗||2 = ||y∗y|| = ||yy∗|| = ||y||2.
Lemma 99. TFAE

(i) φ(xy) = φ(yx) ∀x, y ∈M
(ii) φ(x∗x) = φ(xx∗) ∀x ∈M
(ii) φ(p) = φ(q)∀p ∼ q, pq ∈ P (M).
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14 Feb 2022 Recall

Theorem 100. φ : M → Z(M) center-valued state. Then TFAE:

(1) φ(xy) = φ(yx) ∀x, y ∈M
(2) φ(xx∗) = φ(x∗x) ∀x ∈M
(3) φ(p) = φ(q) ∀p ∼ q, p, q ∈ P (M).

1⇒ 2⇒ 3

Proof. If u ∈ U(M), uqu∗ ∼ q
By 3, φ(uqu∗) = φ(q) ∀q ∈ P (M), ∀u ∈ U(M).

Then, take linear combination of projections: φ(u
∑
iλiqiu∗)=φ(

∑
λiqi)

. Then, by Spectral theorem we
have

φ(uxu∗) = φ(x) ∀x ≥ 0⇒ φ(uxu∗) = φ(x) ∀x ∈M.

Now do a change of variables, x 7→ xu. Then, we have

φ(u(xu)u∗) = φ(xu)

φ(ux) = φ(xu) ∀x ∈M, ∀u ∈ U(M)

⇒ φ(yx) = φ(xy) ∀x, y ∈M

The last line follows since every thing of M is a linear combination of elements of U(M).

Now we can start building the trace.

Theorem 101. If M ⊂ B(H) vN has a normal central state.

Note that M commutes with every element in the set. The, M ⊂ Z(M)′ (commutant). Note that
Z(M) is abelian (of Type I).

We learned that Type is preserved under commutant ⇒ Z(M)′ is type I as well. Since it is Type I,
we can find an abelian projection.

Pick such a p ∈ P (Z(M)′) abelian with z(p) = 1. Then,

Note: pAp = Z(A)p. (In general center of Z(M) is same as center of Z(M)′).

pMp ⊂ pZ(M)′p (Comment: Not an algebra, just a subspace)

= Z(Z(M)′)p

= Z(Z(M))p

= Z(M)p

∴ pMp ⊂ Z(M)p

Note we have a map from

Z(M) 7→ Z(M)p

θ(x) = xp

This is a surjective homomorphism. Since z(p) = 1 (full support), this is precisely an injective map.

Check φ(x) = 0 ⇐⇒ xp = 0⇒ x · z(p) = 0⇒ x · 1 = 0⇒ x = 0 (no non-trivial kernel, so injective).

Another way to check:

xp = 0

⇒Mxp = 0 M ∈ Z(M)′

XMp = 0

XMp(ξ) = 0 (X operator ) ∀ξ ∈ H
XZ(p)ξ = 0 Zp = [Z(M)′pH]

X · Z(p) = 0
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Also note another map:

pMp 7→ Z(M)

φ(x) = φ−1(pxp)

Now this diagram commutes.

Lemma 102. (Property of Corners) Let φ : M → Z(M) is a normal central valued state. Then
∀ε > 0, ∃p ∈ P (M) such that φ|pMp faithful and φ(xx∗) ≤ (1 + ε)φ(x∗x) ∀x ∈ pMp′.

Proof. Let {qi} be a maximal family of mutually orthogonal projections such that φ(qi) = 0.

φ(
∑
qi) =

∑
φ(qi) = 0.

0 6= q0 = 1−
∑
i

qi ⇒ φ is faithful in q0Mq0

Suppose x > 0 ∈ q0Mq0 such that φ(x) = 0. Then,

∃χ(ε,∞)(x) 6= 0⇒
φ(x · χ(ε,∞)(x)) ≥ εφ(ξ(ε,∞)(x)) = 0.

Let {ei, fi}i∈J maximal family of projections.

Note that {ei}, {fi} are mutually orthogonal, ei ∼ fi and φ(ei) > φ(fi) ∀i.
Let us consider e = q0 −

∑
i ei, q0 −

∑
i fi = f . We know that e ∼ f.

Now look at 0 6= φ(f) > φ(e) ≥ 0⇒ e 6= 0.

Let µ ≥ 0 be the smallest number such that φ(ẽi) ≤ µφ(f̃) ∀ẽ ≤ e, f̃ ≤ f, ẽ ∼ f̃ .
First observe that µ 6= 0.

Proof. µ 6= 0, φ(e) 6= 0.

Fix ε > 0. Then, ∃ two projections, 0 6= ẽ ≤ e, 0 6= f̃ ≤ f such that

φ(ẽ) ≥ µ

1 + ε
φ(f̃)

(1 + ε)φ(ẽ) > µφ(f̃)

Consider {êi, f̂i} maximal family of êi ≤ ẽ, f̂i ≤ f̃ such that

êi ∼ f̂i such that (1 + ε)φ(êi) ≤ φ(f̂i) Then,

p = ẽ−
∑
êi, q = f̃ −

∑
f̂i.

∀p1, p2 ≤ p with p1 ∼ p2. Then,

∃r ≤ q such that r ∼ p1.

φ(p1) ≤ µφ(p2) ≤ (1 + ε)φ(p2).

φ(p2) ≤ (1 + ε)φ(p2).

φ(up2u
∗) ≤ (1 + ε)φ(p2) ∀p2 ∈ pMp.

φ(uyu∗) ≤ (1 + ε)φ(y), y ≥ 0.

φ(ux∗xu) ≤ (1 + ε)φ(x∗x)∀x ∈ pMp

Something about polar decomposition
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16 Feb 2022 Recall

Lemma 103. ∃φ : M → Z(M) normal, central-valued state.

Lemma 104. Let M ⊂ B(H) vN algebra, ∃φ : M → Z(M) normal central-valued state such that

∀ ε > 0 ∃0 6= p ∈ P (M) such that

φ|pMp is faithful and

φ(xx∗) ≤ (1 + ε)φ(x∗x) ∀x ∈ pMp

Lemma 105. Let M ⊂ B(H) finite vN algebra. Then, ∀ ε > 0 ∃φ : M → Z(M) a normal, central-
valued state such that φ(xx∗) ≤ (1 + ε)φ(x∗x) ∀x ∈M.

Observation: It suffices to show the statement for Mz, z ∈ Z(M).

Proof. From lemma 1 (today), ∃φ : M → Z(M) normal central valued trace.

From Lemma 2 (today), ∃p ∈ P (Mz) such that ∀x ∈ pMzp.

φ1(xx∗) ≤ (1 + ε)p0(x∗x) (Note: Every projection is a sum of monic, orthogonal projections - due to
the existence of the dyadic scale).

Passing to a subprojection WLOG p is monic. Then ∃ finitely many projections p1, p2, .., pn ∈ P (Mz)
such that pi ∼ p.

n∑
i=1

pi = z0 ∈ Z(Mz)

Now we know to make use of pi ∼vi p where v∗i vi = pi and viv
∗
i = pi.

ΨMz0 → Z(Mz0) where

Ψ(x) =
∑n
i=1 φ0(vixv

∗
i ). Is this in pMzp?

[Can write partial isometry as vi =i v
∗
i vi and v∗i = v∗i viv

∗
i . Hence it is in pMzp. ]

We know that x ∈Mz0. Then,

0 ≤ Ψ(xx∗)

= Ψ(xz0x
∗)

= Ψ(x(

n∑
i=1

pi)x
∗)

=

n∑
i=1

Ψ(xpix
∗)

=

n∑
i=1

Ψ(xv∗i vix
∗)

=

n∑
i=1

n∑
j=1

φ0(vjxv
∗
i vix

∗v∗j )

=
∑
i,j

(1 + ε)φ0(vix
∗v∗j vjxv

∗
j )

=
∑
i

(1 + ε)φ0(vix
∗ (

∑
j

v∗j vj)︸ ︷︷ ︸
z0

v∗i )

= (1 + ε)
∑
i

φ0(vix
∗xv∗i )

= (1 + ε)Ψ(x∗x)
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Theorem 106. M ⊂ B(H) is finite ⇐⇒ ∃ φ : M → Z(M) normal central-valued trace.

Proof. (⇐) Done.

(⇒) Now.

Let 1 +
1

n
= an ↓⊥ Then, from Lemma 3 (today), ∃τn : M → Z(M) normal central valued state.

τn(xx∗) ≤ anτn(x∗x) ∀x ∈M.

Claim: 0 ≤ m ≤ n. Consider the map from M → Z(M) defined by Ψm,n = a2
mτm − τn (still normal.

Also this is a positive map).

Ψm,n(⊥) = a+m2 · 1
= 1

= a2
m − 1

⇒ ||a2
mzm − z1|| = a2

m − 1

Now check the above state that it is positive.

Proof. Show Ψm,n(x) = 0 ∀x ≥ 0. Enough to just check for finite projections.

(Recall: x =
∫
λ)

Ψm,n(p) ≥ 0 ∀p ∈M (This is enough by spectral theorem)

a2
mτm(p)− τn(p) ≥ 0

A map Ψ(
∑
ei) =

∑
Ψ(ei) by normality) and because ∀p is a sum of monic projections.

It suffices to check that amτm(p)− τn(p) ≥ 0 ∀p monic projections. Then,

∃p1, p2, ..., pn ∈ P (M) such that

k∑
i=1

pi = z

for pi ∼ p.
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τn(p) ≤ anτn(pi)

τn(pi) ≤ anbm(p)

kτn(p) =

k∑
i=1

τn(p)

≤
k∑
i=1

anτn(pi)

= anτn(
∑

pi)

= anτn(z)− anz
= anτm(z)

= a+ nτm(

k∑
i=1

pi)

=

k∑
i=1

anτm(pi)

≤ an
k∑
i

amτm(p)

= kanamτm(p)

≤ ka2
mτm(p)

⇒ zn(p) ≤ a2
mzm(p)

∴ a2
mτm − τn ≥ 0

⇒ ||a2
mτm − τn|| = a2

m − 1 > 0

Therefore, ∃τm(x)→ τ(x). such that ||τm − τ ||| → 0.

Then τ(xx∗)← τn(xx∗) ≤ anτ(x∗x)→ τ(x∗x) ∀x ∈M and

τ(xx∗) ≤ τ(x∗x)

⇒ τ(xx∗) = τ(x∗x).

⇒ τ(xy) = τ(yx) ∀x, y ∈M.

τ |Z(M) = identity.

φ ∈Mx.

||φ ◦ τ − φ ◦ τm|| ≤ ||φ||||τ − τm||
⇒Mx is closed.
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18 February 2022 (B. Yeadon) proved existence of center- valued trace on finite vN Ryll-Narz. fixed point.

Consider x 7→ {φ(uu∗)|u ∈ U(M).}
Theorem 107. Suppose M is a finite vN algebra.

Ψ : M → Z(M) faithful, normal central valued state. Then, ∀e, f ∈ P (M), e � f ⇐⇒ Ψ(e) ≤ Ψ(f)
(trace of e is less than or equal to trace of f).

Note we know about trace that Ψ(zx)− z(Ψx) ∀z ∈ Z(M) (modular with respect to the center).

Proof. (⇒)

e � f ⇒ ∃v ∈M such that e = v∗v, vv∗ ≤ f . Then,

Ψ(e) = Ψ(v∗v) = Ψ(vv∗) ≤ Ψ(f)

Proof. (⇐) Let e, f ∈ P (M) such that Ψ(e) ≤ Ψ(f).

By comparison, ∃z ∈ Z(M) such that ez ≤ fz and (1− z)f � (1− z)e.

(1− z)f � (1− z)e
(1− z)f = v∗v, vv∗ ≤ (1− z)e

⇒ Ψ(vv∗) ≤ Ψ((1− z)e)
= (1− z)Ψ(e) (since modular with respect to the center)

≤ (1− z)Ψ(f)

= Ψ((1− z)f)

= Ψ(v∗v)

= Ψ(vv∗)

⇒ Ψ((1− z)e− vv∗) = 0

⇒ (1− z)e = vv∗

∴ (1− z)f ∼ (1− z)e
fz > ze

⇒ f > e

Theorem 108 (Dixmier averaging proposition - Jacques (1949)). Let M be a von Neumann algebra.

∀x ∈M,K(x)
|| ||
∩ Z(M) 6= φ where the convex hull is defined as

K(x) = c0{uxu∗|U(M)} = {
n∑
i=1

αiuixu
∗
i ,
∑

αi = 1

(same x, different u’s ).

- Note, it does not have any topological properties so we close it.

Corollary 108.1. Suppose M is a finite vN algebra, then there exists only one central-valued trace.

Proof. Suppose there exists Ψ1,Ψ2 : M → Z(M) central-valued trace. Then, by (Di 49),

Ψ1(
∑n
i=1 α1uixu

∗
i ) =

∑n
i=1 Ψ1(uixu

∗
i ) = (

∑n
i=1 αi)Ψ(x) = Ψ1(x).

Ψ1(K(x)) = Ψ1(x).

Now consider Ψ1(Z(M)) = IdZ(M). Then,

K(x)
|| ||
∩ Z(M) = {Ψ1(x)} = {Ψ2(x)}.

∴ Ψ1(x) = {Ψ2(x)}.
(By the Theorem, there is an element in the center that is approximated by the convex hull. Because
z is in the center Φz = z. So the right hand side is the trace so they must be the same).
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Lemma 109. Let M vN algebra, ∀ x = x∗ ∈M.

∃u ∈ U(M), y ∈ Z(M) such that

||1
2

(x+ uxu∗)− y|| ≤ 3

4
||x||

(Since self-adjoint, may not be positive, but we select the positive part).

Proof. Consider p = χ[0,∞)(x) ∈ P (M). Let q = 1 − p. Now, by comparison, ∃ z ∈ Z(M) such that
for q1, q2, p1, p2 ∈ P (M), we have

zq ∼v p1 ≤ p1 + p2 = zp and (1− z)p ∼w q1 ≤ q1 + q2 = (1− z)q Then,

u = v + v∗ + w + w∗ + p2 + q2 ∈ U(M)

u∗p1u = zq, u∗zqu = p1, u∗p2u = p2

u∗q1u = (1− z), u∗(1− z)pu = q1, u∗q2u = q2

We prove one of them. Rest should follow:

u∗p1u = (v + v∗ + u+ u∗ + p2 + q2)p1(v + v∗ + u+ u∗ + p2 + q2)

= (vp1 + v∗p1 + up1 + u∗p1)(v + v∗ + u+ u∗ + p2 + q2)

= (vp1 + v∗p1 + up1 + u∗p1)(v + v∗) (Rest are 0)

= (vp1 + v∗p1)(v + v∗)

= vp1v
∗︸ ︷︷ ︸

zq

Note that vp1w = vp1ww
∗w and ww∗ = q1 ≤ (1− z)q1 and w∗w = (1− z)p. so things cancel.
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23 Feb 2022

Lemma 110. Let M ⊂ B(H) vN algebra. Let x ∈ Mk, x = x∗. Then, ∃u ∈ U(M), y ∈ Z(M) such
that

1

2
(x+ uxu∗)− y|| ≤ 3

4
||x||

Proof. x = x∗ and consider the characteristic function (only positive part) - p = χ[0,∞)(x) ∈ M .
Assume ||x|| = 1.

Let q = 1− p. Then, use the Comparison Theorem i.e. ∃z ∈ P (Z(M)) and p1, p2, q1, q2 ∈ P (M) such
that

zq ∼v p1 ≤ p1 + p2 = zp.

(1− z)p ∼w q1 ≤ q1 + q2 = (1− z)q.
By the partial isometries defined above, we have

v∗v = zz, w∗ = p1, w
∗w = (1− z)p, ww∗ = q1.

(By last time, we have)

u = v + v∗ + w + w∗ + p2 + q2 ∈ U(M).

(i) u∗p1u = zq, u∗zqu = p1 , u∗p2u = p2. And

(ii) u∗q1u = (1− z)p , u∗(1− z)pu = q1, u∗q2u = q2. Then,

x ≤ χ[0,∞)(x) = p

zxz∗ ≤ zpz∗

−qz ≤ xz ≤ pz = p1 + p2 (can always conjugate)

−p1 = −u∗qzu ≤ u∗xzu ≤ u∗(p1 + p2)u = zq + p2

⇒ −p1 ≤ u∗xzu ≤ zq + p2

−qz ≤ xz ≤ p1 + p2 (add them up)

−z
2

=
−(p1 + p2)

2
≤ u∗xzu+ xz

2
≤ zq + p1 + zp2

z
≤ zq + p1 + p2

= z

We also have

z = z1

= z(p+ q)

= zp+ zq

= p1 + p2 + zq

Therefore, we have

−z
2
≤ u∗xzu+ xz

2
≤ z

−3z

4
≤ 1

2
(u∗xzu+ xz) +

z

4
≤ 3

4
z
−3

4
(1− z) ≤ 1

2
((1− z)x+ u∗(1− z)xu∗ +

1

4
(1− z) ≤ 3

4
(1− z)u∗

Similarly for the other one. When you add things up, we get:

−3

4
≤ 1

2
(x+ u∗xu)− 1

4
(2z + 1) ≤ 3

4

||1
2

(x+ u∗xu)− 1

4
(2z − 1)︸ ︷︷ ︸

y

|| ≤ 3

4
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Recall the theorem:

Theorem 111 (Dixmier ’49). Suppose M ⊂ B(H) vN algebra.

Let x ∈M . Consider K(x)
|| ||
∩ Z(M) 6= ∅, where K(x) is the convex hull i.e. K(x) = co {uxu∗|u ∈

U(M)}.

Proof. Suppose x = a0 + ib0, where a0, b0 self-adjoint (a0 = a∗0, b0 = b∗0).

Consider map:

α(x) =

n∑
i=1

αiuixu
∗
i , α1, α2, ..., αn ∈ R+, α1 + α2 + ...+ αn = 1, u1, u2, ..., un ⊂ U(M)

Apply the lemma to x = a0. Then, ∃y1 ∈ Z(M) such that

||α1(a0)− y1|| ≤
3

4

Now we want to iterate the process. Apply lemma to x = α(a0)− y1. ∃y)2 ∈ Z(M)k

||α2(α1(a0)− y1))− y2|| ≤
3

4
||α1(a0)− y1|| ≤ (

3

4
)2

||α2 ◦ α1(α0)− (y1 + y2)|| ≤ (
3

4
)2

Continue iterating this to get the following. For yk ∈ Z(M), we get

||αk ◦ αk−1 ◦ .... ◦ (α0)− (y1 + y2 + ...+ yk)|| ≤ (
3

4
)k (5)

Hence, we have

|| ak︸︷︷︸
K(a0)

− ỹk︸︷︷︸
∈Z(M)

|| ≤ (
3

4
)k

We are done for the real part. Now need to consider the imaginary part. For α averaging operator

∀ ε > 0, ∃y ∈ Z(M) such that
||α(a0)− y|| ≤ ε

Similarly, ∃ β an averaging operator. Let z ∈ Z(M) such that

||β(α(b0))− z|| < ε

||β(α(a0))− y|| = ||β(α(a0)− y||
≤ ||α(a0)− y|| (since Lipschitz)

< z

Now apply directly to our element x = a0 + ib0.

||β(α(a0 + ib0)− y + iz|| ≤ ||β(α(a0))− y||+ ||β(α(b0)− z|| ≤ zq

We have proved that ∀ ε > 0, ∃xk ∈ K(x), zk ∈ Z(M) such that ||xk − zk|| ≤
1

2k
.

⇒ ||xk+1 − xk|| ≤
1

2k
.

xk
|| ||−−→ x

100



20 Fundamental Group

M II1  F(M)

0 ≤ t ≤ 1.

∃p ∈ P (M) such that σ(p) = t.

Look at pMp ‘ =′ M t (isomorphism class of pMp).

25 February 2022

Suppose p, q ∈ P (M), σ(p) = σ(q) = t⇒ p ∼ q.
p ∼v q, 1− p ∼w 1− q.
Let u = v + w ∈ U(M). Then, we have

upu∗ = q, u(1− p)u∗ = (1− q).
Consider the map: ad (u) : pMp→ qMq by the map ad (u)(x) = uxu∗.

upMpu∗ = up1M1u∗

− upu∗uMu∗upu∗

= upu∗Mupu∗

= qMq

If 1 ≤ t <∞⇒ ∃n ∈ N, 0 <
t

n
≤ 1.

(Then tensorize)

M t = p(M ⊗Mn(C))p Mn(M)

(M ⊗Mn(C), σ ⊗ Tr

n︸ ︷︷ ︸
τ̃

)

p ∈M ⊗Mn(C)
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28 Feb 2022 Recall Fundamental group.

M II1 factor. Then, F (M) ⊂ (R+, ·)
F (M) = {t ∈ (0,∞)|M t ∼= M}
0 < t ≤ 1. Pickp ∈ P (M) such that τ(p) = t.

Consider M
central trace−−−−−−−−→ Z(M)→ C and M → C

Consider pMp II1 factor.

M t = equivalence class of pMp.

p, q ∈ P (M), τ(p) = τ(q) = t⇒ upu∗ = q.

Then, pMp ∼=ad(u) qMq.

For 1 ≤ t <∞, pick n ∈ N such that
t

n
≤ 1.

Mn(C)⊗M, II1 factor. Then, take tensor

(M1(C⊗M, tr× τ) where tr:Mn(C→ C where the map is defined by tr =
1

4
Tr.

Consider ˜τ(p) =
t

n
.

Now take M t = the equivalence class p(Mn(C⊗M)p.

Proof idea:

Mn(C)⊗ ⊂Mnr (C)⊗M
Mn(C⊗M ⊂Mnr (C)

Now we take (M t)s ∼= M ts for 0 < s, t ≤ 1. Then,

0 <≤ 1 defined by z(p) = t.

(pMp, τp) where τp(x) =
z(pxp)

z(p)
II1 factor

∃q ∈ P (pMp) such that τp(q) = s⇒ τpqp

τp
= s

Then,
τ(q)

τ(p)
= s⇒ τ(q) = ts.

q(pMp)q = qMq ∼= M ts

Now suppose s and t are in the Fundamental Group, i.e. s, t ∈ F (M). By definition, we have

M ts ∼= (M t)s ∼= (M)t ∼= M

21 Open Problems and History

Definition 21.1 (Hyperfinite). A0 ⊂ A1 ⊂ A2 ⊂ .... ⊂ An ⊂ ∪An
SOT

= M. (if closed and Type I).

Any two Type I towers with same structures are isomorphic (unique up to isomorphism).

Consequence: Fundamental Group of Type I is whole R+.

Consequence II: If M finite dimensional, then so is compression pMp.

(M and vN ’ (43)) R = hyperfinite factors. Then, F (R) = R+

(Kadison’ 1967)

PSLn(Z), n ≥. Then, F (L(G)) = countable (cannot be R+.)

(Dan-Virgil, Vorculescu, Florin Radulescu) (’91)

F (L(F∞)) = R+

F (L(Fn) ⊂ {1,R+)
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Field Medals Problem (related to FG/ free probability question):

L(Fn 6∼= L(Fm), n 6= m. (Connes’ 80)

L(Fn)p = L(Fp−1)

(Popa 2001)

F (L(Z2 × SL2(Z)) = {1}
Popa’s Deformation/Rigidity Theory

∀F (countable) ⊂ (R+, ·)
(Free Product) F (L(∗(Z2 × SL2(Z)) = F

22 Radon-Nikodym

Theorem 112. N ⊂ (M, τ) finite vN algebras.

Then, ∃EN : M → N a conditional expectations with the following properities:

1) Normal

2) En(n1 × n2) = n1EN (X|n2) ∀n1, n2 ∈ N,X ∈M (bimodular)

2b) EN (1) = 1 (unital)

3) τ ◦ EN = τ (τ - invariant)
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21 March 2022 (Post Spring Break)

Theorem 113. M semi-finite factor has a unique normal “semifinite trace” i.e.

Tr: M+ → R = [0,∞] with Tr(x) ≥ 0. and M+ − {x ∈M |x ≥ 0}.

(discussion on weights, ideals, etc.)

Tr (sup x) = sup Tr (x) (normally)

In addition, Trace is faithful. (In conclusion, semifinite trace has factors similar to finite).

p ∈M finite ⇐⇒ Tr(p) <∞.
p � q ⇐⇒ Tr(p) ≤ Tr(q).

23 Sorin Popa’s Intertwining Techniques

Result from ’05 (Invent. Math.)

Motivation (In group theory), A,B ≤ G. Does ∃ g ∈ G such that gAg−1 = B (conjugacy class). Loosen conjugacy
to gA ⊂ Bg and extend idea to algebras instead of just groups.

(Example of Intertwining) Similarly, intertwining is xpAp ⊂ Bx (automorphisms).

Now, we formalize this notion.

Theorem 114. Let (M,σ) be a finite vN algebra, f ∈ P (M).

A ⊂ fMf (compression of M by f), B ⊂M vN subalgebras.

Then, the following are equivalent.

1. ∃ 0 6= a ∈ A′ ∩ (< M,B >)+,Tr(a) <∞.
2. ∃ 0 6= e ∈ A′∩ < M,B > such that Tr (e) <∞. (projection)

3. ∃ 0 6= q ∈ P (A), 0 6= p ∈ P (B), av ∈M partial isometry and ∗−homomorphism such that

Ψ : qAq → pBp such that

Ψ(x)v = vx ∀x ∈ qAq and vqAq ⊂ pBpv.

(For 1, we need to take the basic construction of M by B) B ⊂ M ⊂< M,B >= JB′J =< M, eR >
(note A ⊂M as well.

In general: ηΦ = {x ∈ Q,Φ(x∗x) <∞} where Φ : Q+ → [0,∞]. (left ideal - check by Cauchy Schwarz
inequality)

Consider mΦ = {
∑n
i=1 y

∗
i xi|xi, yi ∈ nΦ, x ∈ N}, x subalgebra (spans nΦ).

Tr: < M,B >→ R where {
∑n
i=1 xieByi|n ∈ N, xi, yi ∈ N} ⊂< M,B >

Then,

Tr(

n∑
i=1

xieByi) =

n∑
i=1

Tr(xieByi)

=

n∑
i=1

σ(xiyi)
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23 March 2022

Theorem 115 (S. Popa ’03). Let (M, τ) finite vN algebra. Let f ∈ P (M). (projection).

Let A ⊂ fMf,B ⊂M vN subalgebras (inclusions are unital). TFAE:

1. ∃ 0 6= a ∈ A′ ∩ f < MB > f that has finite trace i.e. Tr(a) < ∞ where a ≥ 0 (and where
B ⊂M ⊂< M,B >= {M, eB}′′ ⊂ B(L2(H). Also A ⊂M ⊂< M,B >).

2. ∃ 0 6= e ∈ A′ ∩ f < M,B > f, Tr (e) <∞ i.e. e(H) = K ⊂ L(M)⇒ AKB = K. (range needs A-B
bimodule).

3. ∃ 0 6= q ∈ P (A) and ξ ∈ qL2(M) such that qAqξ ⊂ ξB.
4. ∃ 0 6= q ∈ P (A), p ∈ P (B), v ∈ M partial isometry and Ψ : qAq → pBp ∗-homomorphism - unital,
injective (NOT surjective) such that Ψ(x)v = vx∀x ∈ qAq.
i.e. A �M B (corner of A intertwines with B in M).

5. The following doesn’t hold:

∀a1, a2, ..., an ∈M, ∀ε > 0, ∃u ∈ U(A) such that ||EB(aiua
∗
j )||2 < ε ∀i, j = 1, n.

(for separable algebras, this is equivalent to saying ∃(un)n ⊂ U(A) such that ||EB(xuny)||2 → 0 as
n→∞ ∀x, y ∈M. (If not separable, have to work with nests instead of sequences but still true).

Proof. (1⇒ 2)

a 6= 0. ∃ e = χ(a)[ε,∞) spectral projection of a.

Then, ae ≥ εe. Then, we have

∞ > Tr(a)

≥ Tr(a · e)
≥ εTr(e)

⇒ a ≥ e1/2ea1/2

= ae

⇒ e ∈ A′ ∩ f(M,B)f .

Proof. (4 and 5). (let us start by negating (5)).

Suppose 5 holds. Then, ∃a1, a2, .., an ∈ M ∃ξ0 > 0 such that ∀ u ∈ U(A), ∃ i, j such that
||EB(aiua

∗
j )||22 ≥ ξ2

0 .⇒
∑n
i=1,j ||EB(aiua

∗
j )||22 ≥ ξ2

0 . (no need to make choices for i, j with the sum).

(Note we will use Tr(xeBy) = τ(xy)).

n∑
i=1,j

||EB(aiua
∗
j )||22 ≥ ξ2

0 =

n∑
i,j=1

τ(EB(aiua
∗
j )EB(aiua

∗
j ))

=

n∑
i,j=1

Tr(EB(aju
∗a∗i )eBEB(aiua

∗
j ))

=

n∑
i,j=1

Tr(eBEBaju
∗a∗i )eBEB(aiua

∗
j )eB)

=

n∑
i,j=1

Tr(eBaju
∗a∗i eBaiua

∗
jeB)

=

n∑
i,j=1

Tr(u∗(a∗i eBai)u(a∗jeBej))

= Tr(u∗(

n∑
i,j=1

a∗i eBei︸ ︷︷ ︸
=y

)u(

n∑
i,j=1

e∗jeBaj)

= Tr(u∗yuy) ≥ ξ0
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25 March 2022 Recall < M,B > {M, eB}′′ ⊂ B(L2(M)). Also recall the theorem:

Theorem 116 (Popa ’03). Consider (M, τ) vN algebra, A ⊂ fMf (corner), B ⊂M .

Then, TFAE:

(1) ∃ 0 6= a ∈ (A′ ∩ f < M,B > f)+, Tr(a) <∞.
(2) ∃ 0 6= e ∈ P (A′ ∩ f < M,B > f),Tr(e) <∞.
(3) ∃ 0 6= q0 ∈ P (A) and 0 6= ξ ∈ q0L

2(M) such that q0Aq0ξ ⊂ ξB.
(4) (Intertwining) ∃0 6= q ∈ Q, 0 6= p ∈ B, *-homomorphism (unital, injective) with Ψ : qAq →
pBp, ∃v ∈ m such that xv = vΨ(x) ∀x ∈ qAq.
(5) (Mixing Representation) The following (analytic) conditins do not hold:

(i) ∀a,a2, ..., an ∈M, ∀ε > 0, ∃u ∈ U(A) (unitary) such that ||EB(aiua
∗
j |2 < ε, 1 ≤ i, j ≤ n.

(This is a decay property).

(ii) ∃(un)n ⊂ U(A), ||EB(xun(y)||2 → 0∀x, y ∈M
(This is mixing condition).

Explanation (4) (Idea: Maybe patch the corners)

We need to know what happens to v∗v, vv∗. With the relation above, we will find that

vv∗ ∈ qAq′ ∩ qMq and v∗v ∈ Ψ(qAq)′ ∩ pMp..

In particular for the first one, we have

xv = vΨ(x)

⇒ v∗x = (xv)∗

= (vΨ(x))∗

= Ψ(x)v∗ ∀x ∈ qAq.

xvv∗ = vΨ(x)v∗

= vv∗x

⇒ xvv∗ = vv∗x

⇒ vv∗ ∈ qAq′ ∩ qMq

Now let us continue the proofs.

(1)⇒ (2) Done Last time.

Proof. (4)⇒ (1)

Consider veBv
∗ ⊂MeBM ⊂< M, eB > . (essentially in q < M, eB > q).

Fix x ∈ qAq. Then,

veBv
∗x = veB Ψ(x)︸ ︷︷ ︸

∈B

v∗

= vΨ(x)eBv
∗

= xveBv
∗

∴ veBv
∗ ∈ qAq′ ∩ q < M, eB > q.

(further, Tr (veBv
∗) = τ(vv∗) <∞ (finite trace).

We have (A′ ∩ f < M, eBf)q.

We will use the monoticity property for the whole algebra.

∃v1, ..., vn ∈M partial isometries such that v∗i v < q, z =
∑n
i=1 viv

∗
i ∈ Z(M).
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Then we build
∑n
i=1 viveBv

∗v∗i ∈ f < M, eB > f, Tr(a) <∞.
Fix x ∈ A. Note, since v∗i is partial isometry, then v∗i = v∗i vi︸︷︷︸

≤q

v∗i . Now we have

azx = x

n∑
i=1

viveBv
∗v∗i x

n∑
i=1

v)jv∗j )

=

n∑
i,j

viveBv
∗(v∗i xvj)v

∗
j

=

n∑
i,j

viv
∗
i xv
∗
j veBv

∗v∗j

= zx

n∑
j=1

v∗j veBv
∗vj

= zxa = xza

(Hence, commutes with everybody).

Proof. (5)⇒ (1)

∃a1, ..., an ∈M, q0 > 0, ∀u ∈ U(A), we have that ||EB(aiua
∗
j )||2 ≥ q0.

We will work with a weaker condition i.e.
∑
i,j=1 ||EB(aiua

∗
j ])||22 ≥ q2

0 ∀u ∈ U(A).. Then,

Tr (u∗yuy) where y =
∑n
i=1 aieBa

∗
i .

Tr (u∗yuy) ≥ q0 ∀u ∈ U(A).

Then, we will do an averaging. Consider the convex hull and take its weak closure:

co {Wu∗yu|u ∈ U(A)} ⊂ L2(< M, eB >) (item (iv) from printed out notes).

∃ ξ ∈ K s | · ||2 Tr −minimal.Inparticular, wehave
infξ0∈K ||ξ0||2 Tr = ||ξ||2 Tr. Then,

||u∗ξu||22 Tr = Tr(ξ∗ξ = ||ξ||2 Tr.

Finally, u∗ξu = ξ ∀u ∈ U(A).

Then, Tr ≥ ξ0 > 0.
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30 March 2022 Let p ∈ P (M). We are in (M, τ) finite vN algebra. A ⊂ pMp,B ⊂M . Then, recall that TFAE:

(i) ∃ 0 6= a ∈ A ∩ p < M,B > p, Tr(a) <∞
(ii) ∃ 0 6= e ∈ P (A′ ∩ p < M,B > p),Tr(e) <∞
(iii) ∃ 0 = p0 ∈ P (A), 0 6= ξ ∈ L2(M, τ) such that p0Ap0 ⊂ ξB.
(iv) ∃ 0 = p0 ∈ P (A), q ∈ P (B), v ∈ m part is the Ψ : p0Ap0 → qBq ∗ − such that Ψ(x)v = vx.

(v) The following analytic property doesn’t hold (weak mixing)

∀a1, ..., an ∈M ∀ε > 0, ∃u ∈ U(A) such that ||EB(a)iua∗j ||2 < ε, ∀1 ≤ i, j ≤ n.
1⇒ 2, 4⇒ 1, 5⇒ 1 done

Proof. (1⇒ 5) (Proof Idea - Actual proof requires Pulldown Lemma)

finA′ ∩ p < M,B >, Tr(f) <∞
∃a1, a2, ..., an ∈M.

f ≡
∑n
i=1 aeeBa

∗
i (can approximate by finite rank. When B is trivial algebra, this is rank 1)

(Can make argument rigorous for the basis if B ⊂ L2(M).

Even though ξi are in L2 (not bounded), ξieBξ
∗
i is a projection.

Let u ∈ U(A). Take Tr(fufu∗) = Tr(f2) = Tr [semi-finite trace, on the basic construction]

Tr((
∑n
i=1 aieBai)u(

∑
eieBe

8
i )u
∗) ⇒

∑
||EB(a∗i uaj ||22 > Tr(f)− 2ε ∀n ∈ U(A)

Hence we found an a and ε such that 5 fails (negation done).

Side Note Usually we have B ⊂ M ⊂ L2(M, τ) and L2(M) =
∑
i∈I ξiB (can write this like a Fourier series i.e.

x =
∑
ξiEB(ξ∗i )x)

EB(ξ∗i ξj) = δi,jei (Use bimodule structure and Hilbert analysis)

Proof. (3⇒ 4)

If we look at ξ∗ξ (product of 2 L2 is in L1 by C-S) (Map from M → B, but also a map from
L1(M)→ L1(B)).

||EB(x)||1 = sup{τ(uEB(x)|u ∈ U(B)} = τ(ux) ≤ sup τ(ux) = ||x||1c
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1 April 2022 Recall theorem as above. We will continue the proofs.

(1⇒ 2, 4→ 1, 1 ⇐⇒ 5 Done)

Proof. (3⇒ 4)

Consider EB : L2M → L2B where eB(x1̂) = EB(x)1̂ (expectation as we know it)

It does extend to L1 space. Consider EB : L1(M, τ) → L1(B, τ) where ||x||1 = τ(|x|) (Banach space,
has all the properties).

Show that ||EB(x)||1 ≤ ||x||1 ∀x ∈M. (contraction).

We can write ||x||1 = sup{τ(ux)|u ∈ U(M)}. Then,

||EB(x)||1 = sup{τ(uEB(x))|u ∈ U(B)}
− sup{τ(EB(ux))|u ∈ U(B)} (since bimodular)

= sup{τ(ux)|u ∈ U(B) ⊂ U(M)}
≤ {τ(ux)|u ∈ U(M)}
= ||x||1

∴, EB extends by continuity i.e. EB : L1M → L1B completely positive map.

We will use this to build our ∗-homomorphism.

Let ξ ∈ q0L
2M ⊂ L2M (can be seen as affiliated operator).

For x ∈ L2, xξ (x acts on L2 but ξ can also act on x by acting on the right). Hence, can be seenly as
a densely defined operator. ξ∗ξ ∈ L1M(Multiply two vectors in L2, we get vector in L1).

(similar idea of polar decomposition for unbounded operators).

ξ(q,∞)(T ) (no notion of support, we build the support)

(Example to have in mind: L∞[0, 1] = M (or even L1[0, 1]). Consider the set of measurable functions
Meas[0,1]. In general, Meas[0,1] are affiliated operators. Can always do pointwise approximation.

Even for unbounded functions, can fix a lower and upper bound and truncate the function. 0 outside
of this.)

For every affiliated operator T , we have T = V |T | (any of the spectral projections are in the vN
algebra)

Consider EB(ξ∗ξ) ∈ L1B.

Define ξ0 = ξEB(ξ∗ξ)−1/2. Perform functional calculus, take projection ξ(ε,∞)(EB(ξ∗ξ)). Take inverse
and square root, we get the above (compression).

ξ∗0ξ0 = EB(ξ∗ξ)−1/2ξ∗ξEB(ξ∗ξ)−1/2 (Apply EB)

EB(ξ∗0ξ0) = EB(EB(ξ∗ξ)−1/2ξ∗ξEB(ξ∗ξ)−1/2)

= EB(ξ∗ξ)−1/2EB(ξ∗ξ)EB(ξ∗ξ)−1/2

= q ∈ P (B)

Now we are finally ready to define our map.

Define Ψ : q0Aq0 → L1(qBq) defined by Ψ(x) = EB(ξ∗0xξ0). (This is a normal, faithful, completely
positive map).

In fact, Ψ(q0Aq0) ⊂ qBq. [Note: Ψ(q0) = EB(ξ∗0ξ0) = p]

If we show xξ0 = ξ0Ψ(x), then it proves both homorphism and embedding)

q0Aq0 ⊂ ξB, xξ0 = ξ0y

Ψ(x) = EB(ξ∗0xξ0) = EB(ξ∗0xi0y)

= EB(ξ∗0ξ0)y

= y
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Let x1, x2 ∈ q0Aq0. Then,

x1x2ξ0 = x1ξ0Ψ(x2)

ξ0Ψ(x1x2) = ξ0Ψ(x1)Ψ(x2)

xv0ξ0 = v0Ψ(x) (can cancel) - Proves the last part.
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24 Group - Measure Space vN algebras

4 April 2021 (Murray-von Neumann ’36-’43)

Γ-countable discrete group.

l2Γ = {ξ : P → C,
∑
g∈P |ξ(g)|2 <∞}

ξ, η ∈ l2Γ, then

(i) < ξ, η >=
∑
g∈Γ ξ(g)η(g), (ii) ||ξ|| =< ξ, ξ >1/2= (

∑
g∈Γ |ξ(g)|2)1/2.

This is a Hilbert space.

Convolution ξ, η ∈ l2Γ, ξ ∗ η : Γ→ C. Then,

ξ ∗ η(g)− =
∑
h∈Γ

ξ(h)η(h−1g)

=
∑
h∈Γ

ξ(gh−1)η(h)

|ξ ∗ η(g)| = |
∑
h∈Γ

ξ(h)η(h−1g)|

≤
∑
h∈Γ

|ξ(h)||η(h−1g)|

≤ (
∑
h∈Γ

|ξ(h)|2)1/2(
∑
h∈Γ

|η(h−1g)|2)1/2

= ||ξ||2 · ||η||2
∴ ||ξ ∗ η||∞ ≤ ||ξ||2 · ||η||2

For ξ ∗ η ∈ l∞Γ.

Ex: ξ, η ∈ l1Γ⇒ ξ ∗ η ∈ L1Γ.

Properties:

δg(h) =

{
1 g = h

0 otherwise

for g ∈ Γ.

Pick ξ ∈ l2Γ. Then,

ξ ∗ δg = ρg−1ξ

δg ∗ ξ(k) =
∑
l

δg(l)ξ(l
1k)

= ξ(g−1k)

= λgξ(k) by left-regular representation,

where

λg, ρg : l2Γ→ l2Γ

λgξ(h) = ξ(g−1h)

ρgξ(h) = ξ(hg)

For ξ ∈ l2Γ ξ ∈ l2Γ,Γ(g) = ξ(g−1)

If ξ, η, b ∈ l2Γ and (ξ ∗ η) ∗ b ∈ l2Γ, ξ ∗ (η ∗ b) ∈ l2Γ, then (ξ ∗ η) ∗ b = ξ ∗ (η ∗ b)
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Let ξ ∈ l2Γ. Then, Dξ = {η ∈ l2Γ : ξ ∗ η ∈ l2Γ} ⊃ {δg|g ∈ Γ} (nonempty set, presrves l2Γ).

Note that for η1, η2 ∈ Dξ ⇒ ξ ∗ η1, ξ ∗ η2 ∈ l2Γ⇒ ξ ∗ η1 + ξ ∗ η2inl
2Γ⇒ ξ ∗ (η1 ∗ η2) ∈ l2Γ.

Conclusion: Dξ = l2Γ.

This allows us to define the convolution operator.

Left Convolution Lξ : Dξ → l2Γ defined by Lξ(η) = ξ ∗ η linear operator.

Similarly, let D′ξ = {ξ ∈ l2Γ : η ∗ ξ ∈ l2Γ}.

[Right Convolution Rξ : D′ξ → l2Γ defined by Rξ(η) = η ∗ ξ.

ξ is called a left convolution (resp. right convolution) iff Dξ = l2Γ (resp. D′ξ = l2Γ)

Example 117. ∀ξ ∈ span {δg|g ∈ Γ} is a left (or right) convolution (There are many).

Theorem 118. ∀ξ ∈ l2Γ, Lξ, Rξ have closed graphs in l2Γ⊕ l2Γ⇒ (ζ, Lξ(ζ)).

(Will use Closed Graph Theorem).

Proof. If (ηn, Lξ(ηn))→ (η, ζ)⇒ ζ = Lξ(η) is a sequence.

(With ||||2 norm), ηn → η and ||Lξ(ηn)→ ζ. (Show ||ξ ∗ ηn − ζ||2 → 0).

Fix g ∈ Γ, then

|ζ(g)− Lξ(η)g| = |ζ(g) = xi ∗ η(g)|
= lim
n→∞

|ξ ∗ ηn(g)− ξ ∗ η(g)||

= lim
n∞
|ξ ∗ (ηn − η)(q)|

≤ lim
n→∞

||ξ||2||ηn − η||2

= 0

ξ ∈ l2Γ left convolution ⇒ Lξ ∈ B(l2Γ) (by Closed Graph Theorem).

Definition 24.1. LΓ = {ξ ∈ l2Γ : ξ left convolution }.
RΓ = {ξ ∈ l2Γ : ξ right convolution }.

Since every bounded operator has an adjoint and ξis left convolution, so is ξ ⇒ (Lξ)∗ = Lξ̄.

Similarly, (Rξ)∗ = Rξ̄.

Then,

Lξ ◦ Lη(ζ) = Lξ(η ∗ ζ)

= ξ ∗ (η ∗ ζ)

= (ξ ∗ η) ∗ ζ
= Lξ∗η

Similarly,

Lξ ◦Rη(ζ) = Lξ(b∗η)

= ξ ∗ (b ∗ η)

= (ξ ∗ ζ) ∗ ζ
= Rη ◦ Lξ

Hence, LΓ, RΓ are ∗-subalgebras (we will show that these are, in fact, vN algebras).

LΓ ⊂ RΓ′.
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Definition 24.2. If Γ is a countable discrete, then LΓ, RΓ are vN algebra, then

(a)
LΓ = RΓ′ = ρ(Γ)′ ⇒ LΓ = RΓ′ = λ(Γ)′′

(via left regular representation)

(b)
RΓ = LΓ′ = λ(Γ)′

Proof. LΓ ⊂ RΓ′ ⊂ ρ(Γ)′

If we can show that ρ(Γ)′ ≤ LΓ, then we are done.

Let T ∈ ρ(Γ)′.

Let ξ = Tδ1 (where T is bounded operator). Show that T = Lξ.

Take g ∈ Γ and consider Lξ(δg).

Lξ(δg) = ξ ∗ δg
= ρg−1(ξ)

= ρg−1(Γ(δ1)

= ρg−1 ◦ T (δ1)

= T ◦ ρg−1

= T (δg)

∴, T = Lξ
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6 April 2022 F countable discrete group.

L(Γ) = {Lξ|ξ ∈ l2Γ left convolutions}
= {λg|g ∈ Γ}′′ ⊂ B(l2Γ)

= C[Γ]
WOT

= C[Γ]
SOT

= C[Γ]
′′

Note that ∀x ∈ LΓ admits a Fourier expansion.

Theorem 119. ∃ normal, faithful, trivial state τ : L(Γ)→ C (trace). Then,

τ(x) =< xδ1, δ1 > ∀x ∈ L(Γ).

Note that x =
∑
g∈Γ xgug, where xg is the Fourier expansion (in C).

Proof. Normal is clear since τ(x∗x)− ⇒ x = 0.

x = Lξ ⇒ 0 = τ(x∗x)

=< x∗xδ1, δ1 > (since ξ = xδ1)

=< xδ1, xδ1 >=
∑
j

|xj |2

=< ξ, ξ >

= ||ξ||2

⇒ ξ = 0

⇒ x = Lξ = 0

(We will use linearity)

τ(xy) = τ(yx)

τ(ugux) = τ(uhug)

τ(uguhu)g−1) = τ(uh) ∀g, h
τ(uguhu

−1
g ) = τ(ughg−1)

=< ughg−1 , δ1 >

=< δghg−1 , δ1 >

= δghg−1

= τ(uh)

Theorem 120 (Murray-von Neumann ’43)). LΓ is a factor ⇐⇒ Γis an ICC Group

∀1 6= g ∈ Γ, |gΓ| = |{hgh−1|h ∈ Γ}| =∞

Proof. Let g ∈ Γ, |gΓ| <∞.
Let 1 6= x =

∑
k∈gΓ uk ∈ Z(LΓ).

Fix h ∈ Γ,

uhxu
−1
h = uh(

∑
k=gΓ

uk)uh−1)

=
∑
k∈gΓ

uhkh−1

= x x ∈ Z(LΓ)
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Let z ∈ Z(LΓ) with uhxuh−1 = x ∀x ∈ Γ.

Pick Fourier decomposition x =
∑
g∈Γxgug

. Then,

x =
∑

g∈Γxgug

= uh(
∑
g

xgug)uh−1

=
∑
g∈Γ

xguhgh−1

=
∑
g∈Γ

xhghug

xg = xh−1gh

(Norm 2 convergence, so can permute the group → Absolute convergence)

Note that xg =
∑
τ(xug−1)

Since Norm 2,
∑
g∈Γ |xg|2 = ||x||22 (norm-2 summable. Finite if either finite terms or if infinite, all

zeros. Since we are in ICC, except for trivial conjugacy class, orbits are infinite, then the Fourier
coeffienets are 0).

i.e. xg = 0 ∀g 6= 1.

Z(LΓ) ⊂ L(FCΓ)) (still open problem. Equality is not true since left side is Abelian, but right hand
side doesn’t have to be).

Consider L(Z× F2) ∼= L(Γ))
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25 Examples of ICC Groups

8 April 2022 ”You catch a snake by hand of crazy person” ”Pure spirit” ”Everybody can cook” ”Beautiful marriage
of mathematics” (C∗ algebra and Von Neumann Algebras)

25.1 Group-measure space von Neumann algebra

(Murray-von Neumann ’36, ’45)

Suppose (X1, µ1) and (X2, µ2) are two probability spaces.

Then, (X1, µ1) ∼=θ (X2, µ2) if there is a Borel isomorphism i.e.

∃θ : X1 → X2 (Borel) measure preserving map such that

E ⊂ X2 Borel such that µ(θ−1(E2)) = µ2(E).

Assume (X1, µ1) = (X2, µ2) = (X,µ). (special case). Under composition,this becomes a group i.e.
Aut(X,µ) = group of (class modulo null sets) pmp automorphism of X.

Θ ∈ Aut(X,mu)! Aut(L∞(X,µ)), τ1) 3 f(x)→ f ◦ θ = f(θ(x)).

τ(f) = τ(f ◦ θ)∫
X

f(x) dx =

∫
X

f ◦ θ(x) dx∫
X

χE =

∫
X

χE ◦ θ

(Works since measure preserving. Hence, the induced map).

Action Γ (X,µ) (pmp action)

µ(γ−1E) = µ(E) ∀EX.

Then, Γ σ (f(X), where f : X → C.

σp(f)(x) = f(γ−1(x) ∀x ∈ X, γ ∈ Γ. (Respects Lp).

f ∈ L∞(x) σγ](f)∈L∞(X),||σγ(f)||=||f ||

f ∈ L2(x) σγ(f)(L2(X)

For f, h ∈ L2(X)

< σγ(f), σγ(h) > =

∫
X

σγ(h)σγ(g) dµ

=< f, g >

Preserves dot product.
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11 April 2022 Γ countable discrete group.

Γ action on (X,µ) pmp such that µ(γE) = µ(E) ∀E ⊂ X measurable, ∀γ ∈ Γ.

This induces another action.

Γ σ (action) on F (X) = {f : X → σ|f function }, where

γ 7→ σγ(f) = f(γ−1(x)) ∀x ∈ X,∀f ∈ F (x).

f ∈ L2(X,µ) 7→ σγ(f) ∈ L2(X), ||f ||2 = ||σγ |f |||2 ∀f∀γ.

f ∈ L∞(X) 7→ σγ(f) ∈ L∞(X), ||f ||∞ = ||σγ |f ||∞ ∀f∀∞.
Γ σ (action) (L∞(X),

∫
·dµ = τ)

Gamma (L2(X), <>), f ∈ L∞(X)

τ(σγ(f)) =

∫
X

σγ(f)(x) dµ(x)

=

∫
X

f(γ−1x) dµ(x)

=

∫
X

f(x) dµ(x)

= τ(f)

(τ -preserving action).

Definition 25.1 (Koopman Representation).

< σg(f), σg(h) >=< f, g > f, g ∈ L2(X),

where Γ (action) U(L2(X), <,>) is a unitary representation.

(will drop µ in our notation from now, but it is there).

Note that σ : Γ→ Aut(L∞(X),
∫
·µ) where γ 7→ σγ .

Suppose f ∈ L∞(X) Mf ∈ B(L2(X)), where ξ ∈ L2(X), and it is defined as followed:

Mf (ξ)(x) = f(x)ξ(x), ||Mf ||B(L2(X)) = ||f ||∞.

Let ξ ∈ L2.

σg(Mf )σg−1(ξ) = σgMf (ξ ◦ g−1)

= σg(f · ξ ◦ g−1) (Pointwise)

= σg(f)ξ

= Mσg (f)

(Recovers the action. Covariant. Think about cross product or semi-direct product).

Now we build our von Neumann algebra (i.e. cross product algebra).

We now consider a larger Hilbert space, H = L2(X)⊗ `2Γ.

L∞(X), Gamma (action) B(H). (represent)

L∞(X) 3 f  f ⊗ 1 : L2(X)⊗ `2Γ→ L2X ⊗ `2Γ. i.e.

f ⊗ 1(ξ ⊗ δg) = (fξ)⊗ δg.
(Now take element of the group, Γ). Γ 3 g  ug(ξ⊗ δg) = σg(ξ)⊗ δgh. (on the second component, left
regular representation).

⇒ ug = σg ⊗ λg.
(Do not want to use Mf anymore).

Note that two operators are the same if they agree on some generator (basis or something).
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ugfu
−1
g (ξ ⊗ δh) = ugf(σg(ξ)⊗ λg−1(δh))

= ug(f · σg−1(ξ))⊗ λg−1(δh)

= σg(f)ξ ⊗ δh
= σg(f)(ξ ⊗ δh)

i.e. ugfu
−1
g = σg(f) (on this representation).

Implication

fug cot kuh = f ugku
−1
g︸ ︷︷ ︸

=σg(k)

uguh

= σg(k)ugh

Definition 25.2 (Algebraic (or linear) span). span = {
∑
g finite agug|ag ∈ L∞(X), g ∈ Γ} ⊂ B(H).

Then, this is an algebra, but in particular, it is a star algebra.

(aug)
∗ = u∗ga

∗

= ug−1a∗ · 1
= ug−1a∗ugug−1

= σg−1(a∗)

[L∞X] L∞(X) alg Γ

Therefore, to get the von Neumann algebra, we take the closure as follows

Definition 25.3 (Group Measure Space von Neumann algebra).

L∞ oσ Γ = L∞(X) oalg Γ
SOT

= L∞(X) oalg Γ
WOT

= {L∞(X) oalg Γ
SOT
}′′ ⊂ B(H)

of Γ(X,µ).
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13 April 2022 Γ (acts on) (X,µ) pmp standard probability space ([0, 1], λ).

 L∞(X) oσ Γ = L∞(X) oalg Γ
SOT

H = L2(X)⊗ `2(Γ).

L∞(X) 3 f  f(ξ × δg) = (fξ)⊗ δg f ∈ B(H),∀ξ ∈ L2(X)

Γ 3 g  uh(ξ ⊗ δg) = σR(ξ) ⊗ δhg ug ∈ B(H)

[L∞X]Γ = L∞(X) oalg Γ = lim{aug|a ∈ L∞X, g ∈ Γ}

Note that Γ σ (acts on L∞(X,µ)

Γ σ L
2(X,µ)

Also note that

uhfuh−1 = σh(f), f ∈ L∞X
⇒ augbuh = uugbug−1uguh

= aug(b)ugh

L∞X ⊂ L∞X oσ Γ ⊂ L(Γ) (finite von Neumann algebra)

Let A = L∞(X).

Definition 25.4 (Left Convolvers). Aoalg ⊂ ΓL(A,Γ) = {ξ =
∑
g ξgδg ∈ H|∃∞ > c ≥ 0 such that ||ξ∗

η||2 ≤ c||η||2} ∀η ∈ H.

(In particular, the SOT-closure of the algebra on the left, Aoalg = L(A,Γ)).

Similarly,

Definition 25.5 (Right Convolvers). Aoalg ⊂ R(A,Γ) = {ξ =
∑
g ξgδg ∈ H|∃∞ > c ≥ 0 such that ||η∗

ξ||2 ≤ c||η||2 ∀η ∈ H}

ξ = (
∑
ξgδg), η = (

∑
g ηgδg) (cannot multiply pairwise since not scalars)

Therefore, (ξ ∗ η)g =
∑
h ξhσh(hg).

x ∈ L∞(X) oσ Γ (Fourier expansion) x =
∑
g∈Γ xgug,

where x = Lξ = Lx(1⊗δ (representing vector in L2).

τ : L∞(X) oσ Γ→ C. Hence,

τ(x) =
∫
X
x(t) dµ.

xg = EL∞(X)(xug−1), where E(x) = ae, ELΓ(x) =
∑
g∈Γ τ(xg)ug (expectations)

Proof. Fix h ∈ Γ. Then,

EL∞X(xuh−1) = EL∞X(
∑
g

xguguh−1

= EL∞X(
∑
g

xgugh
−1)

=
∑
g

EL∞X(xgugh−1

=
∑
g

xgEL∞X(ugh−1)
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Then,

EL∞X(uk) = δk,l

τ ◦ EL∞X = τ a ∈ L∞X
τ(aEL∞X(uk)) = τ(EL∞X(auk))

= τ(auk)

= δk,l

If we let a = EL∞X(u∗k). Take norms and we get precisely δk,l

∴,
∑
g xgEL∞X(ugh−1) =

∑
g xgδgh−1,l = xh

Exercise Suppose you have two subgroups, ∆,Σ ≤ Γ and L(∆) ⊂ L(Γ) ⊃ L(Σ).

Show that L(∆) � L(Σ) ⇐⇒ ∃h ∈ Γ[∆ : hΣh−1 ∩ ∆] < ∞ (index is finite. Can be proved using
analytic index and intertwining techniques).

Definition 25.6 (Ergodic). Γ (X,µ) free ⇐⇒ ∀g 6= 1µ({x ∈ X0|yx = x}) = 0 or µ(gX0∆X0) = 0.

Γ (X,µ) ergodic ⇐⇒ ∀X0 ⊂ X if gX0 = X0 ∀g ∈ Γ, µ(X0) ∈ {0, 1} (for every Borel set)
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15 April 2022

Definition 25.7. Γ  (acts on) (X,µ) is free (ess). if µ({x ∈ X|x = gx}) = 0 ∀g 6= 1 (Borel
measurable set)

(Keeps thing fixed)

Definition 25.8. Γ  (acts on) X,µ) is ergodic iff whenever Y ⊂ X,µ(gY∆Y ) = 0 ∀g ⇒ µ(Y ) =
{0, 1} (Y is Γ- invariant up to measure 0 sets).

(g can move things within Y but stays within Y ).

Lemma 121. The following are equivalent:

1. Γ (acts on) (X,µ) is ergodic.

2. If Γ (acts on) L∞(X,µ), L2(X,µ) then whenever f ∈ L∞(X) such that σg(f) = f ∀g ∈ Γ⇒ f ∈
λ1, λ ∈ C.
3. If Γ (acts on) M(X) then whenever φ ∈M(X) such that σg(f) = f ∀g ∈ Γ⇒ f = λ1, λ ∈ C.

Note that µ(gY δY ) = 0 ⇐⇒ σg(1Y ) = 1Y since 1Y (g−1λ) = 1Y (x). (1Y is the characteristic function.
gY = Y almost everywhere so symmetric difference is 0 ae).

⇒ 1Y = 1.

Proof. (1⇒ 3)

Suppose f ∈M(X) = {f”X → C measurable}

σg(f) = f ∀g ∈ X
σg(f)(x) = f(x) a e x

f(g−1x) = f(x) a e x

(Now consider level sets) Er = {x ∈ X|f(x) > r}
Er is Γ-invariant due to last line of the equation above) ⇒ µ(Er) ∈ {0, 1}.
Take α = sup{r|µ(Er) = 0} (As you increase r, the set gets smaller and smaller).

What you can prove, then r1 < α < r2, µ(Er1) = 0 while µ(Er2) = 1. So, f ∼= α.

Lemma 122. g ∈ Aut(X,µ) σg ∈ Aut(L∞(X,µ)). Then TFAE:

1. g is free.

2. ∀A ⊂ X,µ(A) > 0 ∃B ⊂ A such that µ(B) > 0 such that gB ∩B = ∅.
3. If a ∈ L∞(X) such that aσj(x) = xa ∀x ∈ Linfty(X,µ)→ a = 0.

Proof. (1⇒ 2) - HW

(2⇒ 3

aσg(x) = xa

If a 6= 0, v|a|σg(x) = v|a|x ∀x.

f =
f

|f |
|f | (partial isometry). But have to be careful since it may have 0. To avoid this, we will

multiply by characteristic function, then the support will take care of things). So now we have

f =
f

|f |
χsupp

pσg(x) = px ∀x.
p = 1Y ,m(Y ) > 0.
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1Y (y) = x(g−1y) = 1Y (y)x(y)∀y ∈ X.
x(g−1y) = χ(y) ∀y ∈ Y.
By 2, we can find a B with g−1B ∩B = ∅ (take y in this B) such that B(g−1y) = 1By.

Hence gB = B. Therefore, contradiction, a = 0.

Theorem 123 (M vN ’ 36). 1. Γ (acts on) (X,µ) free ⇐⇒ L∞(X) oσ Γ MASA (maximal Abelian
*-subalgebra)

A′ ∩ (Aoσ Γ) = A.

2. If Γ (acts on) (X,µ) is free, then Aoσ Γis a factor ⇐⇒ Γ (acts on) (X,µ) is ergodic.

(By Zorn’s Lemma, we can always find a maximal Abelian subalgebra. This theorem states this is
exactly what is it).

Proof. (⇒)

Suppose x ∈ A′ ∩ (Ao Γ),

x = σgxgug, xg ∈ A.
Then xa = ax ∀a ∈ A. Then, we have

xa = (
∑
g xgug)a =

∑
g xguga||u−1

g ||g =
∑

(xgσg(a))ug.

Also we have ax = a(
∑
g xgug)

∑
g(axg)ug.

axg = xgσg(a)∀g and ∀a ∈ A. Since Γ (acts on) (X,µ) free, then By above Lemma, xg = 0 ∀g 6= 1.
Then,

x =
∑
xgug = x ∈ A.

Proof. (⇐)

By Lemma 2, ax = σg(x)a ∀x ∈ A.

⇒ ax = ugau
−1
g a.

⇒ ug−1ax = x(ug−1)a ∀x ∈ A. The, it is in the commutant ie.e ug−1a ∈ A′ ∩ (Ao Γ) = A.

z ∈ Z(Ao Γ) ⊂ A′ ∩ (Ao E) = A.

A 3 z. (z is in center).

We have zug = ugz ⇒ z − ugzug−1 = σg(z) ∀g ⇒ z ∈ C1. So if you assume ergodic, then it will be a
scalar.

Proof. σg(a) = a ∀g
ugaug−1 = a⇒ uga = aug.

Then buga = baug = a(bug) = a ∈ Z(Ao Γ) = 1C.
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26 Amenable Groups

18 April 2022 Suppose Γ is a discrete, countable group (doesn’t have to be).

Definition 26.1 (Amenable). Γ is amenable ⇐⇒ ∃0 6= φ ∈ `∞(Γ)∗ left invariant state (i.e. φ
positive φ ≥ 0, unital φ(1) = 0, linear functional and φ(tf) = f) ∀f ∈ `∞Γ, ∀t ∈ Γ)

tf(x) = φ(f−1x),∀f, x ∈ Γ.

Example 124. ∃µ : 2Γ → [0, 1] such that

µ(A tB) = µ(A) + µ(B), AcapB = ∅
µ(Γ) = 1

µ(gA) = µ(A)

Example 125. Every finite group is amenable.

Theorem 126. The following groups are amenable.

1) ∀ finite groups, µ : 2Γ → [0, 1] given by µ(A) =
|A|
|Γ|

2) ∀ abelian group (consequence of Kakutani FPT - HW)

3) Class of Amenable groups is closed under taking subgroups, extensions, quotients, and inductive
limits

4) (Asymptotic Analysis) All groups of sub-exponential growth i.e. Γ =< s > where (s = s−1), |s| <∞
(finitely generated group).

Can define a notion of growth using the Cayley graph. Can define distance between two words i.e.
(s, t) = `(t−1s) (length). Then count how many elements you have. Now this is is a metric space.

Then, B(e, g) = {g ∈ Γ|d(e, g) ≤ r} where e is the identity. Finally, |B(e, r)| ≤ exponential, then we
have sub-exponential growth.

Theorem 127. F2 is not amenable.

Proof.
•b

•

•a−1 •a

•

•b−1

Disjoint Union

F2 =< a, b >

A+ = {w ∈ F2|w = a...}
A− = {w ∈ F2|w = a−1...}
B+ = {w ∈ F2|w = b...}
B− = {w ∈ F2|w = b−1...}
F2 = A+ tA−1 tB+ tB−1 t {e}
F2 = A+ t aA and F2 = B+ t bB−1 (Paradoxical Decomposition)

Now assume by contradiction ∃φ(`∞(F2)∗) left-invariant state. Then,
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φ(1) = φ(1A+ + 1A− + 1B+ + 1B− + 1e)S1

= φ(1A+) + φ(1A−) + φ(1B+) + φ(1B−) + φ(1e)S1
)

= φ(1A+) + φ(a1A−) + φ(1B+) + φ(b1B−1) + φ(1e)

= φ(1A+ + 1aA−) + φ(1B+ + 1bB−) + φ(1e)

≥ φ(1) + φ(1)

φ(1) ≥ φ(1) + φ(1) for 0 ≤ φ(1) ≤ 0

Contradiction

(Thompson Group - famous group. Amenable or not? (3 each so far)) - so close to border “It is a
joke. I am not sure if it is a funny joke.” - Conferences/Voting on Amenable Groups.

Theorem 128. TFAE:

1) Γ is amenable

2) ∃ µ ∈ P (Γ) ⊂ `1Γ such that ||µi − tµi||1 → 0.

3) The left regular representation λ : Γ→ U(`2Γ) has almost invariant vectors i.e. ∃ξ ∈ `2Γ, ||ξ||2 = 1
such that ||λg(ξi)− ξi||2 → 0 ∀g.

4) ∃(Fi) ⊂ Γ (Folner nets) ∃Fi ⊂ Γ finite such that
Fi∆tfi
|Fi|

→ 0 ∀t ∈ Γ

Proof. (4⇒ 2)

Take µi =
1

|Fi|
· 1Fi . Then,

||µi − tµi||1 =
∑
|µ(s)− µ(t−1s) =

∑
g |

1

|Fi|
· 1Fi(t−1s)| = Fi∆tfi

|Fi|
→ 0
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20 April 2022 Prob (Γ) = {µ : Γ→ C|µ(g) > 0,
∑
g∈Γ µ(g0 = 1, ||µ||1 = 1}

Theorem 129. TFAE

1. Γ is amenable

2. ∃(µi) ∈ Prob(Γ) ⊂ (`1Γ) such that ||µi − gµi||1 → 0 ∀g ∈ Γ.

3. The left regular representation λ : Γ→ U(`2Γ) as almost invarint vectors (1Γ � λΓ)

∃ (ξi)i ⊂ `2Γ, ||ξi||2 = 1, ||λg(ξi)− ξi||2 → 0 ∀g ∈ Γ.

4. ∃ Folner net (Fi)i ⊂ Γ,

FiδgFi
|Fi|

→ 0 ∀g ∈ Γ

∀ε > 0,∀E ⊂ Γ ∃F ⊂⊂ Γ such that
|FδsF
|F |

< Mε ∀s ⊂ E

Last time, we proved (4)⇒ (2)

Proof. (4)⇒ (3)

Let ξi =
1

|Fi|1/2
1Fi ∈ `2Γ, ||ξi||2 = 1

||ξλgξi||22 = || 1

|Fi|2
1Fi −

1

|Fi|1/2g
1Fi ||22. Then,

∑
t

1

|Fi|
|1Fi(t)− g1Fi(t)|2 =

∑
t

1

|Fi|
|1Fi(t)− 1Fi(g

−1t)|2

=
1

|Fi|
|Fi∆gFi|

=
|Fi∆gfi|
|Fi|

→ 0

Proof. (2)⇒ (3) If ∃µi ∈ Prob(Γ)

µi − gui||1 → 0 ∀g

ξi : ΓrightarrowC, ξi(t) =∆ µi(t)
1/2, ξ ∈ (`2(Γ))1. Then,

||ξi − λgξi||22 =
∑
t

|ξi(t)− ξi(g−1t)|2

=
∑
t

|µi(t)1/2 − µi(g−1t)1/2|2

≤
∑
t

|µi(t)− µi(g−1t)|

= ||µi − gµi||1 → 0

(We use the fact that |a− b|2 ≤ |a2 − b2| since |a− b||a0b| ≤ |a− b||a+ b|)
( (3)⇒ (2) Similarly)

Proof. (2)⇒ (4) (Namioka’s trace)

∀ε > 0, ∃µ ∈ Prob (Γ) such that
∑
g∈E ||µ− gµ||1 < ε = ε · 1 = ε||µ||1.

Observe that ∀α, β ≥ 0, we have
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|α− β| =
∫ ∞

0

|1(r,∞)(α)− 1(r,∞)(β)| dr

⇒
∑
g∈E

∑
t

|µ(t)− µ(g−1t)| < ε
∑
t

µ(t)

∑
g∈E

∑
t∈Γ

∫ ∞
0

|1(r,∞)µ(t)− 1(r,∞) − 1(r,∞)(µ(g−1t)| dr < ε
∑
t

∫ ∞
0

1(r,∞)µ(t)

∫ ∞
0

(
∑
g∈E

∑
t∈Γ

|1(r,∞)(µ(t))− 1(r,∞))(µ(g−1t)) dr <

∫ ∞
0

ε
∑
t

1µ(t)

∃r > 0 s t
∑
g∈E

∑
t∈Γ

|1(r,∞)(µ(t))− 1(r,∞))(µ(g−1t)) dr < ε
∑
t

1(r,∞)(µ(t))

Now consider the set F = {t ∈ Γ|µ(t) > r} (Level Set - Finite, nonempty subset of Γ). Then, we have

∑
g

|F∆gF | < ε|F |

|F∆gF | < ε|F |
FδgF |
|F |

< ε ∀g ∈ E

Proof. (2)⇒ (1) Trivial since ||µi − gµi||1 → 0 `1Γ ⊂ (`∞Γ)∗

Then,

µ φm ∈ (`2(Γ)∗. Then,

φM (F ) =

∫
Γ

f dm

=
∑
g∈Γ

f(g)µ(g)

Proof. (1)⇒ (2) (Day’s Trick)

Suppose φ : `∞(Γ)→ C state left invariant i.e. gφ = φ ∀g ∈ Γ.

Claim ∃µi ∈ Prob(Γ) (net) such that in weak-∗ topology, µi converges to φ (pointwise) as elements of
(`∞Γ)∗.

Separation argument (via Hahn-Banach)

Suppose that this does not hold (by way of contradiction). Then, Prob (Γ) ⊂ (`∞Γ)∗ (convex subspace)

Note that after the closure these two are disjoint subspaces of (`∞Γ)∗. Then, by Hahn-Banach sepa-
ration theorem, ∃f ∈ `∞(Γ)

∃r > 0, s < t ∈ R such that Re (ν(f)) ≤ s < t ≤ Re φ(f) ∀ν ∈ Prob (Γ).

Now consider f ∈ `∞(Γ) with 1/2(f + f) (real-valued) since Re (φ(f)) = φ(
f + f

2
).

Then ||f ||∞ + ν(f) ≤ ||f ||∞ + s < ||f ||∞ + t ≤ ||f ||∞ + φ(f) ∀ν
Then,

ν(f + ||f ||∞) ≤ s0 < t0 ≤ φ(f + ||f ||∞). Take supremum to get

supν∈Prob(ν(f)) ≤ s− 0 < t ≤ φ(f)∀ν ∈ Prob(Γ)

Then, supremum is norm-infinity. So they are equal.
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22 April 2022

1. Γ is amenable ⇐⇒ ∃φ ∈ (`∞)∗ state left-invariant i.e. sφ = φ.

2. ∃µi ∈ Prob(Γ) ∈ `2Γ i.e. ∀s ∈ Γ, ∀ε > 0,∀t ∈ Γ, ||µi − sµi|| < ε for all s < t.

(Day’s Trick)

Proof. (1)⇒ (2)

φ : `2φ→ C positive, unital function such that sφ = φ ∀s

Claim: ∃µi ∈ Prob(Γ) such that µi
weak∗−−−−→ φ in (`∞Γ)∗.

Prob(Γ)
Weak∗

, φ ⊂ (`∞Γ)∗

Assume by contradiction these are disjoint sets. By Hahn-Banach separation theorem, ∃ φ ∈ `∞(Γ)
such that for s < t ,

Re ν(f) ≤ s < t ≤ φ(f)∀Re φ(f) ∀ν ∈ Prob Γ
Weak

f → f + f

2
ν(f) ≤ < t < φ(f) ∀ν ∈ Prob (Γ)

f ≥ 0

||f ||∞ = sup
ν∈Prob Γ

ν(f) ≤ s < t < φ(f) ≤ ||f ||∞

That is a contradiction. (Why is the last line equal? g ∈ Γ and consider δg(f) =
∑
t∈Γ f(t)δg(t) = f(g)

Hence, the claim is true.

Fix s ∈ Γ, f ∈ `∞Γ Now consider

sµi − µi(φ) = sµi(f)− sφ(f) + sφ(f)− φ(f) + φ(f)− µi(f)

= s(µi − φ)(f) + (φ+ µi)(f)→ 0

Hence, sµi − µi
Weak∗−−−−→ 0.

⊕s∈E{sµ− µ|µ ∈ Prob (Γ)}
Weak

3 {0}

K””K
Weak∗ ⊂ X

The, || ⊕ sµ− µ||1 < ε. Then, we have∑
s ∈ E||||sµ− µ||1 < ε (if each is less than ε, then all of it is less).

Theorem 130. TFAE:

1. Γ is amenable.

2. ∃φ : Γ→ C positive definite finitely supported.

|φi(g)− 1| → 0.

3. C∗(Γ) ∼= C∗λ(Γ)

4. C∗Γ admits a 1− dimensional representation.

5. (Kesten’s criteria) ∀E ⊂ Γ

|| 1

|E|
∑
s∈E λs||∞ = 1 such that λs : `2Γ→ `2Γ defined by (λsξ)(h) = ξ(s−1h) h ∈ Γ
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Definition 26.2 (Positive Definite). ∀F finite ⊂ Γ, then,

[φi(s
−1t)] ∈M|F |(C) s, t ∈ F .

< φi(s
−1t), ~v,~v >≤ 0 ~v ∈ C|F |.

Proof. (1)⇒ (2)

ξ ∈ `2Γ such that ||ξ||2 = 1 such that ||λs(ξi)− ξi||2 → 0

Consider φi : γ → C given by φ(g) =< λg(ξ), ξ > such that

< [φ(s−1t)~v,~v >= ||
∑n
i=1 viλsi(ξ)|| ≥ 0 for F ⊂ Γ.

φi(g) − 1|| = | < λg(ξ), ξi > − < ξi, ξi > | = | < λg(ξi) − ξi, ξi > | ≤ ||λ(ξi) − ξi|| → 0 (follows from
C-s)

(kind of like baby version of GNS construction)
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25 April 2021 Recall the theorem

Theorem 131. 1. Γ is amenable.

2. ∀E ⊂ Γ, E = E−1 such that || 1

|E|
∑
s∈E λs||∞ = 1. (Kesten)

Last time, we proved (⇒).

Proof. (⇐)

LetS =
1

|E|
∑
s∈E sλs. Then, S∗ =

1

|E|
∑
s∈E λs−1 = S (self-adjoint operator).

Also, ||S||∞ = sup||ξ||=1 =< Sξ, ξ > (HW)

Note that ||S||∞ = 1.

∀ ε > 0,∃ξ ∈ (`2Γ)1 such that||ξ||2 = 1.

Also 1− ε ≤ | < Sξ, ξ > |
Then, |ξ|(g) = |ξ(g), g ∈ Γ.

1− ε ≤ | < Sξ, ξ > |

= |
∑
t∈Γ

(Sξ)(t)− ξ(t)

≤
∑
t∈Γ

|(Sξ)(t)||ξ(t)|

=< |Sξ|, |ξ| >

≤
∑
t∈Γ

Sξ|(t)|ξ(t)|

=< S(|ξ|), |ξ|)

=
∑
s∈E

λs(|ξ|), |ξ| >∑
s∈E(1− ε)
|E|

= 1− ε ≤ 1

|E|
∑
s∈E

< λ|ξ|, |ξ| >

1 = ε ≤< λs|ξ|, |ξ| >

For ε > small, all < λs|ξ|, |ξ| > are arbitrarily close to 1 ∀s ∈ E.

Also notice that

||λs|ξ| − |ξ|||22 = ||λs(ξ)||22 + |||ξ|||22 − 2 < λs|ξ|, |ξ| >
= 1 + 1− 2 < λs|ξ|, ξ >

By the thing we proved above, the right most term is arbitrarily close to 1, so everything goes to 0.

∴, |λs|ξ| − |ξ||2 < ε.

(Nets)

∀E = E−1 ⊂⊂ Γ, ∀ ε > 0, ∃|ξ| ∈ `2Γ, |||ξ|||2 = 1 such that ||λs|ξ| − |ξ|||2 < ε ∀s ∈ E.
(E, ε), E ⊂⊂ Γ, ε > 0.

Then, (E, ε) ≤ (F, δ) ⇐⇒ E ⊂ F for δ < ε.

Finally, ∃|ξ| = ξ(E,ε) ∈ `2Γ ||ξ(E,ε)||2 = 1.

Hence, conclusion follows.
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27 Von Neumann Algebras

(M, τ) von Neumann algebra, Mop - opposite von Neumann algebras.

Definition 27.1. M,N are von Neumann algebras.

A H-Hilbert space is called M−N bimodule if there exists two representations if comes equipped with
two representations:

π : M → B(H)

ρ : Nopp → B(H) such that π commutes with ρ

xξy = π(x)ρ(y)ξ,

where x ∈M,y ∈ N, ξ ∈ H.

Consider the bimodules MHN

πH : M ⊗alg N
op → B(MHN ) unital *-representation.

Example 132. If (von neumann algebra finite, can form the L2 space) then, ML
2(M)M is the trivial

bimodule given by the action

xξy = xJy∗Jξ.

Example 133. ML
2(M)⊗L2(M)M given by

x(ξ1 ⊗ ξ2)y = (xξ1)⊗ (ξ2y) x, y ∈M.

1Γ → L2(M).

λΓ → L22(M)⊗ L2(M).

Example 134. θ ∈ Aut(M)τ ◦ θ = τ given by

L2
θ(M) = L2(M) 3 ξ such that

xξy = xξθ(y).

Definition 27.2. Two correspondences/bimodules are isomorphic i.e. MHN
∼=M KN if

∃U : H → K unitary such that

U(xξy) = xU(ξ)y, x, y ∈M, ξ ∈ H.

Definition 27.3. MHN ⊂weakly (weakly contained in) MKn given by

||πH(t)||∞ ≤ ||πK(t)||∞ ∀t ∈M ⊗alg N
opP (pointwise)
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27 April 2022 Let π : Γ→ U(Hπ) unitary representation.

M = L(Γ) = {ug, g ∈ Γ}, where Γ is countable, discrete.

Consider the Hilbert space Kπ = Hπ⊗̄`2(Γ). Let ξ ∈ Hπ.

Define left action as follows:

us(ξ ⊗ δt) = πs(ξ)⊗ δst.
Similarly the right action is defined as:

(ξ ⊗ δt)us = ξ ⊗ δts.
The right action extends to all x ∈M.

How about left action?

Lemma 135 (Fall absorption lemma). Let

Kπ → Kπ unitary

Hπ ⊗ `2Γ→ Hπ ⊗ `2Γ

U(ξ ⊗ δt) = πt(ξ)⊗ δt t ∈ Γ

unitary, then,

U(11⊗ λ)U∗ = π ⊗ λ, where λ is the left regular representation.

Proof.

U(1⊗ λ)U∗(ξ ⊗ δs) = π ⊗ λ(ξ ⊗ δs) ∀s ∈ Hπ, s ∈ Γ

U(1⊗ λ)t = (πs−1(ξ)⊗ δs)
U(πs−1(ξ)⊗ δts)

= πts(πs−1(ξ)× δts
= πt ⊗ δts

Hence, we have a MKπ M bimodule.

Theorem 136. 1. Kπ is M −M bimodule.

2. MK1ΓM
=M L2(M)M

3. MKλΓM
≡M L2(M)⊗ L2(M)M

4. π1 ⊂weak π2 → Kπ1 ⊂weak Kπ2

Proof. Proof left as an exercise/HW to the reader.

27.1 Preliminaries

M ⊂ N v N algebra.

Definition 27.4. φ ∈ N∗ is M -central if φ(xTx) = φ(Tx) ∀T ∈ N, x ∈M.

x ∈M, x̄ = (xop)∗ ∈Mop.

Then, consider M ⊗alg M
op ∈ B(L2M ⊗ L2M).

|| · ||min operational norm on M ⊗alg M
op induced by B(L2M⊗̄L2(M))

This is the minimal tensor norm.

Definition 27.5 (p-Scheten class). For every p ≥ 1,

Sp(H) = {T ∈ B(H)l, T r(|T |p <∞}

Sp(H) is a Banach space and ||T ||p = Tr(|T |p)1/p.
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When p = 1, this is trace class. When p = 2, this is Hilbert-Schmidt class.

(M, τ) von Neumann algebra.

U : HS(L2M)→ L2(M)⊗̄L2(M)

ξ ⊗ η 7→ ξ ⊗ τη M − bimodule isomorphism

Lemma 137. Suppose A is a C∗ algebra and u ∈ U(A) unitary of A and w ∈ A∗ state. Then,

max{||ω − ω(u)||, ||ω − ω(·u∗)||} ≤
√

2|1− ω(u)

(Note, direct proof is difficult, but can be eased through GNS construction - can turn functional state
into vector state - via representation).

Proof. Let (πw, Hw, ξw) be a GNS triple for the state ω on A, where ω(a) =< π + w(a)ξw, ξw > and
πw : A→ B. Then,

||ω − ω(u·)|| = sup
||x||≤1

||ω(x)− ω(ux)|

= sup ||x|| ≤ 1| < πω(x)ξω − πω(ux)ξω, ξω >

≤ ||πω(x)ξω, ξω0πω(u∗)ξω >

≤||x||≤1 ||πω(x)ξω||, ||ξω − πω(u∗)ξω||
≤ (||ξω − πω(u∗)ξω||2)1/2(||ξu||2 + |π(u∗)ξu − 2Re < ξω, πω(u∗ξω)1/2 C-S)

= (2− 2Reω(u))1/2

≤ 2|1− ω(u)|1/2
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29 April 2022

Theorem 138 (Powers-Stormer Inequality). Let H be a Hilbert space.

Suppose S, T ∈ S2(H), S, T ≥ 0.

||S − T ||22 ≤ ||S2 − T 2||1
≤ ||S − T ||2||S + T ||2

Proof. Fact 1. A,B ∈ B(H) of finite rank, A,B ≤ 0.

AB = V |AB| (polar decomposition)  V ∗AB = V ∗V |AB| = |AB|

||AB||1 = Tr(|AB|)
= Tr(V ∗AB)|
≤ ||V ∗A||2||B||2
≤ ||A||2||B||2

Fact 2. A,B ∈ B(H), A,B ≥ 0 and at lest one of finite rank, then Tr(AB) ≥ 0.

B =
∑k
i=1 λi < ·, ξi > ξi (old notation:

∑k
i=1 λiξi⊗̄ξ̄i

B =

k∑
i=1

λi < ·, ξi > ξi

AB = A(
∑

λi < ·, ξi > ξi >

=
∑

λiξi ⊗Aξi

⇒ Tr(AB) =
∑

λi < ξi, Aξi >

≥ 0

(Note that Tr(ξ⊗̄η̄) =< ξ, η > .

Now WLOG, S, T ≥ 0, have finite rank. Consider S2 − T 2.

S2 − T 2 =
1

2
((S + T )(S − T ) + (S − T )(S + T ))

||S2 − T 2||1 =
1

2
Tr(|(S + T )(S − T ) + (S − T )(S + T )|)

=
1

2
Tr(V ∗((S + T )(S − T ) + (S − T )(S + T ))

=
1

2
Tr(V ∗((S + T )(S − T ))) + Tr(V ∗((S − T )(S + T )))

≤ 1

2
||(S + T )||2||S − T ||2 + ||S − T ||2||S + T ||2

≤ ||S − T ||2||S + T ||2

(Follows from fact 1).

If S − T is self-adjoint. Then consider the spectral projection:

p = 1[0,∞)(S − T ), p⊥ = 1− p. The,

(S − T )p ≥ 0 and (T − S)p⊥ ≥ 0.
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Note that p+ p⊥ = 1.

||S − T ||2 = Tr((S − T )(S − T )(p+ p⊥))

= Tr((S − T )(S − T )p+ (T − S)(T − S)p⊥)

≤ Tr((S + T )(S − T )p+ (T + S)(T − S)p⊥) (use positivity from above)

= Tr((S2 − T 2)p+ (T 2 − S2)p⊥)

= ||S2 − T 2||1

(Follows from fact 2).

28 Amenable Algebra

Definition 28.1. (M, τ) vN algebra is amenable iff ∃φ state on B(L2M) is M−central (φ(xu) =
φ(ux) ∀u ∈M,x ∈ B(L2M).

Theorem 139 (Connes ’76). (M, τ) vN algebra (with separable predual)

TFAE:

1. There exists a conditional expectation E : B(L2M)→M (where M ⊂ B(L2M). (injectivity).

2. There exists a state φ on B(L2M) that is M -central where φM = τ.

3. There exists a net ξn ∈ L2M ⊗ L2M, |ξn||2 = 1 such that limn→∞ ||xξn − ξnx||2 = 0 ∀x ∈ M and
lim < xξn, ξn >= τ(x). (Invariant factors for Folner sets)

4. ML
2(M)M ⊂weak ML

2M⊗̄L2MM .

5. ∀a1, a2, ...., ak, b1, .., bk ∈M ,

τ(

k∑
i=1

aibi) ≤ ||
k∑
i=1

ai ⊗ bop
i ||min

(minimum tensor norm)

6. M is hyperfinite (∃Qn ⊂ Qn+1 ⊂ ... ⊂M , ∗− finite, dimC(Qn) <∞ and ∪nQn
WOT

= M.

If M = L(Γ) group vN algebra where Γ is countable discrete.

7. Γ is amenable (i.e. L(Γ) is amenable iff Γ amenable. i.e. Group amenable iff von Neumann algebra
amenable)

Proof. (1)⇒ (2)

φ = τ ◦ t̄ since φ(uxu∗) = τ(E(uxu∗)) = τ(uE(x)u∗) = τ ◦ E(x) = φ(x).

τ ◦ E(m)).
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29 April 2022 (Make up class online)

2 May 2022 Recall,

1. ∃B(L2(M))→M conditional expectation.

6. ∃Qn ⊂ M,Qn ⊂ Qn+1 ∀n, dimC(Qn) < ∞ (some direct sum). These are like block matrices. So
consider

∪nQn
SOT

= M.

(1)⇒ (6) (Very Hard. Skip).

Proof. (1)⇐ (6)

Consider U(Qn) finite compact group. Now take (U(Qn), µn), which represents the Haar measure.

Let T ∈ B(L2M). Then,

Φn(T ) =

∫
Un

uTu∗ dµn(u) ∈ B(L2(M)) u 7→ vu

Φ(T ) = v(

∫
Un

uTu∗dµn(u))v∗

Φ(T ) = vΦ(T )v∗ ∀v ∈ Unv
⇒ Φ(T )v = vΦ(T ).

Therefore, Φn(T ) commutes with v.

This is true for all n ∈ N. Take (N, ω)

ω ultra-filter on N and Φ(T ) = limn→ω Φn(T ) is the ultra-limit. Then,

ΦB(L2M) M ′ ∩B(L2M)

M

ad J
T 7→JΦ(T )J

Proposition. Γ is amenable ⇐⇒ L(P ) is amenable.

Corollary 139.1. Γ is ICC amenable ⇒ L(P ) ∼= R (the hyperfinite)

ZSZ = ⊕Z(Z) o Z
Z2SZ = ⊗ZZ2 o Z
∪nS̃n = S∞ (torsion free - no infinite terms). Tower of subgroups procedure.

Proof. (⇐)

M is amenable, then ∃φ : B(L2M)→ C a state, M -central φ|M = τ.

In esssence, B(L2M) is like

`∞(Γ) ⊂ B(`2Γ)

f  Mf : `2Γ→ `2Γ,

where the mapping is given by (Mfξ)H1 = f(h)ξh and ||Mf ||∞ = ||f ||∞ and M = φ|`∞(Γ)

(Turning things into bimodule via lifting)
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Proof. (⇒)

Γ- amenable ∃(ξn) ⊂ `2Γ, ||ξn||2 = 1, ||λ1(ξn)− ξn||2 → .

M = L(Γ).

H(λ) =M `2Γ⊗ `2ΓM given by ug(ξ ⊗ δh) = λg(ξ)⊗ δgh (left).

Similarly, (ξ ⊗ δh)ug = ξ ⊗ δhg (right action) to define the bimodule structure.

Let bn = xξn ⊗ 1̂ ∈ Hλ. Then

||ugbn − bnug||2 = ||u(ξn ⊗ 1)− (ξn ⊗ 1)ug||2

= λg(ξn)⊗ δg − ξn ⊗ δg||2

= ||(λg(ξn)− ξn)⊗ δg||2

= ||λg(ξn)− ξn||2 → 0 ∀n

Therefore, (ξn)is M -central (i.e. almost invariant, then almost central).

Can check that < x, ξn, ξn >= τ(x) ∀x ∈M (tracial).

Definition 28.2. Φ(T ) = limn→ω < Tbn, bn >;φ(usT ) = φ(Tus).

φ(usT ) = lim
n
< usTbn, bn >

= lim
n
< Tbn, usbn >

= lim
n
< Tbn, bnus >

= lim
n
< Tbnus, bn >

= lim
n
< Tusbn, bn >

= φ(Tus)
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28.1 Take Home Exam 2

1. Show that the hyperfinite factor is unique (You can find this in the chapter 11 of the attached
book).

2. Show that the free group factors L(Fn) associated with the free group with n ≥ 2 generators
does not have property Gamma of Murray and von Neumann. Use this to deduce that L(Fn) is not
∗-isomorphic to L(Fn × S∞), where S∞ is the group of finite permutations of the natural numbers.
(You can find the relevant definitions and the result done in chapter 15 of the book attached.

29 Appendix - Selected Exercises

[font=]Show that (B(H), || · ||∞) is a complete space.

1.

Definitions 1. A sequence {xn} in a metric space (X, d) is Cauchy if ∀ ε > 0, ∃N ∈ N such that for
m,n > N, d(xm, xn) = ||xm − xn|| < ε.

1b. Note that every Cauchy sequence in a metric space is bounded.

2. A metric space (X, d) is complete if every Cauchy sequence in X converges in X.

Solution Proof. First recall that B(H) = {T : H → H| linear, bounded }, where H is a Hilbert space.
Note that ||T ||∞ = sup||ξ||≤1 ||T (ξ)||.
Pick a Cauchy sequence Tn in T. Since it is Cauchy, by definition we have ∀ε > 0, ∃N ∈ N such
that for m,n > N, ||Tn − Tm|| = sup||ξ||≤1|| ||Tn(ξ)− Tm(ξ)|| < ε.

We need to show there is some T ∈ B(H) such that limn→∞ ||Tn − T || = 0.

||Tn − Tm|| = sup
||ξ||≤1||

||Tn(ξ)− Tm(ξ)||

< ε

⇒ ||Tn − T || = ||Tn − Tm + Tm − T ||
≤ ||Tn − Tm||+ ||T − Tm||
= sup
||ξ||≤1||

||Tn(ξ)− Tm(ξ)||︸ ︷︷ ︸
(Converges since Cauchy)

+ sup
||ξ||≤1||

||T (ξ)− Tm(ξ)||

Since T is linear and bounded, by taking limits on both sides, we see that Tn → T ∈ B(H) as
m→∞.
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2. Fix I ∈M(A)→ A/I (This is a field since I is maximal).

Suppose (A, || · ||) is a Banach Algebra. Ī = I ≤ A is a closed ideal ⇒ (A/I, || ·
I) is a Banach algebra, where

||α+ I||I = inf
x∈λ
||α+ x||A ≤ ||a||.

Solution We need to show that A is a normed space, is sub-multiplicative, and is complete.

(i) Show ||c · x|| = |c| · ||x|| ∀x ∈ A, c ∈ C.

Proof. Let α+ I ∈ A/I and c ∈ C. Then, we have

||c · (α+ I)|| = |cα+ I||
= inf
x∈I
||ca+ cx||A

= inf
x∈I
||c(a+ x)||A

= |c| · inf
x∈I
||α+ x||A (since A is a Banach Algebra)

= |c| · ||α+ I||

(ii) Show ||x+ y|| ≤ ||x||+ ||y||.

Proof. Let α+ I, β + I ∈ A/I. Then,

||α+ I + β + I|| = ||(α+ β) + I||
= inf
x∈I
||(α+ β) + x||A

= inf
x∈I
||α+ x||A + inf

x∈I
||β + x||A (since A is a Banach Algebra)

≤ ||α+ I||+ ||β + I||

(iii) Show ||x|| = 0 ⇐⇒ x = 0A.

Proof. Let α+ I ∈ A/I. Then, we have

||α+ I|| = 0

⇒ inf
x∈I
||α+ x||A ≤ ||α|| = 0

⇐⇒ α = 0A (since A is a Banach Algebra)

⇐⇒ α+ I = 0A/I

(iv) Show sub-multiplicative i.e. ||xy|| ≤ ||x|| · ||y||.

Proof. Let α+ I, β + I ∈ A/I. Then,
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||(α+ I)(β + I)|| = ||αβ + I||
= inf
x∈I
||αβ + x||A

≤ ||αβ||
≤ ||α|| · ||β|| (since A is a Banach Algebra )

= inf
x∈I
||α+ x||A · inf

x∈I
||β + x||A

≤ ||α+ I|| · ||β + I||

(v) Show that (A, || · ||) is complete, i.e. all || · ||-Cauchy sequences converge.

Proof. Suppose (α + I)n is a Cauchy sequence in A/I i.e. ∀ ε > 0, ∃N ∈ N such that for all
m,n > N, ||(α + I)n − (α + I)m|| < ε. We need to show that this sequence converges in A/I.
Note by definition,

||(α+ I)n − (α+ I)m|| = infx∈I ||(α+ x)n − (α+ x)m||A.

Since A is a Banach algebra, every Cauchy sequence of A converges in A. On the other, we
assume that ||(α + I)n − (α + I)m|| < ε and by property (ii), the norm of the sums is bounded
by their sum of the norms. Combining these two facts and taking the infimum on the right hand
side, we have that (A/I, || · ||) is a complete space.
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3. Show that {f ∈ C(K)|f(K) = 0 continuous} is a maximal ideal of C(K) = {f : K →
C continuous}, where K is a Hausdorff compact space.

Know 1. There exists a natural homomorphism:

K → σ(C(K))

k 7→ φk

defined by φk(f) = f(k) ∀f ∈ C(K). This map is a homeomorphism.

2. A two-sided ideal I of a ring R is both a left ideal and a right ideal i.e. it is a subring,
rI ⊂ I, and Ir ⊂ I for all r ∈ I. (absorbs products).

Solution Proof. We first recall that M is a maximal ideal iff the quotient ring C(K)/M is a field.

By the First Isomorphism Theorem for rings, C(K)/ ker(φk) ∼= C.

In particular, the kernel of φ is the set of all continuous functions such that φk(f) = f(k) = 0} =
M.

Since C is a field, C(K)/ ker(φk) = C(K)/M is a field ⇒M is a maximal ideal.

Alternatively (Assume that this is not a maximal ideal, i.e. ∃ J ideal such that I ⊂ J ⊂ C(K),
where I = {f ∈ C(K)|f(K) = 0 continuous }.

Suppose f1 ∈ J such that f1 6∈ I. Hence, we have 1 =
f1(k)− f1 + f1

f1(k)
for some k. Since

I is an ideal the first part of the sum goes to 0. Hence, we have 1 =
f1

f1(k)
⇒ 1 ∈ J

and so J = C(K), the entire space. Therefore, I = M is a maximal ideal).
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4. (24 September 2021)

Show the following: (a) A abelian, then x ≤ y ⇒ x2 ≤ y2.

Solution (a)

x ≤ y
xx ≤ yx

⇒ x2 ≤ yx
= xy (since A abelian )

≤ yy (since x ≤ y)

= y2

∴ x ≤ y ⇒ x2 ≤ y2.

(b)
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5. (25 October 2021) Show that the finite rank operator FR(H) ⊂ L1(B(H)) and more-
over FR(H) = L1(B(H)). (dense)

Hint Tr(ξ ⊗ η̄) =< ξ, η > (finite linear combination). Show densy.

Apply definition. Let (bi)i∈I be an ONB. Then,

Tr(ξ ⊗ η̄) =

∞∑
i=1

ξ ⊗ η̄ < bi, bi >

=
∑
i∈I

<< bi, η > ξ, bi >

=
∑
i∈I

< bi, η >< ξ, bi > Prove this is the same as dot product

=
∑
i∈I

< ξi, < ξi, η >, ξi >

=< ξi,
∑
i

< bi, η >bi >

=< ξi,
∑

< η, bi > bi >

=< ξ, η >, i ∈ I
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6. (27 October 2021) L2(B(H)) is a complete space with || · ||2. (Any Hilbert space =
Dual by Riesz representation theorem).
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7. (29 October 2021) (Lemma) HS(H,K) form a closed subspace L2(B(H ⊕K))
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